首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. It has been proposed that glutamatergic transmission, in particular NMDA receptor function, might be altered in schizophrenia. This hypothesis is mainly based on the observation that uncompetitive NMDA receptor antagonists, e.g. phencyclidine, evoke psychotic symptoms in healthy subjects, whereas agonists interacting at the glycine site of the NMDA receptor complex, e.g. glycine or D-serine, administered jointly with typical neuroleptics, can alleviate schizophrenic symptoms. The function of NMDA receptors may be modulated by group I mGluRs (mGluR1 and mGluR5), which have also been shown to be altered in schizophrenia. In rodents, mGluR5 antagonists, but not mGluR1 ones, potentiate the locomotor activity and the deficit of prepulse inhibition (PPI) induced by uncompetitive NMDA receptor antagonists. These antagonists (of either type) administered alone are not active in the above tests. Hence, antagonists of mGluR1 and mGluR5 may evoke different effects on the NMDA receptor antagonists-induced behavior and, possibly, on schizophrenic symptoms.  相似文献   

2.
Stimulation of astrocytes with the excitatory neurotransmitter glutamate leads to the formation of inositol 1,4,5-trisphosphate and the subsequent increase of intracellular calcium content. Astrocytes express both ionotropic receptors and metabotropic glutamate (mGlu) receptors, of which mGlu5 receptors are probably involved in glutamate-induced calcium signaling. The mGlu5 receptor occurs as two splice variants, mGlu5a and mGlu5b, but it was hitherto unknown which splice variant is responsible for the glutamate-induced effects in astrocytes. We report here that both mRNAs encoding mGlu5 receptor splice variants are expressed by cultured astrocytes. The expression of mGlu5a receptor mRNA is much stronger than that of mGlu5b receptor mRNA in these cells. In situ hybridization experiments reveal neuronal expression of mGlu5b receptor mRNA in adult rat forebrain but a strong neuronal expression of mGlu5a mRNA only in olfactory bulb. Signals for mGlu5a receptor mRNA in the rest of the brain were diffuse and weak but consistently above background. Activation of mGlu5 receptors in astrocytes yields increases in inositol phosphate production and transient calcium responses. It is surprising that the rank order of agonist potency [quisqualate > (2S,1 'S,2'S)-2-(carboxycyclopropyl)glycine = trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (1S,3R-ACPD) > glutamate] differs from that reported for recombinantly expressed mGlu5a receptors. The expression of mGlu5a receptor mRNA and the occurrence of 1S,3R-ACPD-induced calcium signaling were found also in cultured microglia, indicating for the first time expression of mGlu5a receptors in these macrophage-like cells.  相似文献   

3.
Previously, we reported that (S)-3,5-dihydroxypenylglycine (DHPG), an agonist for group I metabotropic glutamate receptors (mGluRs), stimulates CK1 and Cdk5 kinase activities in neostriatal neurons, leading to enhanced phosphorylation, respectively, of Ser-137 and Thr-75 of DARPP-32 (dopamine and cAMP-regulated phosphoprotein, 32 kDa). We have now investigated the signaling pathway that leads from mGluRs to casein kinase 1 (CK1) activation. In mouse neostriatal slices, the effect of DHPG on phosphorylation of Ser-137 or Thr-75 of DARPP-32 was blocked by the phospholipase Cbeta inhibitor, the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA/AM), and the calcineurin inhibitor cyclosporin A. In neuroblastoma N2a cells, the effect of DHPG on the activity of transfected HA-tagged CK1(epsilon) was blocked by BAPTA/AM and cyclosporin A. In neostriatal slices, the effect of DHPG on Cdk5 activity was also abolished by BAPTA/AM and cyclosporin A, presumably through blocking activation of CK1. Metabolic labeling studies and phosphopeptide mapping revealed that a set of C-terminal sites in HA-CK1epsilon were transiently dephosphorylated in N2a cells upon treatment with DHPG, and this was blocked by cyclosporin A. A mutant CK1epsilon with a nonphosphorylatable C-terminal domain was not activated by DHPG. Together, these studies suggest that DHPG activates CK1(epsilon) via Ca(2+)-dependent stimulation of calcineurin and subsequent dephosphorylation of inhibitory C-terminal autophosphorylation sites.  相似文献   

4.
The molecular basis for glutamate receptor trafficking to the plasma membrane is not understood. In the present study, we demonstrate that Homer 1b (H1b), a constitutively expressed splice form of the immediate early gene product Homer (now termed Homer 1a) regulates the trafficking and surface expression of group I metabotropic glutamate receptors. H1b inhibits surface expression of the metabotropic glutamate receptor mGluR5 in heterologous cells, causing mGluR5 to be retained in the endoplasmic reticulum (ER). In contrast, mGluR5 alone or mGluR5 coexpressed with Homer 1a successfully travels through the secretory pathway to the plasma membrane. In addition, point mutations that disrupt mGluR5 binding to H1b eliminate ER retention of mGluR5, demonstrating that H1b affects metabotropic receptor localization via a direct protein-protein interaction. Electron microscopic analysis reveals that the group I metabotropic receptor mGluR1alpha is significantly enriched in the ER of Purkinje cells, suggesting that a similar mechanism may exist in vivo. Because H1b is found in dendritic spines of neurons, local retention of metabotropic receptors within dendritic ER provides a potential mechanism for regulating synapse-specific expression of group I metabotropic glutamate receptors.  相似文献   

5.
1. Metabotropic glutamate receptors (mGluRs) are known to play a role in synaptic plasticity. In a study of rat hippocampal brain slices, we find that a brief perfusion of a group I mGluR agonist, (S)-3,5-dihydroxyphenylglycine (DHPG), induced a robust long-term depression (DHPG-LTD) in area CA1.2. The action was accompanied by an enhancement of the paired-pulse facilitation (PPF) ratio.3. At the same time DHPG enhanced ionophoretic responses to alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA), kainic acid (KA), and N-methyl-D-aspartate (NMDA) in CA1 pyramidal neurons. This was only partially reversed by washing.4. These observations indicate that DHPG exerts two opposing actions, suppression of the synaptic transmission and facilitation of postsynaptic responses. However, the presynaptic action dominates, since the net effect of monosynaptic activation is a reduction of response.5. Perfusion of DHPG reduced three calcium-dependent responses in CA3 pyramidal neurons, which are presynaptic to CA1 neurons. These are calcium spike width and amplitude, after-hyperpolarization (AHP), and spike frequency adaptation (SFA).6. These results suggest that the DHPG-LTD results from modulation of the presynaptic calcium currents by group l mGluRs.  相似文献   

6.
7.
Phosphorylation of neurotransmitter receptors can modify their activity and regulate neuronal excitability. Cyclin-dependent kinase 5 (cdk5) is a proline-directed serine/threonine kinase involved not only in neuronal development, but also in synaptic function and plasticity. Here we demonstrate that group I metabotropic glutamate receptors (mGluRs), which modulate post-synaptic signaling by coupling to intracellular signal transduction pathways, are phosphorylated by cdk5. In vitro kinase assays reveal that cdk5 phosphorylates mGluR5 within the domain of the receptor that interacts with the scaffolding protein homer. Using a novel phosphospecific mGluR antibody, we show that the homer-binding domain of both mGluR1 and mGluR5 are phosphorylated in vivo , and that inhibition of cdk5 with siRNA decreases the amount of phosphorylated receptor. Furthermore, kinetic binding analysis, by surface plasmon resonance, indicates that phosphorylation of mGluR5 enhances its association with homer. Homer protein complexes in the post-synaptic density, and their disruption by an activity-dependent short homer 1a isoform, have been shown to regulate the trafficking and signaling of the mGluRs and impact many neuroadaptive processes. Phosphorylation of the mGluR homer-binding domain, in contrast to homer 1a induction, provides a novel mechanism for potentially regulating a subset of homer interactions.  相似文献   

8.
Using the conflict drinking Vogel test in rats as a model we examined the anxiolytic-like activity of (S)-4-carboxyphenylglycine (S-4CPG), an antagonist of group I metabotropic glutamate receptors (mGlu receptors), of (RS)-a-methylserine-O-phosphate-monophenyl ester (MSOPPE), an antagonist of group II mGlu receptors, and of (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I), an agonist of group II mGlu receptors. The obtained results indicate that intrahippocampal administration of S-4CPG and L-CCG-I, but not MSOPPE to rats produces a dose-dependent anticonflict effect, which is unrelated to the reduced perception of the stimulus or to an increased thirst drive. The hippocampus may be one of the neuroanatomical sites of the anxiolytic-like effects of either agent.  相似文献   

9.
Hyperhomocysteinemia is a risk factor in neurodegeneration. It has been suggested that apart from disturbances in methylation processes, the mechanisms of this effect may include excitotoxicity mediated by the N-methyl-D-aspartate (NMDA) receptors. In this study we demonstrate that apart from NMDA receptors, also group I metabotropic glutamate receptors participate in acute homocysteine (Hcy)-induced neurotoxicity in cultured rat cerebellar granule neurones. Primary neuronal cultures were incubated for 30 min in the Mg(2+)-free ionic medium containing homocysteine and other ligands, and neurodegenerative changes were assessed 24h later using propidium iodide staining. D,L-Homocysteine given alone appeared to be a weak neurotoxin, with EC(50) of 17.4mM, whereas EC(50) for L-glutamate was 0.17 mM. Addition of 50 microM glycine enhanced homocysteine neurotoxicity, and only that portion of neurotoxicity was abolished by 0.5 microM MK-801, an uncompetitive NMDA receptor antagonist. The net stimulation of 45Ca uptake by granule cells incubated in the presence of 25 mM D,L-homocysteine with 50 microM glycine was only 3% of the net uptake evoked by 1mM glutamate. Application of an antagonist of group I metabotropic glutamate receptors (mGluRs) LY367385 at 25 and 250 microM concentrations, induced a dose-dependent partial neuroprotection, whereas given together with MK-801 completely prevented neurotoxicity. In the absence of glycine, LY367385 and MK-801 given alone failed to induce neuroprotection, while applied together completely prevented homocysteine neurotoxicity. Agonist of group I mGluRs, 10 trans-azetidine-2,3-dicarboxylic acid (t-ADA) induced significant neurotoxicity. This study shows for the first time that acute homocysteine-induced neurotoxicity is mediated both by group I mGluRs and NMDA receptors, and is not accompanied by massive influx of extracellular Ca(2+) to neurones.  相似文献   

10.
Differential regulation of ionotropic glutamate receptors   总被引:2,自引:0,他引:2       下载免费PDF全文
Ionotropic glutamate receptors (iGluRs), a family of ligand-gated ion channels, are responsible for the majority of fast excitatory neurotransmission in the central nervous system. Within this family, different members serve distinct roles at glutamatergic synapses. Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors mediate fast depolarization while N-methyl-D-aspartate (NMDA) receptors mediate the slower component of the excitatory postsynaptic potential. These disparate functions suggest alternate modes of regulation. In this work, we show that endogenous regulators of iGluRs have different abilities to bind to specific domains of NMDA NR1-1b and AMPA GluR2 subunits. We have previously shown that the sulfated neurosteroids pregnenolone sulfate and 3α-hydroxy-5β-pregnan-20-one sulfate bind to the extracellular glutamate-binding core (S1S2) of the GluR2 subunit. Here we show that neither neurosteroid binds to the S1S2 domain of the NMDA NR1-1b subunit. This NR1-1b NMDA domain does, however, bind to the endogenous polyamines spermine and spermidine as well as Zn(II). Binding of the polyamines and Zn(II) to the S1S2 domain of the GluR2 subunit was not observed. This binding of Zn(II) and polyamines to the S1S2 domain of the NR1-1b subunit defines a new binding site for each of these modulators.  相似文献   

11.
12.
Stacking interaction is known to play an important role in protein folding, enzyme-substrate and ligand-receptor complex formation. It has been shown to make a contribution into the aromatic antagonists binding with glutamate ionotropic receptors (iGluRs), in particular, the complex of NMDA receptor NR1 subunit with the kynurenic acid (KYNA) derivatives. The specificity of KYNA binding to the glutamate receptors subtypes might partially result from the differences in stacking interaction. We have calculated the optimal geometry and binding energy of KYNA dimers with the four types of aromatic amino acid residues in Rattus and Drosophila ionotropic iGluR subunits. All ab initio quantum chemical calculations were performed taking into account electron correlations at MP2 and MP4 perturbation theory levels. We have also investigated the potential energy surfaces (PES) of stacking and hydrogen bonds (HBs) within the receptor binding site and calculated the free energy of the ligand-receptor complex formation. The energy of stacking interaction depends both on the size of aromatic moieties and the electrostatic effects. The distribution of charges was shown to determine the geometry of polar aromatic ring dimers. Presumably, stacking interaction is important at the first stage of ligand binding when HBs are weak. The freedom of ligand movements and rotation within receptor site provides the precise tuning of the HBs pattern, while the incorrect stacking binding prohibits the ligand-receptor complex formation.  相似文献   

13.
14.
Previous in vitro studies have shown that group III metabotropic glutamate receptors (mGluRs) regulate synaptic glutamate release. The present study used microdialysis to characterize this regulation in vivo in rat nucleus accumbens. Reverse dialysis of the group III mGluR agonist l-(+)-2-amino-4-phosphonobutyric acid (L-AP4) decreased, whereas the antagonist (R,S)-alpha-methylserine-O-phosphate (MSOP) increased the extracellular level of glutamate. The decrease by L-AP4 or the increase by MSOP was antagonized by co-administration of MSOP or L-AP4, respectively. Activation of mGluR4a by (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid or mGluR6 by 2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid had no effect on extracellular glutamate. (R,S)-4-Phosphonophenylglycine (PPG), another group III agonist with high affinity for mGluR4/6/8, reduced extracellular glutamate only at high concentrations capable of binding to mGluR7. The increase in extracellular glutamate by MSOP was tetrodotoxin-independent, and resistant to both the L-type and N-type Ca2+ channel blockers. L-AP4 failed to block 30 mm K+-induced vesicular glutamate release. Blockade of glutamate uptake by d,l-threo-beta-benzyloxyaspartate caused a Ca2+-independent elevation in extracellular glutamate that was reversed by L-AP4. Finally, (S)-4-carboxyphenylglycine, an inhibitor of cystine-glutamate antiporters, attenuated the L-AP4-induced reduction in extracellular glutamate. Together, these data indicate that group III mGluRs regulate in vivo extracellular glutamate in the nucleus accumbens by inhibiting non-vesicular glutamate release.  相似文献   

15.
Although tricyclic antidepressants have been in existence since the 1940s when they were discovered upon screening iminodibenzyl derivatives for other potential therapeutic uses, their mechanism of action has remained unclear [A. Goodman Gilman, T.W. Rall, A.S. Nies, P. Taylor, Goodman and Gilman's The Pharmacological Basis of Therapeutics, eighth ed., Pergamon Press, New York, 1990]. In addition to their ability to hinder the reuptake of biogenic amines, there is mounting evidence that the tricyclic antidepressants inhibit glutamate transmission. Here, intrinsic tryptophan fluorescence spectroscopy is used to document the binding of desipramine, a member of the tricyclic antidepressant family, to a well-defined extracellular glutamate binding domain (S1S2) of the GluR2 subunit of the amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. The binding is distinct from those of other known effectors of the receptor, including the endogenous sulfated neurosteroids pregnenolone sulfate and 3alpha-hydroxy-5beta-pregnan-20-one sulfate, and is consistent with a conformational change upon binding that is allosterically transmitted to the channel region of the receptor.  相似文献   

16.
Glutamate released during acute CNS insults acts at metabotropic glutamate receptors (mGluR), including group I mGluR. Blockade of group I mGluR during in vitro neuronal trauma provides neuroprotection, whereas activation exacerbates such injury. However, the effects of group I mGluR agonists or antagonists have been primarily studied in in vitro models characterized by necrotic cell death. We examined the role of group I mGluR in the modulation of neuronal injury induced during oxygen-glucose deprivation (OGD), a well-studied model of necrosis, and by application of two well established pro-apoptotic agents: staurosporine and etoposide. Inhibition of group I mGluR attenuated necrosis induced by OGD, whereas selective activation of group I mGluR exacerbated such injury. In contrast, activation of group I mGluR, including selective activation of mGluR5, significantly attenuated apoptotic cell death induced by both staurosporine and etoposide. This effect was completely reversed by co-application of a group I mGluR antagonist. Thus, group I mGluR appear to exhibit opposite effects on necrotic and apoptotic neuronal cell death. Our findings suggest that activation of mGluR1 exacerbates neuronal necrosis whereas both mGluR1 and mGluR5 play a role in attenuation of neuronal apoptosis.  相似文献   

17.
In this study we tested the effect of antagonists of two subtypes of the group I metabotropic glutamate receptors (mGluRs GI) on the induction of ischemic tolerance in relation to brain temperature. These experiments were prompted by indications that glutamate receptors may participate in the mechanisms of ischemic preconditioning. The role of NMDA receptors in the induction of ischemic tolerance has been debated while there is lack of information concerning the involvement of mGluRs GI in this phenomenon. The tolerance to injurious 3 min forebrain ischemia in Mongolian gerbils was induced 48 h earlier by 2 min preconditioning ischemia. Brain temperature was measured using telemetry equipment. EMQMCM and MTEP, antagonists of mGluR1 and mGluR5, respectively, were injected i.p. at a dose of 5 mg/kg. They were administered either before preconditioning ischemia in a single dose or after 2 min ischemia three times every 2 h. Both antagonists did not inhibit the induction of ischemic tolerance. Thus, our data indicate that group I metabotropic glutamate receptors do not play an essential role in the induction of ischemic tolerance.  相似文献   

18.
Functional architecture of olfactory ionotropic glutamate receptors   总被引:5,自引:0,他引:5  
Download : Download video (23MB)  相似文献   

19.
Metabotropic glutamate receptors (mGluRs) are regulated by interacting proteins that mostly bind to their intracellular C-termini. Here, we investigated if mGluR6, mGluR7a and mGluR8a C-termini form predefined binding surfaces or if they were rather unstructured. Limited tryptic digest of purified peptides argued against the formation of stable globular folds. Circular dichroism, 1H NMR and 1H15N HSQC spectra indicated the absence of rigid secondary structure elements. Furthermore, we localized short linear binding motifs in the unstructured receptor domains. Our data provide evidence that protein interactions of the analyzed mGluR C-termini are mediated rather by short linear motifs than by preformed folds.  相似文献   

20.
Pancreatic islets contain ionotropic glutamate receptors that can modulate hormone secretion. The purpose of this study was to determine whether islets express functional group III metabotropic glutamate (mGlu) receptors. RT-PCR analysis showed that rat islets express the mGlu8 receptor subtype. mGlu8 receptor immunoreactivity was primarily displayed by glucagon-secreting alpha-cells and intrapancreatic neurons. By demonstrating the immunoreactivities of both glutamate and the vesicular glutamate transporter 2 (VGLUT2) in these cells, we established that alpha-cells express a glutamatergic phenotype. VGLUT2 was concentrated in the secretory granules of islet cells, suggesting that glutamate might play a role in the regulation of glucagon processing. The expression of mGlu8 by glutamatergic cells also suggests that mGlu8 may function as an autoreceptor to regulate glutamate release. Pancreatic group III mGlu receptors are functional because mGlu8 receptor agonists inhibited glucagon release and forskolin-induced accumulation of cAMP in isolated islets, and (R,S)-cyclopropyl-4-phosphonophenylglycine, a group III mGlu receptor antagonist, reduced these effects. Because excess glucagon secretion causes postprandial hyperglycemia in patients with type 2 diabetes, group III mGlu receptor agonists could be of value in the treatment of these patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号