共查询到20条相似文献,搜索用时 15 毫秒
1.
At least six DNA helicases have been identified during fractionation of extracts from the yeastSaccharomyces cerevisiae. Three of those, DNA helicases B, C, and D, have been further purified and characterized. DNA helicases B and C co-purified with DNA polymerse δ through several chromatographic steps, but were separated from the polymerase by hydrophobic chromatography. DNA helicase D co-purified with Replication Factor C over seven chromatographic steps, and was only separated from it by glycerol gradient centrifugation in the presence of 0.2 M NaCl. All three helicases are DNA dependent ATPases with Km values for ATP of 190 μM, 325 μM, and 60 μM for DNA helicases B, C, and D, respectively. Their DNA helicase activities are comparable. They are 5′–3′ helicases and have pH optima of 6.5–7 and Mg2+ optima of 1–2 mM. However, they differ in the nucleotide requirement for helicase action. Whereas all three helicases preferred ATP, dATP, UTP, CTP, and dCTP as cofactors, DNA helicase C also used GTP, but not dTTP. On the other hand, DNA helicase D used dTTP, but not GTP, and DNA helicase B used neither nucleotide as cofactor. These studies allowed us to conclude that DNA helicases B, C, and D are not only distinct enzymes, but also different from two previously identified yeast DNA helicases, the RAD3 protein and ATPase III. 相似文献
2.
3.
Domain engineering of <Emphasis Type="Italic">Saccharomyces cerevisiae</Emphasis> exoglucanases 总被引:2,自引:0,他引:2
To illustrate the effect of a cellulose-binding domain (CBD) on the enzymatic characteristics of non-cellulolytic exoglucanases, 10 different recombinant enzymes were constructed combining the Saccharomyces cerevisiae exoglucanases, EXG1 and SSG1, with the CBD2 from the Trichoderma reesei cellobiohydrolase, CBH2, and a linker peptide. The enzymatic activity of the recombinant enzymes increased with the CBD copy number. The recombinant enzymes, CBD2-CBD2-L-EXG1 and CBD2-CBD2-SSG1, exhibited the highest cellobiohydrolase activity (17.5 and 16.3 U mg –1 respectively) on Avicel cellulose, which is approximately 1.5- to 2-fold higher than the native enzymes. The molecular organisation of CBD in these recombinant enzymes enhanced substrate affinity, molecular flexibility and synergistic activity, contributing to their elevated action on the recalcitrant substrates as characterised by adsorption, kinetics, thermostability and scanning electron microscopic analysis. 相似文献
4.
K. Parvathi R. Naresh Kumar R. Nagendran 《World journal of microbiology & biotechnology》2007,23(5):671-676
Summary Biosorption of manganese from its aqueous solution using yeast biomass Saccharomyces cerevisiae and fungal biomass Aspergillus niger was carried out. Manganese biosorption equilibration time for A. niger and S. cerevisiae were found to be 60 and 20 min, with uptakes of 19.34 and 18.95 mg/g, respectively. Biosorption increased with rise in pH,
biomass, and manganese concentration. The biosorption equilibrium data fitted with the Freundlich isotherm model revealed
that A. niger was a better biosorbent of manganese than S. cerevisiae. 相似文献
5.
The aim of this work was to prepare recombinant amine oxidase from Aspergillus niger after overexpressing in yeast. The yeast expression vector pDR197 that includes a constitutive PMA1 promoter was used for
the expression in Saccharomyces cerevisiae. Recombinant amine oxidase was extracted from the growth medium of the yeast, purified to homogeneity and identified by activity
assay and MALDI-TOF peptide mass fingerprinting. Similarity search in the newly published A. niger genome identified six genes coding for copper amine oxidase, two of them corresponding to the previously described enzymes
AO-I a methylamine oxidase and three other genes coding for FAD amine oxidases. Thus, A. niger possesses an enormous metabolic gear to grow on amine compounds and thus support its saprophytic lifestyle. 相似文献
6.
Aaron Robertson Kyle Schaltz Karina Neimanis James F. Staples Allison E. McDonald 《Journal of bioenergetics and biomembranes》2016,48(5):509-520
Alternative oxidase (AOX) is a terminal oxidase within the inner mitochondrial membrane (IMM) present in many organisms where it functions in the electron transport system (ETS). AOX directly accepts electrons from ubiquinol and is therefore capable of bypassing ETS Complexes III and IV. The human genome does not contain a gene coding for AOX, so AOX expression has been suggested as a gene therapy for a range of human mitochondrial diseases caused by genetic mutations that render Complex III and/or IV dysfunctional. An effective means of screening mutations amenable to AOX treatment remains to be devised. We have generated such a tool by heterologously expressing AOX from the Pacific oyster (Crassostrea gigas) in the yeast Saccharomyces cerevisiae under the control of a galactose promoter. Our results show that this animal AOX is monomeric and is correctly targeted to yeast mitochondria. Moreover, when expressed in yeast, Pacific oyster AOX is a functional quinol oxidase, conferring cyanide-resistant growth and myxothiazol-resistant oxygen consumption to yeast cells and isolated mitochondria. This system represents a high-throughput screening tool for determining which Complex III and IV genetic mutations in yeast will be amenable to AOX gene therapy. As many human genes are orthologous to those found in yeast, our invention represents an efficient and cost-effective way to evaluate viable research avenues. In addition, this system provides the opportunity to learn more about the localization, structure, and regulation of AOXs from animals that are not easily reared or manipulated in the lab. 相似文献
7.
Nehme N Mathieu F Taillandier P 《Journal of industrial microbiology & biotechnology》2008,35(7):685-693
This study examines the interactions that occur between Saccharomyces cerevisiae and Oenococcus oeni strains during the process of winemaking. Various yeast/bacteria pairs were studied by applying a sequential fermentation strategy which simulated the natural winemaking process. First, four yeast strains were tested in the presence of one bacterial strain leading to the inhibition of the bacterial component. The extent of inhibition varied widely from one pair to another and closely depended on the specific yeast strain chosen. Inhibition was correlated to weak bacterial growth rather than a reduction in the bacterial malolactic activity. Three of the four yeast strains were then grown with another bacteria strain. Contrary to the first results, this led to the bacterial stimulation, thus highlighting the importance of the bacteria strain. The biochemical profile of the four yeast fermented media exhibited slight variations in ethanol, SO(2) and fatty acids produced as well as assimilable consumed nitrogen. These parameters were not the only factors responsible for the malolactic fermentation inhibition observed with the first bacteria strain. The stimulation of the second has not been reported before in such conditions and remains unexplained. 相似文献
8.
The yeast proteins, Msb3p and Msb4p, are two Ypt/Rab-specific GTPase-activating proteins sharing redundant functions in exocytosis,
organization of the actin cytoskeleton, and budding site selection. To see if Msb3p might play an additional, specific role,
we first tested the sensitivities of msb3 and msb4 mutant strains to different drugs and then screened a genomic library for multicopy suppressors of msb3 sensitivity to CdCl2 or to the calcium channel blocker diltiazem hydrochloride. Three genes (ADH1, RNT1, and SUI1) were found to suppress the CdCl2 sensitivity of the msb3 strain and three others (YAP6, ZEO1, and SLM1) its diltiazem-HCl sensitivity. The results suggest a possible involvement of Msb3p in calcineurin-mediated signalling. 相似文献
9.
In this paper we present a new method for detecting block duplications in a genome. It is more stringent than previous ones in that it requires a more rigorous definition of paralogous genes and that it requires the paralogous proteins on the two blocks to be contiguous. In addition, it provides three criterion choices: (1) the same composition (i.e., having the same paralogues in the two windows), (2) the same composition and gene order, and (3) the same composition, gene order, and gene orientation. The method is completely automated, requiring no visual inspection as in previous methods. We applied it to analyze the complete genomes of S. cerevisiae and C. elegans. In yeast we detected fewer duplicated blocks than previously reported. In C. elegans, however, we detected more block duplications than previously reported, indicating that although our method has a more stringent definition of block duplication than previous ones, it may be more sensitive in detection because it considers every possible window rather than only fixed nonoverlapping windows. Our results show that block duplication is a common phenomenon in both organisms. The patterns of block duplication in the two species are, however, markedly different. The yeast shows much more extensive block duplication than the nematode, with some chromosomes having more than 40% of the duplications derived from block duplications. Moreover, in the yeast the majority of block duplications occurred between chromosomes, while in the nematode most block duplications occurred within chromosomes. 相似文献
10.
11.
Ethanol production by Clostridium thermocellum ATCC 35609 and Saccharomyces cerevisiae ATCC 26603 was improved in an electrochemical bioreactor system. It was increased by 61% with Cl. thermocellum and 12% with S. cerevisiae in the presence of -1.5 V of electric potential. These increases were attributed to high production rates due to regeneration and availability of increased reduced equivalents in the presence of electric potential. The electric current caused considerable shift in the metabolite concentrations on a molar basis in Cl. thermocellum fermentation but less in S. cerevisiae fermentation. Increasing electric potential in Cl. thermocellum fermentation resulted in less acetate and more lactate production. Acetate production was also reduced with increased electric potential in S. cerevisiae fermentation. The high electric potential of -5 V adversely affected the Cl. thermocellum fermentation, but not the S. cerevisiae fermentation even at a high electric potential of -10 V. 相似文献
12.
Background
Starch is one of the most abundant organic polysaccharides available for the production of bio-ethanol as an alternative transport fuel. Cost-effective utilisation of starch requires consolidated bioprocessing (CBP) where a single microorganism can produce the enzymes required for hydrolysis of starch, and also convert the glucose monomers to ethanol.Results
The Aspergillus tubingensis T8.4 α-amylase (amyA) and glucoamylase (glaA) genes were cloned and expressed in the laboratory strain Saccharomyces cerevisiae Y294 and the semi-industrial strain, S. cerevisiae Mnuα1. The recombinant AmyA and GlaA displayed protein sizes of 110–150 kDa and 90 kDa, respectively, suggesting significant glycosylation in S. cerevisiae. The Mnuα1[AmyA-GlaA] and Y294[AmyA-GlaA] strains were able to utilise 20 g l-1 raw corn starch as sole carbohydrate source, with ethanol titers of 9.03 and 6.67 g l-1 (0.038 and 0.028 g l-1 h-1), respectively, after 10 days. With a substrate load of 200 g l-1 raw corn starch, Mnuα1[AmyA-GlaA] yielded 70.07 g l-1 ethanol (0.58 g l-1 h-1) after 120 h of fermentation, whereas Y294[AmyA-GlaA] was less efficient at 43.33 g l-1 ethanol (0.36 g l-1 h-1).Conclusions
In a semi-industrial amylolytic S. cerevisiae strain expressing the A. tubingensis α-amylase and glucoamylase genes, 200 g l-1 raw starch was completely hydrolysed (saccharified) in 120 hours with 74% converted to released sugars plus fermentation products and the remainder presumably to biomass. The single-step conversion of raw starch represents significant progress towards the realisation of CBP without the need for any heat pretreatment. Furthermore, the amylases were produced and secreted by the host strain, thus circumventing the need for exogenous amylases.13.
14.
15.
G. I. Naumov 《Microbiology》2017,86(1):19-31
The review deals with natural diversity of sherry (“flor”) Saccharomyces cerevisiae yeasts. Various properties of these yeasts are analyzed: life cycles, fermentation of sugars, sensitivity to methyl violet and killer toxins, and resistance to ethanol and sulfite. Special attention is paid to molecular identification and differentiation of sherry yeasts. The history of their nomenclature is considered, including the names of possible subpopulations: “aceti,” “beticus” (“cheresienses”), “cordubensis,” “gaditensis,” “hispanica” (“prostoserdovii”), and “oxidans.” 相似文献
16.
A peptide antibiotic, gramicidin A, was covalently bound to cystamine self-assembled monolayers on gold surfaces. Each step
of the surface functionalization was characterized by polarization modulation infrared reflection absorption spectroscopy
and X-ray photoelectron spectroscopy. The antimicrobial activity of the anchored gramicidin was tested against three Gram-positive
bacteria (Listeria ivanovii, Enterococcus faecalis, and Staphylococcus aureus), the Gram-negative bacterium Escherichia coli and the yeast Candida albicans. The results revealed that the adsorbed gramicidin reduced, from 60% for E. coli to 90% for C. albicans, the number of culturable microorganisms attached to the surface. The activity was proven to be persistent overtime, up to
6 months after the first use. The bacteria attached to the functionalized surfaces were permeabilized as shown by confocal
microscopy. Taken together, these results indicate a bacteriostatic mode of action of the immobilized peptide. Finally, using
green fluorescent protein-expressing bacteria, it was shown that the development of a bacterial biofilm was delayed on peptide-grafted
surfaces for at least 24 h. 相似文献
17.
18.
A gratuitous strain was developed by disrupting the GAL1 gene (galactokinase) of recombinant Saccharomyces cerevisiae harboring the antithrombotic hirudin gene in the chromosome under the control of the GAL10 promoter. A series of glucose-limited fed-batch cultures were carried out to examine the effects of glucose supply on hirudin expression in the gratuitous strain. Controlled feeding of glucose successfully supported both cell growth and hirudin expression in the gratuitous strain. The optimum fed-batch culture done by feeding glucose at a rate of 0.3 g h–1 produced a maximum hirudin concentration of 62.1 mg l–1, which corresponded to a 4.5-fold increase when compared with a simple batch culture done with the same strain. 相似文献
19.
The autolysis of yeast cells has practical implications in the production of fermented foods and beverages and flavourants
for food processing. Protein and RNA degradation during yeast autolysis are well described but the fate of DNA is unclear.
Yeast cells (Saccharomyces cerevisiae) were autolysed by incubating suspensions at 30–60°C (pH 7.0), and at pH 4.0–7.0 (40°C) for 10–14 days. Up to 55% of total
DNA was degraded, with consequent leakage into the extracellular environment of mainly 3′- and 5′-deoxyribonucleotides, and
lesser amounts of polynucleotides. The rate and extent of DNA degradation, composition of the DNA degradation products and
DNase activity were affected by temperature and pH. The highest amount of DNA degradation occurred at 40°C and pH 7.0, where
the highest DNase activity was recorded. DNase activity was lowest at 60°C and pH 4.0, where the proportion of polynucleotides
in the degradation products was higher.
Electronic Publication 相似文献
20.