首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A second-generation linkage map of the sheep genome   总被引:32,自引:0,他引:32  
A genetic map of Ovis aries (haploid n = 27) was developed with 519 markers (504 microsatellites) spanning ∼3063 cM in 26 autosomal linkage groups and 127 cM (female specific) of the X Chromosome (Chr). Genotypic data were merged from the IMF flock (Crawford et al., Genetics 140, 703, 1995) and the USDA mapping flock. Seventy-three percent (370/504) of the microsatellite markers on the map are common to the USDA-ARS MARC cattle linkage map, with 27 of the common markers derived from sheep. The number of common markers per homologous linkage group ranges from 5 to 22 and spans a total of 2866 cM (sex average) in sheep and 2817 cM in cattle. Marker order within a linkage group was consistent between the two species with limited exceptions. The reported translocation between the telomeric end of bovine Chr 9 (BTA 9) and BTA 14 to form ovine Chr 9 is represented by a 15-cM region containing 5 common markers. The significant genomic conservation of marker order will allow use of linkage maps in both species to facilitate the search for quantitative trait loci (QTLs) in cattle and sheep. Received: 20 September 1992 / Accepted: 18 November 1997  相似文献   

2.
An interspecific backross was used to define a high resolution linkage map of mouse Chromosome (Chr) 1 and to analyze the segregation of the generalized lymphoproliferative disease (gld) mutation. Mice homozygous for gld have multiple features of autoimmune disease. Analysis of up to 428 progeny from the backcross [(C3H/HeJ-gld x Mus spretus)F1 x C3H/HeJ-gld] established a map that spans 77.6 cM and includes 56 markers distributed over 34 ordered genetic loci. The gld mutation was mapped to a less than 1 cM segment on distal mouse Chr 1 using 357 gld phenotype-positive backcross mice. A second backcross, between the laboratory strains C57BL/6J and SWR/J, was examined to compare recombination frequency between selected markers on mouse Chr 1. Significant differences in crossover frequency were demonstrated between the interspecific backcross and the inbred laboratory cross for the entire interval studied. Sex difference in meiotic crossover frequency was also significant in the laboratory mouse cross. Two linkage groups known to be conserved between segments of mouse Chr 1 and the long arm of human Chrs 1 and 2 where further defined and a new conserved linkage group was identified that includes markers of distal mouse Chr 1 and human Chr 1, bands q32 to q42.  相似文献   

3.
Linkages among three biochemical loci (Acol, Ahd2, and Mup1) and four microsatellite loci (A8, Glut1, Jun, and Pnd) were determined to construct a linkage map of rat Chromosome (Chr) 5. Consequently, an extensive linkage map on rat Chr 5 was constructed with the following gene order: A8-Aco1-Mup1-Jun-Glut1-Ahd2-Pnd. In this linkage map, the Jun and A8 loci are newly placed, and two previously reported linkage groups on rat Chr 5 are connected by the Jun locus. The linkage map indicates an extensive linkage conservation between the loci on rat Chr 5 and those on mouse Chr 4.  相似文献   

4.
Thirteen loci, including the obesity gene fatty (fa), were incorporated into a linkage map of rat Chromosome (Chr) 5. These loci were mapped in obese (fa/fa) progeny of a cross between BN×13M-fa/+ F1 animals. Obese rats were scored for BN and 13M alleles at four loci (Ifna, D1S85h, C8b, and Lck1) by restriction fragment length polymorphisms and at eight additional loci (Glut1, Sv4j2, R251, R735, R980, R252, R371, and R1138) by simple sequence length polymorphisms (SSLP). The resulting map spans 67.3 cM of Chr 5, presenting nine previously unmapped loci and one locus (Lck1) previously assigned to Chr 5 by use of somatic cell hybrid lines. Seven of the eight SSLP loci are newly identified; the SSLP linkage group alone spans 56.8 cM. The order of the loci is Sv4j2-R251-R735-R980-R1138-Ifna-fa-D1S85h-C8b-(Glut1-R252-R371)-Lck1. One locus, D1S85h, was found to lie only 0.4 cM from fa, close enough to serve as a reliable marker for the prediction of phenotype from genotype, and will be useful also for studies on the development of obesity in the fatty rat.  相似文献   

5.
Although the phenomenon of innate resistance to flaviviruses in mice was recognized many years ago, it was only recently that the genetic locus (Flv) controlling this resistance was mapped to mouse Chromosome (Chr) 5. Here we report the fine mapping of the Flv locus, using 12 microsatellite markers which have recently been developed for mouse Chr 5. The new markers were genotyped in 325 backcross mice of both (C3H/HeJxC3H/ RV)F1xC3H/HeJ and (BALB/cxC3H/RV)F1xBALB/c backgrounds, relative to Flv. The composite genetic map that has been constructed identifies three novel microsatellite loci, D5Mit68, D5Mit159, and D5Mit242, tightly linked to the Flv locus. One of those loci, D5Mit159, showed no recombinations with Flv in any of the backcross mice analyzed, indicating tight linkage (<0.3 cM). The other two, D5Mit68 and D5Mit242, exhibited two and one recombinations with Flv (0.6 and 0.3 cM) respectively, defining the proximal and distal boundaries of a 0.9-cM segment around this locus. The proximal flanking marker, D5Mit68, maps to a segment on mouse Chr 5 homologous to human Chr 4. This, together with the previous data produced by our group, locates Flv to a region on mouse Chr 5 carrying segments that are conserved on either human Chr 4, 12, or 7, but present knowledge does not allow precise identification of the syntenic element.  相似文献   

6.
Our purposes were to develop a linkage map for rat Chromosome (Chr) 10, using chromosome-sorted DNA, and to construct congenic strains to localize blood pressure quantitative trait loci (QTL) on Chr 10 with the map. The linkage mapping panel consisted of three F2 populations totaling 418 rats. Thirty-two new and 29 known microsatellite markers were placed on the map, which spanned 88.9 centiMorgans (cM). The average distance between markers was 1.46 cM. No markers were separated by more than 6.8 cM. Four congenic strains were constructed by introgressing various segments of Chr 10 from the Milan normotensive strain (MNS) onto the background of the Dahl salt-sensitive (S) strain. A blood pressure QTL with a strong effect on blood pressure (35–42 mm Hg) when expressed on the S background was localized to a 31-cM region between D10Mco6 and D10Mcol. The region does not include the locus for inducible nitric oxide synthase (Nos2), which had been considered to be a candidate locus for the QTL. Received: 25 September 1996 / Accepted: 9 November 1996  相似文献   

7.
The LEC rat has been reported to exhibit X-ray hypersensitivity and deficiency in DNA double-strand break (DSB) repair. The present study was performed to map the locus responsible for this phenotype, the xhs (X-ray hypersensitivity), as the first step in identifying the responsible gene. Analysis of the progeny of (BN × LEC)F1× LEC backcrosses indicated that the X-ray hypersensitive phenotype was controlled by multiple genetic loci in contrast to the results reported previously. Quantitative trait loci (QTL) linkage analysis revealed two responsible loci located on Chromosomes (Chr) 4 and 1. QTL on Chr 4 exhibited very strong linkage to the X-ray hypersensitive phenotype, while QTL on Chr 1 showed weak linkage. The Rad52 locus, mutation of which results in hypersensitivity to ionizing radiation and impairment of DNA DSB repair in yeast, was reported to be located on the synteneic regions of mouse Chr 6 and human Chr 12. However, mapping of the rat Rad52 locus indicated that it was located 23 cM distal to the QTL on Chr 4. Furthermore, none of the radio-sensitivity-related loci mapped previously in the rat chromosome were identical to the QTL on Chrs 4 and 1 in the LEC rat. Thus, it seems that X-ray hypersensitivity in the LEC rat is caused by mutation(s) in as-yet-undefined genes. Received: 14 February 2000 / Accepted: 17 May 2000  相似文献   

8.
We have generated a high-resolution genetic map, 0.071 cM per backcross animal, of the 13 cM T–H2 region of the mouse Chromosome (Chr) 17. The map contains two phenotypic loci, T and Hst1, 12 RFLP markers, and 24 microsatellite loci. The Hst1 gene was mapped to a chromosomal interval contained within a single 580-kb YAC clone. The FFEH11 YAC is 0.44 cM long and carries, besides the Hst1 gene, five polymorphic DNA markers and recombination breakpoints of six backcross animals. Two candidate genes for Hst1 were identified based on their location and testicular expression. These are Tbp and D17Ph4e. The sub-milliMorgan map of the T–H2 region revealed significant clustering of (CA)n loci. The clustering, if shown to be a common feature in the mouse genome, may cause gaps in the physical map of the mouse genome. Received: 11 September 1995 / Accepted: 9 October 1995  相似文献   

9.
To enhance the comparative map for human Chromosome (Chr) 13, we identified clones for human genes and anonymous loci that cross-hybridized with their mouse homologs and then used linkage crosses for mapping. Of the clones for four genes and twelve anonymous loci tested, cross-hybridization was found for six, COL4A1, COL4A2, D13S26, D13S35, F10, and PCCA. Strong evidence for homology was found for COL4A1, COL4A2, D13S26, D13S35, and F10, but only circumstantial homology evidence was obtained for PCCA. To genetically map these mouse homologs (Cf10, Col4a1, Col4a2, D14H13S26, D8H13S35, and Pcca-rs), we used interspecific and intersubspecific mapping panels. D14H13S26 and Pcca-rs were located on the distal portion of mouse Chr 14 extending by 30 cM the conserved linkage between human Chr 13 and mouse Chr 14, assuming that Pcca-rs is the mouse homolog of PCCA. By contrast, Cf10, Col4a1, Col4a2, and D8H13S35 mapped near the centromere of mouse Chr 8, defining a new conserved linkage. Finally, we identified either a closely linked sequence related to Col4a2, or a recombination hot-spot between Col4a1 and Col4a2 that has been conserved in humans and mice.  相似文献   

10.
A porcine 2-kb partial dipeptidylpeptidase IV (DPP4, EC 3.4.14.5) cDNA clone and a porcine 16-kb genomic fragment containing parts of the DPP4 gene were isolated, characterized, and used as probes to map the DPP4 gene to pig Chr (Chr) 15q21 by fluorescence in situ hybridization. A two-allele RFLP was revealed for the DPP4 gene. This polymorphism was utilized in a linkage test against the erythrocyte antigen G (EAG), previously assigned to Chr 15, and the microsatellite S0088, which is linked to EAG. The linkage analyses revealed significant evidence for linkage confirming the assignment of DPP4 to Chr 15.  相似文献   

11.
One hundred and sixty microsatellite (simple sequence repeat (SSR)) and six gene-specific markers revealing 174 loci were scored in 94 seedlings from the inter-specific cross of Prunus avium ‘Napoleon’ × Prunus nipponica accession F1292. The co-segregation data from these markers were used to construct a linkage map for cherry which spanned 680 cM over eight linkage groups with an average marker spacing of 3.9 cM per marker and just six gaps longer than 15 cM. Markers previously mapped in Prunus dulcis ‘Texas’ × Prunus persica ‘Earlygold’ allowed the cherry map to be anchored to the peach × almond map and showed the high level of synteny between the species. Eighty-four loci segregated in P. avium ‘Napoleon’ versus 159 in P. nipponica. The segregations of 32 isoenzyme loci in a subset of 47 seedlings from the progeny were scored, using polyacrylamide gel electrophoresis and/or isoelectric focusing separation followed by activity staining, and the co-segregation data were analysed along with those for 39 isoenzymes reported previously and for the 174 sequence-tagged site loci plus an additional two SSR loci. The second map incorporates 233 loci and spans 736 cM over eight linkage groups with an average marker spacing of 3.2 cM per marker and just two gaps greater than 15 cM. The microsatellite map will provide a useful tool for cherry breeding and marker-assisted selection and for synteny studies within Prunus; the gene-specific markers and isoenzymes will be useful for comparisons with maps of other rosaceous fruit crops. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
A linkage map of the ruff (Philomachus pugnax) genome was constructed based on segregation analysis of 58 microsatellite loci from 381 captive‐bred individuals spanning fourteen breeding years and comprising 64 families. Twenty‐eight of the markers were resolved into seven linkage groups and five single marker loci, homologous to known chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) chromosomes. Linkage groups range from 10.1 to 488.7 cM in length and covered a total map distance of 641.6 cM, corresponding to an estimated 30–35% coverage of the ruff genome, with a mean spacing of 22.9 cM between loci. Through comparative mapping, we are able to assign linkage groups Ppu1, Ppu2, Ppu6, Ppu7, Ppu10, Ppu13, and PpuZ to chromosomes and identify several intrachromosomal rearrangements between the homologs of chicken, zebra finch, and ruff microsatellite loci. This is the first linkage map created in the ruff and is a major step toward providing genomic resources for this enigmatic species. It will provide an essential framework for mapping of phenotypically and behaviorally important loci in the ruff.  相似文献   

13.
The mouse homologs of the Huntington's disease (HD) gene and 17 other human Chromosome (Chr) 4 loci (including six previously unmapped) were localized by use of an interspecific cross. All loci mapped in a continuous linkage group on mouse Chr 5, distal to En2 and Il6, whose human counterparts are located on Chr y. The relative order of the loci on human Chr 4 and mouse Chr 5 was maintained, except for a break between D5H4S115E and Idua/rd, with relocation of the latter to the opposite end of the map. The mouse HD homolog (Hdh) mapped within a cluster of seven genes that were completely linked in our data set. In human these loci span a1.8 Mb stretch of human 4p 16.3 that has been entirely cloned. To date, there is no phenotypic correspondence between human and mouse mutations mapping to this region of synteny conservation.  相似文献   

14.
A genetic linkage map of the European sea bass (Dicentrarchus labrax) was constructed from 174 microsatellite markers, including 145 new markers reported in this study. The mapping panel was derived from farmed sea bass from the North Adriatic Sea and consisted of a single family including both parents and 50 full-sib progeny (biparental diploids). A total of 162 microsatellites were mapped in 25 linkage groups. Eleven loci represent type I (coding) markers; 2 loci are located within the peptide Y (linkage group 1) and cytochrome P450 aromatase (linkage group 6) genes. The sex-averaged map spans 814.5 cM of the sea bass genome. The female map covers 905.9 cM, whereas the male map covers only 567.4 cM. The constructed map represents the first linkage map of European sea bass, one of the most important aquaculture species in Europe.  相似文献   

15.
A genetic and physical map of bovine Chromosome 11   总被引:3,自引:0,他引:3  
A genetic map of bovine Chromosome (Chr) 11 (BTA11, synteny group U16) has been constructed from 330 animals belonging to 21 families, which constitute the international bovine reference panel (IBRP). This map is based on 13 polymorphic microsatellite markers, two of which were chosen in previously published maps. Three markers have been isolated from cosmids. Two of the three cosmids have been physically localized by fluorescence in situ hybridization (FISH), to anchor the genetic map on the chromosome. In addition, a biallelic polymorphism in the -lactoglobulin gene (LGB) has been genetically positioned relative to the microsatellite markers. The most probable order of the markers is: cen-INRA044-BM716-INRA177-(TGLA 327, INRA198, INRA131)-INRA111-INRABERN169-(INRA115, INRA032)-INRA108-INRABERN162-INRA195-LGB. T The total linkage group spans 126 cM, which probably corresponds to most of the chromosome length. The average intermarker distance is about 10.5 cM, allowing the potential detection of a genetic linkage with any Economic Trait Loci (ETL) of this chromosome.  相似文献   

16.
Molecular genetic maps can provide information for the identification and localization of major genes associated with quantitative traits. However, there are currently no published genetic linkage maps for any ratites. Herein, a preliminary genetic map of ostrich was developed using a two-generation ostrich reference family by linkage analysis of 104 polymorphic microsatellite markers, including 40 novel markers reported in this study. A total of 35 microsatellite markers were placed into 13 linkage groups. Five linkage groups are composed of three or more loci, whereas the remaining eight groups each contained two markers. The sex-averaged map spans 365.4 cM. The marker interval of each linkage group ranges from 5.3 to 25.4 cM, and the average interval distance is 16.61 cM. The male map covers 342.7 cM, with an average intermarker distance of 15.58 cM, whereas the female map is 456.7 cM, with the average intermarker spacing of 20.76 cM. In order to screen the orthologous loci between ostrich and chicken, all of the flanking sequences of the 104 polymorphic loci, nine monomorphic loci and a further 12 reported microsatellite loci for ostrich were screened against the chicken genomic sequence using the BLAST algorithm (Altschul et al., 1990), and corresponding orthologs were found for 13 sequences. The microsatellite loci and genetic map developed in this study will be useful for QTL mapping, population genetics and phylogenetic studies in the ratite. In addition, the 13 orthologous loci identified in this study will be advantageous to the construction of a comparative genetic map between chicken and ostrich.  相似文献   

17.
A 5000-rad whole-genome radiation hybrid cell panel (BW5000) was developed for mapping the deer mouse (Peromyscus maniculatus bairdii) genome. The panel consists of 103 cell lines and has an estimated marker retention frequency of 63.9% (range, 28%–88%) based on PCR typing of 30 Type I (coding gene) and 25 Type II (microsatellite) markers. Using the composite Mus map, Type I markers were selected from six Mus chromosomes, 22 of which are on Mus Chr 11. Fifteen of the Mus Chr 11 markers were simultaneously mapped on an interspecific (P. maniculatus × P. polionotus) backcross panel to test the utility of the radiation hybrid panel, create a framework map, and help establish gene order. The radiation hybrids have effectively detected linkage in the deer mouse genome between markers as far apart as 6.7 cM and resolved markers that are, in the Mus genome, as close as 0.2 Mb. Combined results from both panels have indicated a high degree of gene order conservation of the telomeric 64 cM of Mus Chr 11 in the deer mouse genome. The remaining centromeric portion also shows gene order conservation with the deer mouse but as a separate linkage group. This indicates a translocation of that portion of Mus Chr 11 in P. maniculatus and is consistent with rearrangement breakpoints observed between Mus and other mammalian genomes, including rat and human. Furthermore, this separate linkage group is likely to reside in a chromosomal region of inversion polymorphism between P. maniculatus and P. polionotus.  相似文献   

18.
A male-specific genetic linkage map of nine loci on bovine Chromosome (Chr) 2 (BTA2) was constructed from 306 offspring belonging to six paternal halfsib families. Loci studied were the structural genes for liver/bone/kidney alkaline phosphatase (ALPL), Gardner-Rasheed feline sarcoma (v-fgr) oncogene homolog (FGR), alpha-L-fucosidase 1 (FUCA1), and fibronectin 1 (FN1), and the microsatellite loci ARO28, DU17S2, DU17S3, DU17S4, and DU17S5. Genotyping was performed by restriction fragment length polymorphism (RFLP) for structural genes and polymerase chain reaction (PCR) for the microsatellites. Two genetically independent linkage groups were identified. The order of genes in the first linkage group, L31, is (ARO28-FN1)-FGR-FUCA1-ALPL, covering a map distance of 34.1 cM between terminal markers. The second linkage group, L32, consists of DU17S2-DU17S5-DU17S4-DU17S3 and is 41.3 cM in length. Genetic linkage between FN1 and FGR confirms previous physical assignment of these genes to the same synteny group. Currently, the genetic linkage of FN1 and FGR is unique to cattle and thus localizes a site of chromosomal evolution to a 22-cM interval between the two loci.  相似文献   

19.
Myodystrophy (myd), an autosomal recessive mutation of the mouse characterized by progressive weakness and dystrophic muscle histology, maps to the central portion of Chromosome (Chr) 8 (Lane et al. J. Hered 67, 135, 1976). This portion of Chr 8 contains the genes for a mitochondrial uncoupling protein (Ucp) and kallikrein (Kal3), which map to distal 4q in the human, providing evidence for a segment of homology. Characteristics of the myd phenotype coupled with this homology suggest that myd may be a mouse homolog of facioscapulohumeral muscular dystrophy (FSHD), which maps to human 4q35. We have confirmed and expanded the region of mouse 8-human 4 homology by generating a map of Chr 8 in an interspecific backcross of C57BL/6J and a partially inbred strain derived from M. spretus. The map is comprised of the genes for Ucp, coagulation factor XI (Cf11), and chloride channel 5 (Clc5), all of which have homologs on distal human 4q, 15 microsatellite loci, and the membrane cofactor protein pseudogene (Mcp-ps). To place myd in the genetic map, 75 affected progeny from an intersubspecific backcross of animals heterozygous for myd with Mus musculus castaneus were genotyped with Chr 8 microsatellite loci. The mutation maps between D8Mit30 and D8Mit75, an interval that is flanked by genes with human homologs at distal 4q. These results are consistent with the possibility that myd is the mouse homolog of FSHD.  相似文献   

20.
Spider Lamb Syndrome (SLS) is a semi-lethal congenital disorder, causing severe skeletal abnormalities in sheep. The syndrome has now been disseminated into several sheep breeds in the United States, Canada, and Australia. The mode of inheritance for SLS is autosomal recessive, making the identification and culling of carrier animals difficult due to their normal phenotype. Two large pedigrees segregating for the SLS mutation were established, and a genome scan with genetic markers from previously published genome maps of cattle and sheep was used to map the locus causing SLS. Genetic linkage between SLS and several microsatellite markers, OarJMP8, McM214, OarJMP12, and BL1038, was detected, thereby mapping the SLS locus to the telomeric end of ovine Chromosome (Chr) 6. Alignment of ovine Chr 6 with its evolutionary ortholog, human Chr 4, revealed a positional candidate gene, fibroblast growth factor receptor 3 (FGFR3). Received: 10 June 1998 / Accepted: 23 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号