首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary This study investigated the effects of colony growth and development, food storage, foraging activity and weather on the migration behavior of African honey bees in the Okavango River Delta, Botswana. Four observation colonies were studied during the honey bee migration season (November–May), at which time the availability of blooming species was reduced. Two of the colonies (colonies 1 & 2) migrated during the study period, while the remaining two (colonies 3 & 4) did not. During the 4–6 weeks preceding the onset of migration preparations, colonies 1 & 2 exhibited increasing population sizes, high levels of brood production with low brood mortality, relatively large stores of food, and increasing mass. In contrast, the populations of colonies 3 & 4 did not increase, brood-rearing activity was erratic and lower, brood mortality was higher, food stores became depleted and colony mass declined. Both colonies 3 & 4 ceased rearing brood, and colony 3 died of starvation. Colony foraging activity was examined by monitoring waggle-dance activity 2–3 days each week. For 4–6 weeks before the onset of migration in colonies 1 & 2, daily foraging areas and mean daily foraging distances became increasingly large and variable. Colonies 3 & 4 exhibited foraging patterns similar to those observed for colonies 1 & 2 preceding migration. There was no clear association between 7 weather parameters examined and migration behavior. These data suggest that migration is influenced by an interaction of intra-colony demographics, food reserves and foraging patterns. Migration may be feasible only for those colonies that possess (1) a population of appropriate size and age structure to compensate for the natural attrition of older workers during the emigration process, and (2) sufficient food reserves for long-distance travel and the establishment of a new nest. Changing foraging patterns may reflect a deteriorating foraging environment, which may trigger the onset of migration preparations, provided that colony demographics and food reserves are conducive. Colonies that show decreased brood production, higher brood mortality and reduced food stores may be incapable of migrating, even when experiencing deteriorating foraging conditions. Rather, such colonies may have a greater chance of survival if they attempt to persist in a given area.  相似文献   

2.
The relationship between changes in foraging patterns (inferred from waggle dance activity) and colony energy status (inferred from brood rearing activity, food storage, and colony weight) was examined for the African honey bee during a period of relative resource abundance and resource dearth. When resources were more abundant mean foraging distances (about 400 m) and foraging areas (4–5 km2) were small, and colonies recruited to 12–19 different sites per day. Colony foraging ranges and sites visited increased slightly during the dearth period, yet foraging continued to be concentrated within less than 10 km2. The degree to which fluctuations in foraging patterns were correlated with colony energy status varied with the availability of floral resources. During periods of relative forage abundance, increases in foraging range and number of sites visited were significantly correlated with increases in brood rearing and colony weight. In contrast, colonies examined during periods of resource dearth exhibited no correlations between foraging areas, foraging distances, and fluctuations in brood rearing, food storage, or colony weight. Thus, during dearth periods colonies may not be able to coordinate foraging patterns with changes in colony energy status.  相似文献   

3.
Strips coated with conidia of Metarhizium anisopliae (Metschinkoff; Deuteromycetes: Hyphomycetes) to control the parasitic mite, Varroa destructor (Anderson and Trueman) in colonies of honey bees, Apis mellifera (Hymenoptera: Apidae) were compared against the miticide, tau-fluvalinate (Apistan) in field trials in Texas and Florida (USA). Apistan and the fungal treatments resulted in successful control of mite populations in both locations. At the end of the 42-day period of the experiment in Texas, the number of mites per bee was reduced by 69-fold in bee hives treated with Apistan and 25-fold in hives treated with the fungus; however mite infestations increased by 1.3-fold in the control bee hives. Similarly, the number of mites in sealed brood was 13-fold and 3.6-fold higher in the control bee hives than in those treated with Apistan and with the fungus, respectively. Like the miticide Apistan, the fungal treatments provided a significant reduction of mite populations at the end of the experimental period. The data from the broodless colonies treated with the fungus indicated that optimum mite control could be achieved when no brood is being produced, or when brood production is low, such as in the early spring or late fall. In established colonies in Florida, honey bee colony development did not increase under either Apistan or fungal treatments at the end of the experimental period, suggesting that other factors (queen health, food source, food availability) play some major role in the growth of bee colonies. Overall, microbial control of Varroa mites with fungal pathogens could be a useful component of an integrated pest management program for the honey bee industry.  相似文献   

4.
Although commercially reared colonies of bumble bees (Bombus sp.) are the primary pollinator world-wide for greenhouse tomatoes (Lycopersicon esculentum Mill.) previous research indicates that honey bees (Apis mellifera L.) might be a feasible alternative or supplement to bumble bee pollination. However, management methods for honey bee greenhouse tomato pollination scarcely have been explored. We 1) tested the effect of initial amounts of brood on colony population size and flight activity in screened greenhouses during the winter, and 2) compared foraging from colonies with brood used within screened and unscreened greenhouses during the summer. Brood rearing was maintained at low levels in both brood and no-brood colonies after 21 d during the winter, and emerging honey bees from both treatments had significantly lower weights than bees from outdoor colonies. Honey bee flight activity throughout the day and over the 21 d in the greenhouse was not influenced by initial brood level. In our summer experiment, brood production in screened greenhouses neared zero after 21 d but higher levels of brood were reared in unscreened greenhouses with access to outside forage. Flower visitation measured throughout the day and over the 21 d the colonies were in the greenhouse was not influenced by screening treatment. An economic analysis indicated that managing honey bees for greenhouse tomato pollination would be financially viable for both beekeepers and growers. We conclude that honey bees can be successfully managed for greenhouse tomato pollination in both screened and unscreened greenhouses if the foraging force is maintained by replacing colonies every 3 wk.  相似文献   

5.
Tracheal mites have been associated with the condition in honey bees that devastated colonies in Britain and Ireland in the early 1900s. The first outbreak of this condition, that became known as the ‘Isle of Wight’ disease, coincided with the period when brood-cell size was increased from about 5.0 mm to about 5.5 mm in width. We undertook an inoculation experiment over a 7-day period to establish if the act of increasing the brood-cell size could have triggered the onset of tracheal mites in honey bees. The standard-sized cells used had a cell width of 5.44 mm and the small-sized cells a width of 5.07 mm. Using callow (newly emerged) bees, from three colonies that had mixed cell sizes, we compared the susceptibility of bees reared in standard-sized cells with that of those raised in small-sized cells. The results indicated similar levels of female mite abundance (0.49 vs. 0.52 mites per bee) and mean fecundity (4.33 vs. 4.22 offspring per female mite), and produced no evidence of any difference in the overall susceptibility between the bees raised in the standard-sized cells versus small-sized brood cells.  相似文献   

6.
Summary To obtain insights into the organization and adaptive significance of seasonal migration by colonies of the giant honey bee,Apis dorsata, we monitored the arrivals and departures of colonies in a rain forest habitat in northeastern Thailand, compared patterns of honey bee abundance with other measures of habitat variability, and observed the role of dance communication in organizing the migratory departure of a colony. Colonies arrived in the area during the end of the dry season, reproduced, and then departed early in the rainy season. During the immigration phase, early-arriving colonies stayed only temporarily, as if assessing habitat quality. Colonies departing after a long stay always left barren combs behind, suggesting that they had left in response to deteriorating resource quality. These observations support the idea that migration allows colonies to track seasonally varying resources in different regions. Our observations of a colony preparing for migration revealed that the dance language is involved in organizing the colony's departure, but that dancers signal only the direction to be taken, rather than, as in dances to feeding sites, both the direction and distance of a particular location.  相似文献   

7.
Evidence for interspecific competition between honey bees and wild bees was studied on 15 calcareous grasslands with respect to: (1) foraging radius of honey bees, (2) overlap in resource use, and (3) possible honey bee effects on species richness and abundance of flower-visiting, ground-nesting and trap-nesting wild bees. The grasslands greatly differed in the number of honey bee colonies within a radius of 2 km and were surrounded by agricultural habitats. The number of flower-visiting honey bees on both potted mustard plants and small grassland patches declined with increasing distance from the nearest apiary and was almost zero at a distance of 1.5–2.0 km. Wild bees were observed visiting 57 plant species, whereas honey bees visited only 24 plant species. Percentage resource overlap between honey bees and wild bees was 45.5%, and Hurlbert’s index of niche overlap was 3.1. In total, 1849 wild bees from 98 species were recorded on the calcareous grasslands. Neither species richness nor abundance of wild bees were negatively correlated with the density of honey bee colonies (within a radius of 2 km) or the density of flower-visiting honey bees per site. Abundance of flower- visiting wild bees was correlated only with the percentage cover of flowering plants. In 240 trap nests, 1292 bee nests with 6066 brood cells were found. Neither the number of bee species nor the number of brood cells per grassland was significantly correlated with the density of honey bees. Significant correlations were found only between the number of brood cells and the percentage cover of shrubs. The number of nest entrances of ground-nesting bees per square metre was not correlated with the density of honey bees but was negatively correlated with the cover of vegetation. Interspecific competition by honey bees for food resources was not shown to be a significant factor determining abundance and species richness of wild bees. Received: 22 March 1999 / Accepted: 24 September 1999  相似文献   

8.
The effects of changes in spring pollen diet on the development of honey bee, Apis mellifera L. (Hymenoptera: Apidae), colonies were examined in a 3-yr study (2002-2004). Pollen-supplemented and pollen-limited conditions were created in colonies every spring, and brood rearing and honey yields were subsequently monitored throughout the summer. In all 3 yr, colonies that were supplemented with pollen or a pollen substitute in the spring started rearing brood earlier than colonies in other treatment groups and produced the most workers by late April or early May. In 2002, these initial differences were reflected by a two-fold increase in annual honey yields by September for colonies that were pollen-supplemented during the spring compared with pollen-limited colonies. In 2003 and 2004, differences between treatment groups in the cumulative number of workers produced by colonies disappeared by midsummer, and all colonies had similar annual honey yields (exception: in one year, productivity was low for colonies supplemented with pollen before wintering). Discrepancies between years coincided with differences in spring weather conditions. Colonies supplemented with pollen or a substitute during the spring performed similarly in all respects. These results indicate that an investment in supplementing the pollen diet of colonies would be returned for situations in which large spring populations are important, but long-term improvement in honey yields may only result when spring foraging is severely reduced by inclement weather. Beekeepers should weigh this information against the nutritional deficiencies that are frequently generated in colonies by the stresses of commercial management.  相似文献   

9.
Honey bees are important pollinators and take micronutrients from different natural floral resources and turbid water to adequately meet their nutritional requirements. But the role of micronutrients for honey bee health is not well understood. Here, the present study was conducted to determine honey bees' micronutrients preference in summer and winter seasons. Also, the impact of micronutrients on foraging behaviour and brood increase was studied in different honey bee colonies. The results elucidated that honey bees exhibited a strong preference for a salt solution compared to deionized water during the summer and winter seasons. However, there was a notable switch in salt preference between seasons. Overall, honey bees showed significantly more foraging activity, more pollen collection, and increased brood area after sodium consumption compared to other minerals in the summer season. Further, pollen collection and brood area were significantly higher after the use of potassium in the winter season. Thus, the food preference of honey bees is strongly linked with the seasons and the availability of the floral resources. Our data suggested that honey bees may seek specific nutrients during variation of the seasonal conditions.  相似文献   

10.
Within colony transmission of Paenibacillus larvae spores was studied by giving spore-contaminated honey comb or comb containing 100 larvae killed by American foulbrood to five experimental colonies respectively. We registered the impact of the two treatments on P. larvae spore loads in adult bees and honey and on larval mortality by culturing for spores in samples of adult bees and honey, respectively, and by measuring larval survival. The results demonstrate a direct effect of treatment on spore levels in adult bees and honey as well as on larval mortality. Colonies treated with dead larvae showed immediate high spore levels in adult bee samples, while the colonies treated with contaminated honey showed a comparable spore load but the effect was delayed until the bees started to utilize the honey at the end of the flight season. During the winter there was a build up of spores in the adult bees, which may increase the risk for infection in spring. The results confirm that contaminated honey can act as an environmental reservoir of P. larvae spores and suggest that less spores may be needed in honey, compared to in diseased brood, to produce clinically diseased colonies. The spore load in adult bee samples was significantly related to larval mortality but the spore load of honey samples was not.  相似文献   

11.
The potential for Metarhizium anisopliae (Metschinkoff) to control the parasitic mite, Varroa destructor (Anderson and Trueman) in honey bee colonies was evaluated in field trials against the miticide, tau-fluvalinate (Apistan). Peak mortality of V. destructor occurred 3-4 d after the conidia were applied; however, the mites were still infected 42 d posttreatments. Two application methods were tested: dusts and strips coated with the fungal conidia, and both methods resulted in successful control of mite populations. The fungal treatments were as effective as the Apistan, at the end of the 42-d period of the experiment. The data suggested that optimum mite control could be achieved when no brood is being produced, or when brood production is low, such as in the early spring or late fall. M. anisopliae was harmless to the honey bees (adult bees, or brood) and colony development was not affected. Mite mortality was highly correlated with mycosis in dead mites collected from sticky traps, indicating that the fungus was infecting and killing the mites. Because workers and drones drift between hives, the adult bees were able to spread the fungus between honey bee colonies in the apiary, a situation that could be beneficial to beekeepers.  相似文献   

12.
Summary Seasonal foraging patterns were investigated using six observation colonies maintained in the Okavango Delta, Botswana. Pollen collection, flight from the hive, and recruitment for pollen and nectar sources occurred throughout the 11 months of the study. However, the distribution of foraging activity throughout the day changed seasonally. Colonies emphasized recruitment for pollen sites throughout most of the year. Brood production occurred in all months except May, and there was a significant, positive correlation between the proportion of recruitment activity devoted to pollen sources and the amount of brood comb in the colonies. The seasonal foraging patterns ofscutellata in the Okavango were similar to those of Africanized honey bees in the neotropics. The extended foraging season and emphasis on pollen collection may be associated with the high swarming rates and migrational movements of tropical honey bees.  相似文献   

13.
Reproduction by workers is rare in honey bee colonies that have an active queen. By not producing their own offspring and preventing other workers from producing theirs, workers are thought to increase their inclusive fitness due to their higher average relatedness towards queen-produced male offspring compared with worker-produced male offspring. But there is one exception. Workers of the Cape honey bee, Apis mellifera capensis, are able to produce diploid female offspring via thelytokous parthenogenesis and thus produce clones of themselves. As a result, worker reproduction and tolerance towards worker-produced offspring is expected to be more permissive than in arrhenotokous (sub)species where worker offspring are male. Here we quantify the extent to which A. m. capensis workers contribute to reproduction in queenright colonies using microsatellite analyses of pre-emergent brood. We show that workers produced 10.5% of workers and 0.48% of drones. Most of the workers' contribution towards the production of new workers coincided with the colonies producing new queens during reproductive swarming.  相似文献   

14.
One of the most important factors affecting the development of honey bee colonies is infectious diseases such as American foulbrood (AFB) caused by the spore forming Gram-positive bacterium Paenibacillus larvae. Colony inspections for AFB clinical symptoms are time consuming. Moreover, diseased cells in the early stages of the infection may easily be overlooked. In this study, we investigated whether it is possible to determine the sanitary status of a colony based on analyses of different materials collected from the hive. We analysed 237 bee samples and 67 honey samples originating from 71 colonies situated in 13 apiaries with clinical AFB occurrences. We tested whether a difference in spore load among bees inside the whole hive exists and which sample material related to its location inside the hive was the most appropriate for an early AFB diagnosis based on the culture method. Results indicated that diagnostics based on analysis of honey samples and bees collected at the hive entrance are of limited value as only 86% and 83%, respectively, of samples from AFB-symptomatic colonies were positive. Analysis of bee samples collected from the brood nest, honey chamber, and edge frame allowed the detection of all colonies showing AFB clinical symptoms. Microbiological analysis showed that more than one quarter of samples collected from colonies without AFB clinical symptoms were positive for P. larvae. Based on these results, we recommend investigating colonies by testing bee samples from the brood nest, edge frame or honey chamber for P. larvae spores.  相似文献   

15.
Honey bee, Apis mellifera L. (Hymenoptera: Apidae), nutrition is vital for colony growth and maintenance of a robust immune system. Brood rearing in honey bee colonies is highly dependent on protein availability. Beekeepers in general provide protein supplement to colonies during periods of pollen dearth. Honey bee brood pheromone is a blend of methyl and ethyl fatty acid esters extractable from cuticle of honey bee larvae that communicates the presence of larvae in a colony. Honey bee brood pheromone has been shown to increase protein supplement consumption and growth of honey bee colonies in a subtropical winter climate. Here, we tested the hypothesis that synthetic brood pheromone (SuperBoost) has the potential to increase protein supplement consumption during fall in a temperate climate and thus increase colony growth. The experiments were conducted in two locations in Oregon during September and October 2009. In both the experiments, colonies receiving brood pheromone treatment consumed significantly higher protein supplement and had greater brood area and adult bees than controls. Results from this study suggest that synthetic brood pheromone may be used to stimulate honey bee colony growth by stimulating protein supplement consumption during fall in a northern temperate climate, when majority of the beekeepers feed protein supplement to their colonies.  相似文献   

16.
This investigation was conducted to test whether an upper hive entrance may result in reduced Aethina tumida Murray (Coleoptera: Nitidulidae) population buildup in newly established honey bee, Apis mellifera L., colonies over an 8-mo period. The upper hive entrance consisted of a 3.5-cm-i.d. polyvinyl chloride pipe positioned 20 cm above the hive bottom. Sixteen bee colonies were established using five-frame nucleus hives with a 0.9-kg (2-1b) package of bees with queen. Eight colonies were placed in each apiary, and each colony received one of two treatments: 1) conventional hive lower entrance and 2) modified upper hive entrance. This investigation was conducted in two distant apiaries where A. tumida had been a major problem to local beekeepers for a minimum of 2 yr. Results showed no overall differences between treatment effects on A. tumida counts over the test period, but there was a reduction in bee brood measured in colonies having an upper hive entrance. We conclude that the upper pipe entrance is not recommended in areas where A. tumida are well established and have become problematic. The expected reduction of brood in colonies as a result of using an upper hive entrance will lead to less productive units for honey production and pollination activities. Other control measures will be necessary to maintain tolerable levels of A. tumida in honey bee colonies at high pest densities.  相似文献   

17.
A study on the relationship between the age of comb and the activity of the hybrid Carniolan honey bee colonies in collecting pollen activity, worker brood production, colony strength, and honey yield was conducted. In comparison to colonies with combs aged 4-years, colonies with combs aged 1, 2 and 3-years significantly exceeded in the number returning workers, number returning workers with pollen loads, rate of storing pollen, rate of worker brood production, and size of colony population. Colonies with combs aged 1, 2 and 3-years produced significantly more honey than colonies with combs aged 4-years (5.25, 4.90 and 4.65 kg/colony vs. 4.45 kg/colony, respectively). It can be concluded that the foraging rate, gathering and storing pollen, brood production, colony population size, and honey yield significantly depended on the age of combs. Beekeepers can replace old combs with new ones to increase brood and honey production.  相似文献   

18.

Background

Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood.

Methodology/Principal Findings

We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers.

Conclusions/Significance

We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.  相似文献   

19.
Reproduction and population growth of Varroa destructor was studied in ten naturally infested, Africanized honeybee (AHB) (Apis mellifera) colonies in Yucatan, Mexico. Between February 1997 and January 1998 monthly records of the amount of pollen, honey, sealed worker and drone brood were recorded. In addition, mite infestation levels of adult bees and worker brood and the fecundity of the mites reproducing in worker cells were determined. The mean number of sealed worker brood cells (10,070 ± 1,790) remained fairly constant over the experimental period in each colony. However, the presence and amount of sealed drone brood was very variable. One colony had drone brood for 10 months and another for only 1 month. Both the mean infestation level of worker brood (18.1 ± 8.4%) and adult bees (3.5 ± 1.3%) remained fairly constant over the study period and did not increase rapidly as is normally observed in European honey bees. In fact, the estimated mean number of mites fell from 3,500 in February 1997 to 2,380 in January 1998. In May 2000 the mean mite population in the study colonies was still only 1,821 mites. The fertility level of mites in this study was much higher (83–96%) than in AHB in Brazil(25–57%), and similar to that found in EHB (76–94%). Mite fertility remained high throughout the entire study and was not influenced by the amount of pollen, honey or worker brood in the colonies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Summary. Nest usurpation is a form of reproductive parasitism that may contribute to the ability of African bees to displace European honey bees in the Americas. We examined nest usurpation by African swarms over a two-year period in a southern-Arizona apiary that contained 76 five-frame European colonies. We observed a mean annual usurpation rate of 21% , with strong seasonal trends in usurpation activity. Most usurpations occurred from October–December, with a minor peak of usurpation activity in the spring-summer months. The seasonal patterns of usurpation corresponded with the reproductive swarming season in spring and summer and the absconding season in the fall-winter months. Queenless colonies, colonies that contained a queen confined in a cage, and those that had been recently requeened were 2–8 times more likely to be invaded than were colonies that contained an actively laying queen, suggesting that queen condition may have a major influence on host-colony susceptibility to usurpation. This trend was particularly pronounced in October–December, during which months the usurpation rates experienced by caged-queen and queenless colonies approached 20–50%. Our results show that nest usurpation is seasonally frequent among honey bees in the southwestern U.S., which suggests that reproductive parasitism contributes to the invasion success of African honey bees and possibly other introduced social insect species.Received 3 February 2004; revised 8 April 2004; accepted 17 April 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号