首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After decades of research, protein structure prediction remains a very challenging problem. In order to address the different levels of complexity of structural modeling, two types of modeling techniques--template-based modeling and template-free modeling--have been developed. Template-based modeling can often generate a moderate- to high-resolution model when a similar, homologous template structure is found for a query protein but fails if no template or only incorrect templates are found. Template-free modeling, such as fragment-based assembly, may generate models of moderate resolution for small proteins of low topological complexity. Seldom have the two techniques been integrated together to improve protein modeling. Here we develop a recursive protein modeling approach to selectively and collaboratively apply template-based and template-free modeling methods to model template-covered (i.e. certain) and template-free (i.e. uncertain) regions of a protein. A preliminary implementation of the approach was tested on a number of hard modeling cases during the 9th Critical Assessment of Techniques for Protein Structure Prediction (CASP9) and successfully improved the quality of modeling in most of these cases. Recursive modeling can significantly reduce the complexity of protein structure modeling and integrate template-based and template-free modeling to improve the quality and efficiency of protein structure prediction.  相似文献   

2.
Although not a traditional experimental "method," mathematical modeling can provide a powerful approach for investigating complex cell signaling networks, such as those that regulate the eukaryotic cell division cycle. We describe here one modeling approach based on expressing the rates of biochemical reactions in terms of nonlinear ordinary differential equations. We discuss the steps and challenges in assigning numerical values to model parameters and the importance of experimental testing of a mathematical model. We illustrate this approach throughout with the simple and well-characterized example of mitotic cell cycles in frog egg extracts. To facilitate new modeling efforts, we describe several publicly available modeling environments, each with a collection of integrated programs for mathematical modeling. This review is intended to justify the place of mathematical modeling as a standard method for studying molecular regulatory networks and to guide the non-expert to initiate modeling projects in order to gain a systems-level perspective for complex control systems.  相似文献   

3.
《Biophysical journal》2022,121(18):3508-3519
Site-directed spin-labeling electron paramagnetic resonance spectroscopy is a powerful technique for the investigation of protein structure and dynamics. Accurate spin-label modeling methods are essential to make full quantitative use of site-directed spin-labeling electron paramagnetic resonance data for protein modeling and model validation. Using a set of double electron-electron resonance data from seven different site pairs on maltodextrin/maltose-binding protein under two different conditions using five different spin labels, we compare the ability of two widely used spin-label modeling methods, based on accessible volume sampling and rotamer libraries, to predict experimental distance distributions. We present a spin-label modeling approach inspired by canonical side-chain modeling methods and compare modeling accuracy with the established methods.  相似文献   

4.
陆地生态系统碳循环模型研究概述   总被引:15,自引:1,他引:14  
陆地碳循环研究是全球变化研究中的一个重要组成部分,而碳循环模型已成为目前研究陆地碳循环的必要手段.本文针对有关碳循环研究方面的进展,介绍了陆地碳循环模型的基本结构、碳循环过程中涉及的两个基本模型以及目前陆地生态系统碳循环模型的两大类型,并通过对现有主要陆地生态系统碳收支模式的分析,指出了未来陆地碳循环模型的研究方向可能是发展基于动态植被的生物物理模型.这种耦合模型也可能是地球系统模式的重要组成部分.  相似文献   

5.
Integrative modeling computes a model based on varied types of input information, be it from experiments or prior models. Often, a type of input information will be best handled by a specific modeling software package. In such a case, we desire to integrate our integrative modeling software package, Integrative Modeling Platform (IMP), with software specialized to the computational demands of the modeling problem at hand. After several attempts, however, we have concluded that even in collaboration with the software’s developers, integration is either impractical or impossible. The reasons for the intractability of integration include software incompatibilities, differing modeling logic, the costs of collaboration, and academic incentives. In the integrative modeling software ecosystem, several large modeling packages exist with often redundant tools. We reason, therefore, that the other development groups have similarly concluded that the benefit of integration does not justify the cost. As a result, modelers are often restricted to the set of tools within a single software package. The inability to integrate tools from distinct software negatively impacts the quality of the models and the efficiency of the modeling. As the complexity of modeling problems grows, we seek to galvanize developers and modelers to consider the long-term benefit that software interoperability yields. In this article, we formulate a demonstrative set of software standards for implementing a model search using tools from independent software packages and discuss our efforts to integrate IMP and the crystallography suite Phenix within the Bayesian modeling framework.  相似文献   

6.
The task of process modeling in a manufacturing environment centers around controlling and improving the flow of materials. This flow comprises a complicated web of control and physical systems. Despite a variety of manufacturing system modeling approaches, more rigorous process modeling is required. This paper presents an integrated modeling framework for manufacturing systems (IMF-M). Conceptual modeling of physical materials flow supported by a graphical representation facilitates improvement of operations in manufacturing environments. A declarative and executable representation of control information systems helps to improve information management by managing a variety of information models with improved readability and reusability. A unified representation of the physical process and information system provides a common modeling milieu in which efforts can be coordinated among several groups working in the different domains of scheduling, shop floor and logistics control, and information system. Since the framework helps adapt to the changes of the physical process and information system affecting each other in a consistent manner, the modeling output enhances integration of the manufacturing system.  相似文献   

7.
This paper reports on the comparison of three modeling approaches that were applied to a fed batch evaporative sugar crystallization process. They are termed white box, black box, and grey box modeling strategies, which reflects the level of physical transparency and understanding of the model. White box models represent the traditional modeling approach, based on modeling by first principles. Black box models rely on recorded process data and knowledge collected during the normal process operation. Among various tools in this group an artificial neural networks (ANN) approach is adopted in this paper. The grey box model is obtained from a combination of first principles modeling, based on mass, energy and population balances, with an ANN to approximate three kinetic parameters ‐‐ crystal growth rate, nucleation rate and the agglomeration kernel. The results have shown that the hybrid modeling approach outperformed the other aforementioned modeling strategies.  相似文献   

8.
Training newcomers to the field of macromolecular modeling is as difficult as is training beginners in x-ray crystallography, nuclear magnetic resonance, or other methods in structural biology. In one or two lectures, the most that can be conveyed is a general sense of the relationship between modeling and other structural methods. If a full semester is available, then students can be taught how molecular structures are built, manipulated, refined, and analyzed on a computer. Here we describe a one-semester modeling course that combines lectures, discussions, and a laboratory using a commercial modeling package. In the laboratory, students carry out prescribed exercises that are coordinated to the lectures, and they complete a term project on a modeling problem of their choice. The goal is to give students an understanding of what kinds of problems can be attacked by molecular modeling methods and which problems are beyond the current capabilities of those methods.  相似文献   

9.
Modeling membranes is not just modeling another kind of macromolecule, but modeling an entire environment for a large class of biomolecular processes. Membrane modeling poses quite a different set of technical problems and scientific isues from modeling proteins. This paper reviews some of these issues and suggests approaches that seem promising for resolving them based on work in our laboratories and that of others.  相似文献   

10.
Cover illustration Special issue: Metabolic Modeling and Simulation. Modeling of cellular metabolism has been a major area of research for bioengineers and biomedical researchers alike. This Special Issue collects a series of articles on methods of metabolic modeling, modeling of human metabolism, modeling of microbial metabolism and modeling of bioprocesses. This cover is a visual representation of the essence of metabolic engineering. Image: © rolffimages – Fotolia.com.  相似文献   

11.
The managerial and organization practices required by an increasingly dynamic competitive manufacturing, business, and industrial environment include the formation of “virtual enterprises.” A major concern in the management of virtual enterprises is the integration and coordination of business processes contributed by partner enterprises. The traditional methods of process modeling currently used for the design of business processes do not fully support the needs of the virtual enterprise. The design of these virtual enterprises imposes requirements that make it more complex than conventional intraorganizational business process design. This paper first describes an architecture that assists in the design of the virtual enterprise. Then it discusses business process reengineering (BPR) as a methodology for modeling and designing virtual organizations. While BPR presents many useful tools, the approach itself and the modeling tools commonly used for redesign have fundamental shortcomings when dealing with the virtual enterprise. However, several innovative modeling approaches provide promise for this problem. The paper discusses some of these innovative modeling approaches, such as object-oriented modeling of business processes, agent modeling of organizational players, and the use of ontological modeling to capture and manipulate knowledge about the players and processes. The paper concludes with a conceptual modeling methodology that combines these approaches under the enterprise architecture for the design of virtual enterprises.  相似文献   

12.
There are two approaches to modeling key relations among variables when one tests products. S-R or stimulus-response modeling assumes that the researcher controls the antecedent physical variables (such as ingredients or processing), and that these physical variables are the primary cause of product-to-product differences. R-R or response-response modeling assumes that the researcher can measure co-varying physical measures of a food, but may or may not have control (or even knowledge) of the antecedent physical variables that generate product differences. S-R modeling allows for true optimization, in terms of defining the operations needed to maximize an attribute (e.g., acceptance). R-R modeling allows only a guess as to what particular combination of physical measures would correspond to a maximum level of the attribute. Often S-R and R-R modeling and optimization are confused with each other, leading to incorrect conclusions.  相似文献   

13.
Park H  Seok C 《Proteins》2012,80(8):1974-1986
Contemporary template-based modeling techniques allow applications of modeling methods to vast biological problems. However, they tend to fail to provide accurate structures for less-conserved local regions in sequence even when the overall structure can be modeled reliably. We call these regions unreliable local regions (ULRs). Accurate modeling of ULRs is of enormous value because they are frequently involved in functional specificity. In this article, we introduce a new method for modeling ULRs in template-based models by employing a sophisticated loop modeling technique. Combined with our previous study on protein termini, the method is applicable to refinement of both loop and terminus ULRs. A large-scale test carried out in a blind fashion in CASP9 (the 9th Critical Assessment of techniques for protein structure prediction) shows that ULR structures are improved over initial template-based models by refinement in more than 70% of the successfully detected ULRs. It is also notable that successful modeling of several long ULRs over 12 residues is achieved. Overall, the current results show that a careful application of loop and terminus modeling can be a promising tool for model refinement in template-based modeling.  相似文献   

14.
目的诱导稳定而可逆的大鼠再生障碍性贫血模型。方法模型A组造模第1天以直线加速器剂量率为240 cGy/min,SSD=100 cm,全身照射1.2 min,分别于第4、6、8天腹腔注射环磷酰胺35 mg/kg和氯霉素43.75 mg/kg,共3次;模型B组造模第1天以直线加速器剂量率300 cGy/min,SSD=100 cm,全身照射1.2 min。分别于第4、5、6天腹腔注射环磷酰胺35 mg/kg和氯霉素43.75 mg/kg,共3次。对照组造模第1天以假照射。于造模9、12、15 d后进行网织红细胞计数、外周血象检查、骨髓活检。结果造模第9天与对照组比较,A组、B组的白细胞(WBC)、红细胞(RBC)、血小板(PLT)、血红蛋白(HGB)、网织红细胞计数(RET)均明显降低,差异有显著性(P〈0.05)。于造模第15天,A组RBC、HGB值继续下降,WBC、PLT、RET值回升,与对照组比较降低,差异有显著性(P〈0.05);B组WBC、RBC、HGB、PLT值有显著回升,与对照组比较降低,差异有显著性(P〈0.05);RET值与对照组比较升高,差异有显著性(P〈0.05)。结论模型A组具有复制周期短,成功率高、重复性好,死亡率低等优点。适合用于治疗药物研究的实验。  相似文献   

15.
It is proposed that computational systems biology should be considered a biomolecular technique of the twenty-first century, because it complements experimental biology and bioinformatics in unique ways that will eventually lead to insights and a depth of understanding not achievable without systems approaches. This article begins with a summary of traditional and novel modeling techniques. In the second part, it proposes concept map modeling as a useful link between experimental biology and biological systems modeling and analysis. Concept map modeling requires the collaboration between biologist and modeler. The biologist designs a regulated connectivity diagram of processes comprising a biological system and also provides semi-quantitative information on stimuli and measured or expected responses of the system. The modeler converts this information through methods of forward and inverse modeling into a mathematical construct that can be used for simulations and to generate and test new hypotheses. The biologist and the modeler collaboratively interpret the results and devise improved concept maps. The third part of the article describes software, BST-Box, supporting the various modeling activities.  相似文献   

16.
Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.  相似文献   

17.
18.
ABSTRACT

Scientific modeling along with hands-on inquiry can lead to a deeper understanding of scientific concepts among students in upper elementary grades. Even though scientific modeling involves abstract-thinking processes, can students in younger elementary grades successfully participate in scientific modeling? Scientific modeling, like all other aspects of scientific inquiry, has to be developed. This article clearly outlines how students in a first-grade classroom can develop and use scientific models to explain the properties and behaviors of solids, liquids, and gases in a unit on the states of matter.  相似文献   

19.
Mathematical modeling of bacterial chemotaxis systems has been influential and insightful in helping to understand experimental observations. We provide here a comprehensive overview of the range of mathematical approaches used for modeling, within a single bacterium, chemotactic processes caused by changes to external gradients in its environment. Specific areas of the bacterial system which have been studied and modeled are discussed in detail, including the modeling of adaptation in response to attractant gradients, the intracellular phosphorylation cascade, membrane receptor clustering, and spatial modeling of intracellular protein signal transduction. The importance of producing robust models that address adaptation, gain, and sensitivity are also discussed. This review highlights that while mathematical modeling has aided in understanding bacterial chemotaxis on the individual cell scale and guiding experimental design, no single model succeeds in robustly describing all of the basic elements of the cell. We conclude by discussing the importance of this and the future of modeling in this area.  相似文献   

20.
Since 2000, the National Cancer Institute’s Cancer Intervention and Surveillance Modeling Network (CISNET) modeling teams have developed and applied microsimulation and statistical models of breast cancer. Here, we illustrate the use of collaborative breast cancer multilevel systems modeling in CISNET to demonstrate the flexibility of systems modeling to address important clinical and policy-relevant questions. Challenges and opportunities of future systems modeling are also summarized. The 6 CISNET breast cancer models embody the key features of systems modeling by incorporating numerous data sources and reflecting tumor, person, and health system factors that change over time and interact to affect the burden of breast cancer. Multidisciplinary modeling teams have explored alternative representations of breast cancer to reveal insights into breast cancer natural history, including the role of overdiagnosis and race differences in tumor characteristics. The models have been used to compare strategies for improving the balance of benefits and harms of breast cancer screening based on personal risk factors, including age, breast density, polygenic risk, and history of Down syndrome or a history of childhood cancer. The models have also provided evidence to support the delivery of care by simulating outcomes following clinical decisions about breast cancer treatment and estimating the relative impact of screening and treatment on the United States population. The insights provided by the CISNET breast cancer multilevel modeling efforts have informed policy and clinical guidelines. The 20 years of CISNET modeling experience has highlighted opportunities and challenges to expanding the impact of systems modeling. Moving forward, CISNET research will continue to use systems modeling to address cancer control issues, including modeling structural inequities affecting racial disparities in the burden of breast cancer. Future work will also leverage the lessons from team science, expand resource sharing, and foster the careers of early stage modeling scientists to ensure the sustainability of these efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号