首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isolation of molecules capable of high-affinity and specific binding to biological targets is a central problem in chemistry, biology and pharmaceutical sciences. Here we describe the use of encoded self-assembling chemical (ESAC) libraries for the facile identification of molecules that bind macromolecular targets. ESAC technology uses libraries of organic molecules linked to individual oligonucleotides that mediate the self-assembly of the library and provide a code associated with each organic molecule. After panning ESAC libraries on the biomolecular target of interest, the 'binding code' of the selected compounds can be 'decoded' by a number of experimental techniques (e.g., hybridization on oligonucleotide microarrays). The potential of this technology was demonstrated by the affinity maturation (>40-fold) of binding molecules to human serum albumin and bovine carbonic anhydrase, leading to binders with dissociation constants in the nanomolar range.  相似文献   

2.
DNA-encoded libraries of small organic molecules facilitate the construction of large, encoded self-assembling chemical libraries for the identification of high-affinity binders to protein targets. We have constructed a library of 477 chemical compounds, coupled to 48mer-oligonucleotides, each containing a unique six-base sequence serving as "bar-code" for the identification of the chemical moiety. The functionality of the library was confirmed by selection and amplification of both high- and low-affinity binding molecules specific to streptavidin.  相似文献   

3.
ESAC beta-lactamases have increased catalytic efficiencies toward extended-spectrum cephalosporins and to a lesser extent toward imipenem as compared with the wild-type cephalosporinases. We show here that ESAC expression associated with the loss of both OmpC and OmpF porins conferred in Escherichia coli a high level of resistance to ertapenem and reduced the susceptibility to imipenem. On the contrary, ESAC expressed in the OmpC- or OmpF-deficient E. coli strains or narrow-spectrum cephalosporinase expressed in the OmpC-and OmpF-deficient strain do not confer reduced susceptibility to any of the carbapenems. The production of ESAC beta-lactamase in favorable E. coli background may represent an additional mechanism of resistance to ertapenem.  相似文献   

4.
The roles played by the European Centre for the Validation of Alternative Methods (ECVAM) and its advisory committee, the ECVAM Scientific Advisory Committee (ESAC), in the evolution of alternative methods are described. Particular emphasis is given to the process by which ECVAM and the ESAC assess the scientific validities of alternative methods, and, in appropriate cases, initiate the progression of scientifically validated methods toward regulatory acceptance.  相似文献   

5.
None of the already described CK2 inhibitors did fulfill the requirements for successful clinical settings. In order to find innovative CK2 inhibitors based on new scaffolds, we have performed a high-throughput screening of diverse chemical libraries. We report here the identification and characterization of several classes of new inhibitors. Whereas some share characteristics of previously known CK2 inhibitors, others are chemically unrelated and may represent new opportunities for the development of better CK2 inhibitors. By combining structure-activity relationships with a docking procedure, we were able to determine the binding mode of these inhibitors. Interestingly, beside the identification of several nanomolar ATP-competitive inhibitors, one class of chemical inhibitors displays a non-ATP competitive mode of inhibition, a feature that suggests that CK2 possess distinct druggable binding sites. For the most promising inhibitors, selectivity profiling was performed. We also provide evidence that some chemical compounds are inhibiting CK2 in living cells. Finally, the collected data allowed us to draw the rules about the chemical requirements for CK2 inhibition both in vitro and in a cellular context.  相似文献   

6.
The PI3-kinase/Akt pathway is an important cell survival pathway that is deregulated in the majority of human cancers. Despite the apparent druggability of several kinases in the pathway, no specific catalytic inhibitors have been reported in the literature. The authors describe the development of a fluorometric imaging plate reader (FLIPR)-based Akt1 translocation assay to discover inhibitors of Akt1 activation. Screening of a diverse chemical library of 45,000 compounds resulted in identification of several classes of Akt1 translocation inhibitors. Using a combination of classical in vitro assays and translocation assays directed at different steps of the Akt pathway, the mechanisms of action of 2 selected chemical classes were further defined. Protein translocation assays emerge as powerful tools for hit identification and characterization.  相似文献   

7.
Cyclin-dependent kinases (CDKs) play important roles in regulating cell cycle progression, and altered cell cycles resulting from over-expression or abnormal activation of CDKs observed in many human cancers. As a result, CDKs have become extensive studied targets for developing chemical inhibitors for cancer therapies; however, protein kinases share a highly conserved ATP binding pocket at which most chemical inhibitors bind, therefore, a major challenge in developing kinase inhibitors is achieving target selectivity. To identify cell growth inhibitors with potential applications in cancer therapy, we used an integrated approach that combines one-pot chemical synthesis in a combinatorial manner to generate diversified small molecules with new chemical scaffolds coupled with growth inhibition assay using developing zebrafish embryos. We report the successful identification of a novel lead compound that displays selective inhibitory effects on CDK2 activity, cancer cell proliferation, and tumor progression in vivo. Our approaches should have general applications in developing cell proliferation inhibitors using an efficient combinatorial chemical genetic method and integrated biological assays. The novel cell growth inhibitor we identified should have potential as a cancer therapeutic agent.  相似文献   

8.
Protein S-glutathionylation is emerging as a central oxidation that regulates redox signaling and biological processes linked to diseases. In recent years, the field of protein S-glutathionylation has expanded by developing biochemical tools for the identification and functional analyses of S-glutathionylation, investigating knockout mouse models, and developing and evaluating chemical inhibitors for enzymes involved in glutathionylation. This review will highlight recent studies of two enzymes, glutathione transferase omega 1 (GSTO1) and glutaredoxin 1 (Grx1), especially introducing their glutathionylation substrates associated with inflammation, cancer, and neurodegeneration and showcasing the advancement of their chemical inhibitors. Lastly, we will feature protein substrates and chemical inducers of LanC-like protein (LanCL), the first enzyme in protein C-glutathionylation.  相似文献   

9.
Fatty acid amide hydrolase (EC 3.5.1.4.) is the enzyme responsible for the rapid degradation of lipid-derived chemical messengers such as anandamide, oleamide, and 2-arachidonoylglycerol. The pharmacological characterization of this enzyme in vivo has been hampered by the lack of selective and bioavailable inhibitors. We have developed a simple, radioactive, high-throughput-compatible assay for this enzyme based on the differential absorption of the substrate and its products to activated charcoal. The assay was validated using known inhibitors. It may be applied for the identification of new inhibitors from a compound library.  相似文献   

10.
Current drug discovery efforts focus primarily on proteins with defined enzymatic or small molecule binding sites. Autoregulatory domains represent attractive alternative targets for small molecule inhibitors because they also occur in noncatalytic proteins and because allosteric inhibitors may avoid specificity problems inherent in active site-directed inhibitors. We report here the identification of wiskostatin, a chemical inhibitor of the neural Wiskott-Aldrich syndrome protein (N-WASP). Wiskostatin interacts with a cleft in the regulatory GTPase-binding domain (GBD) of WASP in the solution structure of the complex. Wiskostatin induces folding of the isolated, unstructured GBD into its autoinhibited conformation, suggesting that wiskostatin functions by stabilizing N-WASP in its autoinhibited state. The use of small molecules to bias conformational equilibria represents a potentially general strategy for chemical inhibition of autoinhibited proteins, even in cases where such sites have not been naturally evolved in a target.  相似文献   

11.
A High Throughput Screening campaign allowed the identification of a novel class of ureas as 11β-HSD1 inhibitors. Rational chemical optimization provided potent and selective inhibitors of both human and murine 11β-HSD1 with an appropriate ADME profile and ex vivo activity in target tissues.  相似文献   

12.
The self-assembly and self-organization of peptoids, peptidomimetic polymers composed of N-substituted glycine monomers, can result in a plethora of well-defined organic nanostructures. Such classes of nanomaterials represent highly interesting functional platforms for many applications, for example, drug delivery, sensing, and catalysis. The main advantages of using self-assembling peptoids to engineer organic nanostructures include their chemical diversity, biocompatibility, enzymatic stability, and ease of synthesis. The goal of this review is to present a comprehensive summary of the most relevant studies regarding the self-assembling process of peptoids into zero-, one-, and two-dimensional nanostructures, with a focus on their mechanism of formation and their potential applications.  相似文献   

13.
PIN1 is considered as a therapeutic target for a wide variety of tumours. However, most of known inhibitors are devoid of cellular activity despite their good enzyme inhibitory profile. Hence, the lack of effective compounds for the clinic makes the identification of novel PIN1 inhibitors a hot topic in the medicinal chemistry field. In this work, we reported a virtual screening study for the identification of new promising PIN1 inhibitors. A receptor-based procedure was applied to screen different chemical databases of commercial compounds. Based on the whole workflow, two compounds were selected and biologically evaluated. Both ligands, compounds VS1 and VS2, showed a good enzyme inhibitory activity and VS2 also demonstrated a promising antitumoral activity in ovarian cancer cells. These results confirmed the reliability of our in silico protocol and provided a structurally novel ligand as a valuable starting point for the development of new PIN1 inhibitors.  相似文献   

14.
The identification of peptides that inhibit the biological functions of proteins was used as a means to explore protein/ligand interactions involved in molecular recognition processes. This approach is based on the use of synthetic combinatorial libraries (SCLs) for the rapid identification of individual peptides that block the interaction of proteins with their biological targets. Thus, each peptide mixture of an all-D -amino acid hexapeptide SCL in a positional scanning format was screened for its ability to inhibit the hemolytic activity of melittin, a model self-assembling protein. The potent inhibitory activity of the identified individual peptides suggests that protein-like complexes are able to specifically bind to peptides having an all-D configuration. These results also show that SCLs are useful for the identification of short, non-hydrolysable sequences having potential intracellular inhibitory activities.  相似文献   

15.
Anaplastic lymphoma kinase (ALK) has been in the spotlight in recent years as a promising new target for therapy of non-small-cell lung cancer (NSCLC). Since the identification of the echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion gene in some NSCLC patients was reported in 2007, various research groups have been seeking ALK inhibitors. Above all, crizotinib (PF-02341066) has been under clinical trial, and its therapeutic efficacy of inhibiting ALK in NSCLC has been reported. Among anticancer drugs, drug resistance appears frequently necessitating various kinds of inhibitors. We identified novel ALK inhibitors by virtual screening from the public chemical library collected by the Chemical Biology Research Initiative (CBRI) at the University of Tokyo, and inhibitors that are more potent were developed.  相似文献   

16.
A new kind of diazafluorenone Schiff base amphiphile has been synthesized from 1,10-phenanthroline. The superior self-assembling properties of the amphiphiles are advantageous for forming surface monolayer and bilayer membranes (BLMs). BLMs formed with these amphiphiles possess very good stability and electrochemical oscillations. The possibility is suggested of developing a new type of chemical sensor with the ability to distinguish various metal ions from the patterns of electrochemical oscillations.  相似文献   

17.
Any attempt to uncover the origins of life must tackle the known ‘blind watchmaker problem’. That is to demonstrate the likelihood of the emergence of a prebiotic system simple enough to be formed spontaneously and yet complex enough to allow natural selection that will lead to Darwinistic evolution. Studies of short aromatic peptides revealed their ability to self-assemble into ordered and stable structures. The unique physical and chemical characteristics of these peptide assemblies point out to their possible role in the origins of life. We have explored mechanisms by which self-assembling short peptides and RNA fragments could interact together and go through a molecular co-evolution, using diphenylalanine supramolecular assemblies as a model system. The spontaneous formation of these self-assembling peptides under prebiotic conditions, through the salt-induced peptide formation (SIPF) pathway was demonstrated. These peptide assemblies possess the ability to bind and stabilize ribonucleotides in a sequence-depended manner, thus increase their relative fitness. The formation of these peptide assemblies is dependent on the homochirality of the peptide monomers: while homochiral peptides (L-Phe-L-Phe and D-Phe-D-Phe) self-assemble rapidly in aqueous environment, heterochiral diastereoisomers (L-Phe-D-Phe and D-Phe-L-Phe) do not tend to self-assemble. This characteristic consists with the homochirality of all living matter. Finally, based on these findings, we propose a model for the role of short self-assembling peptides in the prebiotic molecular evolution and the origin of life.  相似文献   

18.
Understanding complex cellular processes requires methods for specifically perturbing protein function in a temporally defined fashion. In recent years a variety of chemical tools have been used to study the cytoskeleton and cell division, protein trafficking, and the destruction of proteins by the ubiquitin-proteasome system. The ability to use combinations of reversible inhibitors is proving to be especially helpful in dissecting complex cellular events. Furthermore, the identification of novel inhibitors through unbiased screening approaches is revealing novel drugable steps in important cellular pathways.  相似文献   

19.
20.
We analyzed rates of extra structurally abnormal chromosomes (ESAC) detected in prenatal cytogenetic diagnoses of amniotic fluid reported to the New York Chromosome Registry. These karyotypes include both extra unidentified structurally abnormal chromosomes (EUSAC)--often denoted as "markers"--and extra identified structurally abnormal chromosomes (EISAC). The rate of all EUSAC was 0.64/1,000 (0.32-0.40/1,000 mutant and 0.23-0.32 inherited), and that of all EISAC was 0.11/1,000 (0.07/1,000 mutant and 0.04/1,000 inherited). The rate of all ESAC was approximately 0.8/1,000-0.4-0.5/1,000 mutant and 0.3-0.4/1,000 inherited. Mean +/- SD maternal age of mutant cases was 37.5 +/- 2.9, significantly greater than the value of 35.8 years in controls. A regression analysis indicated a rate of change of the log of the rate of about +0.20 with each year of maternal age between 30 and 45 years. When paternal age was introduced, the maternal age coefficient increased to about +0.25--close to that seen for 47, +21--but the paternal age coefficient was -0.06. After being matched for maternal age and year of diagnosis, the case-control difference in paternal age for 24 mutant cases was -2.4 with a 95% confidence interval of -4.6 to -0.1 years. In a regression analysis of the effects of both parental ages on the (log) rate, the maternal age coefficient was +0.25 and the paternal age coefficient was -0.06. These results are consistent with a (weak) negative paternal age effect in the face of a strong maternal age effect. Since ESAC include a heterogeneous group of abnormalities, the maternal age and paternal age trends, if not the result of statistical fluctuation or undetected biases, may involve different types of events. Data in the literature suggest that chromosomes with de novo duplicated inversions of 15p have a strong maternal age effect (but little paternal age effect). Such chromosomes, however, do not account for the active maternal age trends seen in the data analyzed here. Inherited ESAC exhibited no such trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号