首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a new obligate pollination mutualism involving the senita cactus, Lophocereus schottii (Cactaceae, Pachyceereae), and the senita moth, Upiga virescens (Pyralidae, Glaphyriinae) in the Sonoran Desert and discuss the evolution of specialized pollination mutualisms. L. schottii is a night-blooming, self-incompatible columnar cactus. Beginning at sunset, its flowers are visited by U. virescens females, which collect pollen on specialized abdominal scales, actively deposit pollen on flower stigmas, and oviposit a single egg on a flower petal. Larvae spend 6 days eating ovules before exiting the fruit and pupating in a cactus branch. Hand-pollination and pollinator exclusion experiments at our study site near Bahia Kino, Sonora, Mexico, revealed that fruit set in L. schottii is likely to be resource limited. About 50% of hand-outcrossed and open-pollinated senita flowers abort by day 6 after flower opening. Results of exclusion experiments indicated that senita moths accounted for 75% of open-pollinated fruit set in 1995 with two species of halictid bees accounting for the remaining fruit set. In 1996, flowers usually closed before sunrise, and senita moths accounted for at least 90% of open-pollinated fruit set. The net outcome of the senita/senita moth interaction is mutualistic, with senita larvae destroying about 30% of the seeds resulting from pollination by senita moths. Comparison of the senita system with the yucca/yucca moth mutualism reveals many similarities, including reduced nectar production, active pollination, and limited seed destruction. The independent evolution of many of the same features in the two systems suggests that a common pathway exists for the evolution of these highly specialized pollination mutualisms. Nocturnal flower opening, self-incompatible breeding systems, and resource-limited fruit production appear to be important during this evolution. Received: 19 August 1997 / Accepted: 24 November 1997  相似文献   

2.
Interspecific interactions can affect population dynamics and the evolution of species traits by altering demographic rates such as reproduction and survival. The influence of mutualism on population processes is thought to depend on both the benefits and costs of the interaction. However, few studies have explicitly quantified both benefits and costs in terms of demographic rates; furthermore there has been little consideration as to how benefits and costs depend on the demographic effects of factors extrinsic to the interaction. I studied how benefits (pollination) and costs (larval fruit consumption) of pollinating seed-consumers (senita moths) affect the reproduction of senita cacti and how these effects may rely on extrinsic water limitation for reproduction. Fruit initiation was not limited by moth pollination, but survival of initiated fruit increased when moth eggs were removed from flowers. Watered cacti produced more flowers and initiated more fruit from hand-pollinated flowers than did unwatered cacti, but fruit initiation remained low despite excess pollen. Even though water, pollination and larvae each affected a component of cactus reproduction, when all of these factors were included in a factorial experiment, pollination and water determined rates of reproduction. Counter-intuitively, larval fruit consumption had a negligible effect on cactus reproduction. By quantifying both benefits and costs of mutualism in terms of demographic rates, this study demonstrates that benefits and costs can be differentially influential to population processes and that interpretation of their influences can depend on demographic effects of factors extrinsic to the interaction.  相似文献   

3.
About half a dozen obligate pollination mutualisms between plants and their seed-consuming pollinators are currently recognized, including fig-fig wasp, yucca-yucca moth, and the recently discovered Glochidion tree-Epicephala moth mutualisms. A common principle among these interactions is that the pollinators consume only a limited amount of the seed crop within a developing fruit (or fig in the case of fig-fig wasp mutualism), thereby ensuring a net benefit to plant reproduction. A novel obligate, seed-parasitic pollination mutualism between two species of New Caledonian Phyllanthus (Euphorbiaceae), a close relative of Glochidion, and Epicephala moths (Gracillariidae) is an exception to this principle. The highly specialized flowers of Phyllanthus are actively and exclusively pollinated by species-specific Epicephala moths, whose larvae consume all six ovules of the developing fruit. Some flowers pollinated by the moths remain untouched, and thus a fraction of the fruits is left intact. Additional evidence for a similar association of Epicephala moths in other Phyllanthus species suggests that this interaction is a coevolved, species-specific pollination mutualism. Implications for the evolutionary stability of the system, as well as differences in mode of interaction with respect to the Glochidion-Epicephala mutualism, are discussed.  相似文献   

4.
Non‐pollinating consumers of floral resources, especially ants, can disrupt pollination and plant reproductive processes. As an alternative food resource to flowers, extrafloral nectar (EFN) may distract and satiate ants from flowers, thereby reducing their antagonistic effects on plants. Yet, EFN may actually attract and increase ant density on plants, thus increasing the disruption of pollination and/or their defense of plants. In this study, we tested the effects of ants and EFN on pollinating seed‐consuming interactions between senita cacti and senita moths in the Sonoran Desert. Prior study of senita showed that EFN can distract ants from flowers, but consequences for plant–pollinator interactions remain unstudied. In our current study, ant exclusion had no effect on pollination or oviposition when moths were abundant (>85% flower visitation). Yet, in an ant by EFN factorial experiment under lower moth abundance (<40% visitation), there was a significant effect of ant exclusion (but not EFN or an ant × EFN) on pollination and oviposition. In contrast with our predictions, ant presence increased rather than decreased pollination (and oviposition) by moths, indicating a beneficial effect of ants on plant reproduction. While ant density on plants showed a saturating response to continuous experimental variation in EFN, in support of ant satiation and distraction, the probability of pollination and oviposition increased and saturated with ant density, again showing a beneficial effect of ants on plant reproduction. Ants showed no significant effect on fruit set, fruit survival, or fruit production of oviposited flowers in the ant exclusion experiment. Ants did not affect the survival of moth larvae, but there was a marginally significant effect of ants in reducing wasp parasitism of moths. We suggest that EFN may not only distract ants from disrupting plant–pollinator interactions, but they may also enhance plant–pollinator interactions by increasing pollination and reducing wasp parasitism. Though often considered dichotomous hypotheses, ant distraction and plant defense may be synergistic, though the mechanism(s) for such positive ant effects on plant–pollinator interactions needs further study.  相似文献   

5.
This paper reports obligate seed-parasitic pollination mutualisms in Breynia vitis-idea and B. fruticosa (Phyllanthaceae). The genus Breynia is closely related to Glochidion and Gomphidium (a subgenus of Phyllanthus), in which pollination by species-specific, seed-parasitic Epicephala moths (Gracillariidae) have been previously reported. At night, female Epicephala moths carrying numerous pollen grains on their proboscises visited female flowers of B. vitis-idea, actively pollinated flowers, and each subsequently laid an egg. Examination of field-collected flowers indicated that pollinated flowers of B. vitis-idea and B. fruticosa almost invariably had Epicephala eggs, suggesting that these moths are the primary pollinators of the two species. Single Epicephala larvae consumed a fraction of seeds within developing fruit in B. vitis-idea and all seeds in B. fruticosa. However, some of the fruits were left untouched, and many of these had indication of moth oviposition, suggesting that egg/larval mortality of Epicephala moths is an important factor assuring seed set in these plants. The overall similarity of the specialized floral structure among Breynia species may indicate that this pollination system is fairly widespread within the genus.  相似文献   

6.
Mutualistic interactions almost always produce both costs and benefits for each of the interacting species. It is the difference between gross benefits and costs that determines the net benefit and the per-capita effect on each of the interacting populations. For example, the net benefit of obligate pollinators, such as yucca and senita moths, to plants is determined by the difference between the number of ovules fertilized from moth pollination and the number of ovules eaten by the pollinator's larvae. It is clear that if pollinator populations are large, then, because many eggs are laid, costs to plants are large, whereas, if pollinator populations are small, gross benefits are low due to lack of pollination. Even though the size and dynamics of the pollinator population are likely to be crucial, their importance has been neglected in the investigation of mechanisms, such as selective fruit abortion, that can limit costs and increase net benefits. Here, we suggest that both the population size and dynamics of pollinators are important in determining the net benefits to plants, and that fruit abortion can significantly affect these. We develop a model of mutualism between populations of plants and their pollinating seed-predators to explore the ecological consequences of fruit abortion on pollinator population dynamics and the net effect on plants. We demonstrate that the benefit to a plant population is unimodal as a function of pollinator abundance, relative to the abundance of flowers. Both selective abortion of fruit with eggs and random abortion of fruit, without reference to whether they have eggs or not, can limit pollinator population size. This can increase the net benefits to the plant population by limiting the number of eggs laid, if the pollination rate remains high. However, fruit abortion can possibly destabilize the pollinator population, with negative consequences for the plant population.  相似文献   

7.
Anna Westerbergh 《Oikos》2004,105(3):564-574
Seed predator/pollinator and host plant interactions, which may be considered as antagonistic, have the potential to provide good model systems for the study of the early stages of evolution towards mutualism. I describe a relationship between a seed predator, the geometrid moth Perizoma affinitatum , and the dioecious plant Silene dioica . The moth is an obligate seed predator on its host plant. The searching and ovipositing behaviour of the female moths, number of eggs deposited per flower, the pollinating ability of the moths and the seed consumption by the larvae are described as different parameters and studied in two Finnish coastal populations. A high pollinating ability and limited seed consumption by the predator was found and discussed in relation to fitness models of P. affinitatum and S. dioica . In a mutualistic relationship there must be a balance between the costs and benefits so that the seed production by the moths is larger than the seed consumption by the larvae, given a net seed output larger than zero. The data of the parameters included in a seed production/consumption model give a positive seed output when the proportion of S. dioica flowers pollinated by other non-predating insects is less than 60%. Accordingly, even if P. affinitatum would become the exclusive pollinator it would not endanger the survival of the host plant and both partners would benefit from this interaction. Limited seed consumption, high pollinating ability and host specificity as seen in the P. affinitatum and S. dioica interaction are considered to have been important pre-existing qualities in the evolution of the obligate mutualisms between yucca and yucca moths and fig and fig wasps. In isolated serpentine populations where the gene flow is restricted and co-pollinators are rare the interaction between P. affinitatum and S. dioica has the potential to shift from parasitism to mutualism.  相似文献   

8.
We investigated pollen dispersal in an obligate pollination mutualism between Yucca filamentosa and Tegeticula yuccasella. Yucca moths are the only documented pollinator of yuccas, and moth larvae feed solely on developing yucca seeds. The quality of pollination by a female moth affects larval survival because flowers receiving small amounts of pollen or self-pollen have a high abscission probability, and larvae die in abscised flowers. We tested the prediction that yucca moths primarily perform outcross pollinations by using fluorescent dye to track pollen dispersal in five populations of Y. filamentosa. Dye transfers within plants were common in all populations (mean ± 1 SE, 55 ± 3.0%), indicating that moths frequently deposit self-pollen. Distance of dye transfers ranged from 0 to 50 m, and the mean number of flowering plants between the pollen donor and recipient was 5 (median = 0), suggesting that most pollen was transferred among near neighbors. A multilocus genetic estimate of outcrossing based on seedlings matured from open-pollinated fruits at one site was 94 ± 6% (mean ± 1 SD). We discuss why moths frequently deposit self-pollen to the detriment of their offspring and compare the yucca-yucca moth interaction with other obligate pollinator mutualisms in which neither pollinator nor plant benefit from self-pollination.  相似文献   

9.
Reciprocal specialization in interspecific interactions, such as plant-pollinator mutualisms, increases the probability that either party can have detrimental effects on the other without the interaction being dissolved. This should be particularly apparent in obligate mutualisms, such as those that exist between yucca and yucca moths. Female moths collect pollen from yucca flowers, oviposit into floral ovaries, and then pollinate those flowers. Yucca moths, which are the sole pollinators of yuccas, impose a cost in the form of seed consumption by the moth larvae. Here we ask whether there also is a genetic cost through selfish moth behavior that may lead to high levels of self fertilization in the yuccas. Historically, it has been assumed that females leave a plant immediately after collecting pollen, but few data are available. Observations of a member of the Tegeticula yuccasella complex on Yucca filamentosa revealed that females remained on the plant and oviposited in 66% of all instances after observed pollen collections, and 51% of all moths were observed to pollinate the same plant as well. Manual cross and self pollinations showed equal development and retention of fruits. Subsequent trials to assess inbreeding depression by measuring seed weight, germination date, growth rate, and plant mass at 5 months revealed significant negative effects on seed weight and germination frequency in selfed progeny arrays. Cumulative inbreeding depression was 0.475, i.e., fitness of selfed seeds was expected to be less than half that of outcrossed seeds. Single and multilocus estimates of outcrossing rates based on allozyme analyses of open-pollinated progeny arrays did not differ from 1.0. The discrepancy between high levels of behavioral self-pollination by the moths and nearly complete outcrossing in mature seeds can be explained through selective foreign pollen use by the females, or, more likely, pollen competition or selective abortion of self-pollinated flowers during early stages of fruit development. Thus, whenever the proportion of pollinated flowers exceeds the proportion that can be matured to ripe fruit based on resource availability, the potential detrimental genetic effects imposed through geitonogamous pollinations can be avoided in the plants. Because self-pollinated flowers have a lower probability of retention, selection should act on female moths to move among plants whenever moth density is high enough to trigger abortion. Received: 18 March 1996 \Accepted: 30 July 1996  相似文献   

10.
John F. Addicott 《Oecologia》1986,70(4):486-494
Summary Yucca moths are both obligate pollinators and obligate seed predators of yuccas. I measured the costs and net benefits per fruit arising for eight species of yuccas from their interaction with the yucca moth Tegeticula yuccasella. Yucca moths decrease the production of viable seeds as a result of oviposition by adults and feeding by larvae. Oviposition through the ovary wall caused 2.3–28.6% of ovules per locule to fail to develop, leaving fruit with constrictions, and overall, 0.6–6.6% of ovules per fruit were lost to oviposition by yucca moths. Individual yucca moth larvae ate 18.0–43.6% of the ovules in a locule. However, because of the number of larvae per fruit and the proportion of viable seeds, yucca moth larvae consumed only 0.0–13.6% of potentially viable ovules per fruit. Given both oviposition and feeding effects, yucca moths decreased viable seed production by 0.6–19.5%. The ratio of costs to (gross) benefits varied from 0% to 30%, indicating that up to 30% of the benefits available to yuccas are subsequently lost to yucca moths. The costs are both lower and more variable than in a similar pollinator-seed predator mutualism involving figs and fig wasps.There were differences between species of yuccas in the costs of associating with yucca moths. Yuccas with baccate fruit experienced lower costs than species with capsular fruit. There were also differences in costs between populations within species and high variation in costs between fruit within populations. High variability was the result of no yucca moth larvae being present in over 50% of the fruit in some populations, while other fruit produced up to 24 larvae. I present hypotheses explaining both the absence and high numbers of larvae per fruit.  相似文献   

11.
We identified volatiles from the floral headspace of Yucca filamentosa using gas chromatography and mass spectrometry and analyzed floral scent composition and variation among populations pollinated by different yucca moth species. Twenty-one scent compounds were repeatedly identified and most could be categorized into two major classes: (1) homoterpenes derived from the sesquiterpene alcohol nerolidol and (2) long chain aliphatic hydrocarbons. Two biosynthetic pathways are thus responsible for the majority of floral volatiles in Y. filamentosa. The homoterpene E-4,8-dimethylnona-1,3,7-triene, which is released systemically by higher plants upon herbivory, was the most abundant compound. Two di-oxygenated compounds not previously reported as floral compounds also were detected. No differentiation in floral scent was observed between populations pollinated by different yucca moths, nor was there any correlation between chemical distance and geographic distance among populations. The total release rate of volatiles differed significantly among populations, but not between populations with different pollinators. The combination of unique compounds and low variation in the fragrance blend may reflect highly selective attraction of obligate pollinators to flowers. The observed lack of differentiation in floral scent can putatively explain high moth-mediated gene flow among sites, but it does not explain conservation of odor composition across populations with different pollinators.  相似文献   

12.
Chad J. Huth  Olle Pellmyr 《Oecologia》1999,119(4):593-599
Insect larvae such as those of yucca moths that feed on small, patchily distributed food items often face an elevated risk of intraspecific competition or cannibalism. For this reason, ovipositing females may assess a potential oviposition site for prior conspecific eggs or larvae before deciding whether to oviposit. Selective abortion of yucca flowers with high egg numbers prevents competition among larvae of the yucca moth Tegeticula yuccasella, but the same mechanism should select for female detection of and fewer ovipositions in flowers that already contain eggs. Female yucca moths presented with either virgin or previously visited flowers laid significantly fewer eggs in the latter flowers and pollinated them less often. A significant negative association was found between number of previous oviposition attempts in a flower and number of additional attempts by a female, suggesting a quantitative assessment of prior egg load, but the correlation coefficient was low. Factors contributing to this low correlation may include variation in signal quality, poor detection capability, uncertainty contributed by a variable oviposition attempt to egg ratio, and a variable response criterion based on recent female experience and physiological status. Females rationed their pollen by pollinating at decreasing frequency during a bout within a flower, and by depositing smaller pollen loads during later pollinations within a flower. Females ovipositing into a previously visited flower pollinated as frequently as would a first female for a given oviposition attempt within a flower, i.e., the probability of pollination after the nth oviposition was independent of whether it was performed by a first or a later moth. Experimental presentation of virgin flowers marked with a homogenate from female abdomens induced the same oviposition and pollination behavior as seen on previously visited flowers, suggesting the presence of a host-marking pheromone. Given that all eggs within a selectively aborted flower die, there may be selection among some yucca moths for providing a strong signal of floral egg status to conspecific females. Received: 1 December 1998 / Accepted: 7 February 1999  相似文献   

13.
Interspecific mutualisms are often vulnerable to instability because low benefit : cost ratios can rapidly lead to extinction or to the conversion of mutualism to parasite-host or predator-prey interactions. We hypothesize that the evolutionary stability of mutualism can depend on how benefits and costs to one mutualist vary with the population density of its partner, and that stability can be maintained if a mutualist can influence demographic rates and regulate the population density of its partner. We test this hypothesis in a model of mutualism with key features of senita cactus (Pachycereus schottii)-senita moth (Upiga virescens) interactions, in which benefits of pollination and costs of larval seed consumption to plant fitness depend on pollinator density. We show that plants can maximize their fitness by allocating resources to the production of excess flowers at the expense of fruit. Fruit abortion resulting from excess flower production reduces pre-adult survival of the pollinating seed-consumer, and maintains its density beneath a threshold that would destabilize the mutualism. Such a strategy of excess flower production and fruit abortion is convergent and evolutionarily stable against invasion by cheater plants that produce few flowers and abort few to no fruit. This novel mechanism of achieving evolutionarily stable mutualism, namely interspecific population regulation, is qualitatively different from other mechanisms invoking partner choice or selective rewards, and may be a general process that helps to preserve mutualistic interactions in nature.  相似文献   

14.
For over 100 years the association between Yucca (Agavaceae) and Tegeticula (Lepidoptera: Incurvariidae) has been accepted as a quintessential example of an obligate mutualism. The yucca moth is purported to be the sole pollinator of Yucca, while Yucca flowers provide courtship and mating arenas, and Yucca seeds provide food for developing Tegeticula larvae. We studied Yucca glauca in northern Colorado, comparing the reproductive ecology and breeding systems of Yucca in plains populations, the “preferred” habitat of Yucca, with “marginal” sites at the edge of the local elevational distribution. Tegeticula are abundant at plains sites, and fruit set is significantly higher than in the foothills, where fruit set is limited by the paucity of moths. The low frequency of moths at high elevation, coupled with behaviors of adult female Tegeticula which lead to self-pollination, failure to pollinate, and periodic overloading of fruits with eggs, may help explain why Yucca glauca appears to maintain alternative pollinators. Some fruits lack evidence of Tegeticula infestation, suggesting that larvae die before completing development, or that fertilization of Yucca sometimes occurs without the intervention of Tegeticula. Biochemical analyses of nectar and observations of floral visitors revealed that it is highly likely that the fly Pseudocalliope sp. nov. (Lauxaniidae), which congregates and mates on Yucca glauca blossoms, acts as a secondary pollinator. Autogamy appears to occur infrequently in natural populations. We therefore propose that the yucca-yucca moth symbiosis be viewed as a facultative mutualism.  相似文献   

15.
 The terrestrial orchid Epipactis helleborine is a morphologically variable species with a wide distribution in Europe. It is pollinated by social wasps, and most populations show the morphological characteristics of outcrossing species. However, local predominantly selfing subspecies and varieties have been documented from drier habitats. To document geographic variation in floral morphology, ability to produce seeds through autogamy, and reproductive success in E. helleborine, we sampled 13 populations from three geographic regions along a latitudinal gradient of c. 1000 km from northern to southern Sweden. In the southernmost region, populations in dry and mesic habitats were compared. Supplemental hand-pollination was conducted to determine whether among-population variation in fruit set could be explained by differences in the natural level of pollination, and whether any relationship between floral morphology and fruit production could be explained by interactions with pollinators. Bagging experiments showed no evidence of autogamy in any of the study populations. Number of flowers, pollinia removal and fruit set varied significantly among populations but did not differ among regions. Pollinia removal was positively correlated with population size and both pollinia removal and fruit set were lower in dry than in mesic habitats. At the level of the individual plant, the number of pollinia removed increased more rapidly with flower number than did number of fruits produced. The hand-pollination experiment indicated that the positive relationship between number of flowers and fruit production was due to a higher degree of pollen limitation in plants with few flowers than in plants with many flowers. The experiment also showed that variation in the level of pollen limitation could only partly explain variation in fruit set among populations. Received November 6, 2001; accepted April 27, 2002 Published online: December 3, 2002  相似文献   

16.
Pollination and seed predation were studied in Silene vulgaris populations during two seasons, one with much lower pollinator abundance than the other. Among the pollinators, noctuid moths of the genus Hadena also acted as seed predators. Nectar-foraging female moths oviposited in flowers, and their larvae consumed flowers and seed capsules.
Despite a lower percentage of pollinated flowers in the year of low pollinator abundance, similar numbers of flowers set fruit in both years, because fewer flower buds and flowers were eaten by Hadena larvae during the year of low pollinator visitation. The number of seed capsules preyed upon was also lower in the year with low pollinator abundance, resulting in a higher seed set. The positive correlation between the percentage of pollinated flowers and the percentage of seed capsules destroyed was also observed when comparing flowers opening in different parts of the season.
Early flowering plant individuals had the same pollination success but suffered higher seed predation than late flowering ones. Selection for maximized pollination success through synchronous flowering, is probably the main reason for the compressed flowering period in 5. vulgaris , but the high level of predation early in the season may further increase the reproductive success of synchronous flowering individuals.  相似文献   

17.
Abstract.
  • 1 Delia flavifrons Zetterstedt (Diptera: Anthomyiidae) visits flowers of Silene vulgaris (Moench) Garcke (Caryophyllaceae), where the adults feed, mate, lay their eggs, and the larvae feed on developing seeds. The objective of the study was to examine how an ovipositing female fly assures a food resource for her progeny.
  • 2 Ovipositing females preferred young, non-pollinated flowers over older pollinated ones. The flies did not pollinate the flowers and survival of the larvae depended on the flowers being pollinated by moths.
  • 3 Flowers containing fly eggs were pollinated more often than expected from chance, probably as a result of both flies and moths visiting particular flowers.
  • 4 Eggs were laid singly, and multiple oviposition occurred randomly. Although most eggs hatched, only about half produced larvae that made their way into the fruits. As a result, the probability of competition arising from multiple oviposition may be reduced to such an extent that selection does not favour females that avoid flowers with conspecific eggs.
  • 5 Moth larvae of the noctuid genus Hadena also feed on the seed pods of S. vulgaris and will kill any fly larvae they encounter. However, there was no deviation from random oviposition by the flies in relation to eggs laid by the moths, but the competitively weaker fly usually started to lay eggs towards the end of the moth's egg-laying period.
  • 6 The relationship between Delia flavifrons and Silene vulgaris superficially parallels that for known pollinator/predator systems, but floral adaptations to hypothetically pollinating flies seems not to have taken place.
  相似文献   

18.
We develop an approach for studying population dynamics resulting from mutualism by employing functional responses based on density-dependent benefits and costs. These functional responses express how the population growth rate of a mutualist is modified by the density of its partner. We present several possible dependencies of gross benefits and costs, and hence net effects, to a mutualist as functions of the density of its partner. Net effects to mutualists are likely a monotonically saturating or unimodal function of the density of their partner. We show that fundamental differences in the growth, limitation, and dynamics of a population can occur when net effects to that population change linearly, unimodally, or in a saturating fashion. We use the mutualism between senita cactus and its pollinating seed-eating moth as an example to show the influence of different benefit and cost functional responses on population dynamics and stability of mutualisms. We investigated two mechanisms that may alter this mutualism's functional responses: distribution of eggs among flowers and fruit abortion. Differences in how benefits and costs vary with density can alter the stability of this mutualism. In particular, fruit abortion may allow for a stable equilibrium where none could otherwise exist.  相似文献   

19.
Plant-insect associations have served as models for investigations of coevolution and the influence of biotic interactions on diversification. The pollination association between yuccas and yucca moths is a classic example of an obligate mutualism often suggested to have been affected by coevolution. Recent work has shown high host specificity in pollinating yucca moths, and here we use Tegeticula yuccasella, the species with the widest diet breadth, to ask how host specificity and isolation by distance contribute to specialization. Isolation by distance at a regional scale was observed in nucleotide variation within the mitochondrial gene cytochrome oxidase I (COI) (r =.294; P =.003). Host-related genetic structure (F(ct) = 0.08) was found to be slightly lower than the level of structure observed between eastern and western moth populations (F(ct) = 0.096). However, 56% of the COI haplotypes sampled from moths on Yucca filamentosa mapped to a host-specific clade in the haplotype network. Taken together, these results suggest that differentiation among T. yuccasella populations on alternative hosts is slight, but gene flow is influenced by both host association and geographic distance.  相似文献   

20.
Strong evidence exists that fragmentation negatively affects pollination and plant reproduction, but little research has been conducted with regards to tropical trees. Specifically, effects of forest fragmentation on reproduction of plants with beetle‐pollinated flowers are poorly understood, and there are no data on the impact of fragmentation on reproduction in the structurally important tropical family Annonaceae. We examined the relationship between fragment size, pollinator abundance and seed set of beetle‐pollinated Anaxagorea dolichocarpa (Annonaceae) in a disturbed Brazilian Atlantic rainforest. Flower and fruit production and abundance of pollinators were quantified over ten months in three large (306–388 ha) and three small (6–14 ha) forest fragments. We recorded per flower pollinator abundance, resulting fruit set (fruits per flower) and seed set (monocarps per fruit) for a total of 209 individually marked flowers, and compared pollinator abundance in 186 flowers across all fragments. Flower and fruit production differed among fragments, but were similar for the combined large and small fragments. Between 64.8% (large fragments) and 66.3% (small fragments) of flowers received at least one pollinator. We found no significant difference in pollinator numbers between large and small fragments, and no correlation between pollinator abundance and fruit and seed set. A single visitor had a high probability of pollinating a flower. We conclude that 1) fragment size had no influence on pollinator number and plant reproductive success, and 2) generalist behavior of the pollinating beetles mitigate the risk of pollination failure for the reproductively specialized plant. However, further research may yet reveal genetic impoverishment of populations in small fragments due to restricted pollinator movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号