首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leishmaniasis is a group of diseases with a large spectrum of clinical manifestations caused by protozoans of the genus Leishmania. Here we demonstrate the leishmanicidal activity of the essential oil of Ocimum gratissimum as well as its main constituent, eugenol. The eugenol-rich essential oil of O. gratissimum progressively inhibited Leishmania amazonensis growth at concentrations ranging from 100 to 1000 microg/ml. The IC50 (sub-inhibitory concentration) of the essential oil for promastigotes and amastigotes were respectively 135 and 100 microg/ml and the IC50 of eugenol was 80 microg/ml for promastigote forms. L. amazonensis exposed to essential oil at concentrations corresponding to IC50 for promastigotes and for amastigotes underwent considerable ultrastructural alterations, as shown by transmission electron microscopy. Two or more nuclei or flagella were observed in 31% and 23.3% of treated amastigote and promastigote forms, respectively, suggesting interference in cell division. Considerable mitochondrial swelling was observed in essential oil-treated promastigotes and amastigotes, which had the inner mitochondrial membrane altered, with a significant increase in the number of cristae; in some amastigotes the mitochondrial matrix became less electron-dense. The minimum inhibitory concentration for both promastigotes and amastigotes was 150 microg/ml. Pretreatment of mouse peritoneal macrophages with 100 and 150 microg/ml essential oil reduced the indices of association between promastigotes and the macrophages, followed by increased in nitric oxide production by the infected macrophages. The essential oil showed no cytototoxic effects against mammalian cells. This set of results suggests that O. gratissimum essential oil and its compounds could be used as sources for new antileishmanial drugs.  相似文献   

2.
The essential oil (EO) of Ocimum gratissimum inhibited Staphylococcus aureus at a concentration of 0.75 mg/ml. The minimal inhibitory concentrations (MICs) for Shigella flexineri, Salmonella enteritidis, Escherichia coli, Klebsiella sp., and Proteus mirabilis were at concentrations ranging from 3 to 12 microg/ml. The endpoint was not reached for Pseudomonas aeruginosa (>=24 mg/ml). The MICs of the reference drugs used in this study were similar to those presented in other reports. The minimum bactericidal concentration of EO was within a twofold dilution of the MIC for this organism. The compound that showed antibacterial activity in the EO of O. gratissimum was identified as eugenol and structural findings were further supported by gas chromatography/mass spectra retention time data. The structure was supported by spectroscopic methods.  相似文献   

3.
The in vitro activity of the lipopeptide PAL-Lys-Lys-NH(2) (PAL), alone or combined with either fluconazole (FLU) or amphotericin B (AMB), was investigated against 14 Cryptococcus neoformans isolates. PAL MICs ranged from 1.0 to 4.0 microg/ml. Fungicidal activity was observed. Synergy, defined as a fractional inhibitory concentration (FIC) index of < or =0.5, was observed in 21.4% of PAL/AMB interactions. Antagonism (FIC index>4) was never observed. The broad antifungal activity and the positive interactions with AMB suggest that PAL can represent a promising candidate in infections due to C. neoformans.  相似文献   

4.
One of the differences observed between the two varieties of Cryptococcus neoformansis the greater difficulty to achieve an adequate therapeutical response in patients affected by C. neoformans var. gattii, an observation that has been validated in vitro only rarely. The aim of this work was to study the susceptibility patterns of 35 Colombian clinical isolates of C. neoformans, 20 of which belonged to the var. neoformans and 15 to the var. gattii. The minimal inhibitory concentration (MIC) was determined by broth microdilution, according to a modification of the methodology proposed by the National Committee for Clinical Laboratory Standards (NCCLS), using the breakpoints recently suggested by Nguyen et al. (Antimicrob Agents Chemother 1998; 42: 471-472). The antifungals tested were amphotericin B, fluconazole and itraconazole. Most of the isolates were susceptible to the three antimycotics tested regardless of the variety. Resistance to amphotericin B (MIC=2 microg/ml) was documented in two (10%) C. neoformans var. neoformans isolates; additionally, five (33%) C. neoformans var. gattii isolates felt in the category of fluconazole susceptible but dose dependent (MIC 16 microg/ml). In general, all C. neoformans var. gattii isolates proved susceptible only to the higher concentrations of the antifungals tested. For amphotericin B, seven (47%) isolates of this variety had MICs of 1 microg/ml, for fluconazole there were seven (47%) with MICs of 8 microg/ml and in the case of itraconazole, 10 isolates (66%) had MICs > 0.03 microg/ml. The data showed that although these isolates would be classified as susceptible, they actually require greater concentrations of the antifungals to be inhibited. This finding may well correlate both with the difficulty to attain therapeutic success in patients affected with C. neoformans var. gattii and with the need for more prolonged treatment courses in such cases.  相似文献   

5.
The medicinal plant Ocimum gratissimum L. (Labiatae) is widely encountered in the Northeast of Brasil where it is used to treat digestive problems. Its leaves have an essential oil (EOOG) content whose chemical composition varies according to the time of plant collection. We have compared the effects of the EOOG, collected at 08:00 a.m. (EOOG8) and at 12:00 a.m. (EOOG12), on the relaxation of guinea-pig isolated ileum. Both EOOG8 and EOOG12 (30-300 microg/ml) reversibly relaxed the spontaneous tonus of the guinea-pig ileum in a concentration-dependent manner, with similar IC50 values (49.3 and 23.8 microg/ml, respectively). The magnitude of the decrease in resting tonus was similar to that of the recognised smooth muscle relaxant papaverine. EOOG8 and EOOG12 relaxed 60 mM KCl-precontracted preparations similarly (38.33 +/- 9.91 microg/ml and 35.53 +/- 6.70), whereas a significantly more potent relaxant effect of EOOG12 compared to EOOG8 was observed when tissues were contracted using 10 microM acetylcholine (IC50 values of 69.55 +/- 4.93 and 128.16 +/- 15.70 microg/ml, respectively; p < 0.05). The principal constituents of the essential oil, eugenol and cineole, also relaxed KCl-precontracted preparations, although they were less potent than EOOG, suggesting that they alone were not responsible for EOOG-induced relaxations. Our results show that the essential oil extracted from the leaves of O. gratissimum L., collected at different time periods, exerts significant relaxant effects on isolated guinea-pig ileum which may underlie the therapeutic action of the plant.  相似文献   

6.
The aim of this study was to determine the prevalence of primary resistance to 5-fluorocytosine (5FC) among clinical isolates of yeasts in Spain where this drug is not currently available for therapy. We have tested the in vitro activity of 5FC against 1,021 recent yeast clinical isolates, including 522 Candida albicans, 140 Candida parapsilosis, 68 Candida glabrata, 41 Candida dubliniensis, 50 Candida guilliermondii, 34 Candida tropicalis, 28 Candida krusei, 20 Candida famata, 11 Cryptococcus neoformans, 5 Cryptococcus albidus, 43 Rhodotorula spp., 24 Trichosporon spp., 5 Saccharomyces cerevisiae, 9 Pichia spp., and 21 isolates from other 11 yeast species. The MICs were determined by the ATB Fungus agar microdilution test (bioMerieux, France) and the following interpretive breakpoints were used: susceptible, > 4 microg/ml; intermediate, 8 to 16 microg/ml; resistant, > 32 microg/ml. 5FC was very active against Candida spp. and other medically important yeasts as 852 (83.4%) of the studied isolates were susceptible (MIC < 4 microg/ml). The species most susceptible to 5FC were C. dubliniensis (100%of isolates; MIC90, 0.25 microg/ml), C. famata (100% of isolates; MIC90, 0.25 microg/ml), C. guilliermondii (98%of isolates; MIC90, 0.25 microg/ml), C. glabrata (95.5% of isolates; MIC90, 0.25 microg/ml), and C. neoformans (90.9% of isolates; MIC90, 2 microg/ml). Primary resistance to 5FC was very uncommon, and a MIC > 32 microg/ml, indicator of in vitro resistance, was observed in 106 isolates (10.4%): 77 C. albicans (16.5% of isolates; MIC90, > 128 microg/ml), 9 C. parapsilosis (6.4% of isolates; MIC90, 8 microg/ml), 4 C. albidus (80% of isolates, MIC50, > 128 microg/ml), 3 C. glabrata (4.4% of isolates; MIC90, 0.25 microg/ml), 3 C. tropicalis (8.8% of isolates; MIC90, 4 microg/ml), 2 C. krusei (7.1% of isolates; MIC90, 8 microg/ml), 2 Rhodotorula spp. (4.6% of isolates, MIC90, 1 microg/ml), 8 Trichosporon spp. (33.3% of isolates; MIC90, 64 microg/ml), and 1 C. lipolytica (50% of isolates). Interestingly, most C. albicans (67 out of 77 isolates) resistant to 5FC were serotype B isolates.  相似文献   

7.
Infections by Cryptococcus strains other than C. neoformans have been detected in immunocompromised patients. Of these strains, three are considered human pathogens: C. albidus, C. laurenttii, and C. uniguttulatus. This study deals with the in vitro susceptibility of Cryptococcus to drugs such as amphotericin B, itraconazole, fluconazole, and 5-fluorocytosine. Environmental Cryptococcus isolates (50) distributed as follows: C. neoformans var. neoformans (16), C. albidus (17), C. laurentii (14), and C. uniguttulatus (3) were evaluated by the micro and macrodilution techniques, according to EUCAST and NCCLS recommendations, respectively. Considering both methodologies the respective minimal inhibitory concentrations (MIC) were 0.125 and 2 microg/ml for amphotericin B, 0.06 and 8 microg/ml for itraconazole, and 0.5 and more than 64 microg/ml for fluconazole and 5-fluorocytosine. Agreement percentages for the two methodologies were 100% for amphotericin B and fluconazole for all the strains tested. For itraconazole, the agreement percentage was 81.3% in the C. neoformans strain and 100% for all the others. All species had a agreement percentage of 94.1 to 100% when susceptibility to 5-fluorocytosine was tested. It is concluded that environmental isolates of C. neoformans var. neoformans, C. albidus, C. laurentii, and C. uniguttulatus may show high MICs against certain drugs, suggesting in vitro primary resistance to the antifungals tested.  相似文献   

8.
We examined tea extract, (-) epigallocatechin gallate (EGCg) and theaflavin digallate (TF3) for their antifungal and fungicidal activities against Trichophyton mentagrophytes, T. rubrum, Candida albicans and Cryptococcus neoformans. Tea extract (2.5%) inhibited completely the growth of both T. mentagrophytes and T. rubrum. EGCg at 2.5 mg/ml failed to inhibit their growth, whereas TF3 at 0.5 mg/ml inhibited the growth. EGCg (1mg/ml) showed no fungicidal activity against Trichophyton. TF3 (1mg/ml) killed Trichophyton by a long time contact (72-96 hrs). Tea extract showed a fungicidal activity against Trichophyton in a dose- and contact time-dependent manner. It did not inhibit the growth of C. albicans, but at a high concentration, inhibited slightly the growth of C. neoformans. It had no fungicidal activity against C. albicans or C. neoformans.  相似文献   

9.
Some essential oils from several plants (Artemisia verlotorum, Lavandula augustifolia, Ocimum gratissimum) have proved to have acaricidal, antifungal and antibacterial activity. Inula viscosa Ait. (Asteraceae), a plant growing spontaneously in the Mediterranean area, is currently used by popular medicine for its therapeutic effects. Flavonoids, azulenes, sesquiterpenes, and essential oils have been isolated and identified from its leaves. This paper reports the results of the composition and antifungal activity in vitro against dermatophytes and Candida spp. of the four essential oils obtained by steam distillation of the leaves, flowers, whole plant and whole plants without flower extracts of I. viscosa. All the extracts proved to have a significant antifungal activity against dermatophytes even at low concentrations (0.01 mg/ml). The leaf extracts exhibited the greatest antifungal efficacy. The high concentration of the sesquiterpene (carboxyeudesmadiene), occurring in the leaf extracts, may explain its greater antifungal activity.  相似文献   

10.
This study aimed to investigate the fungicidal effects of essential oils (EO) from Ocimum sp. on Colletotrichum musae. The fungus was isolated from bananas that showed typical symptoms of anthracnose followed by molecular identification. Oils were obtained by hydro‐distillation, and the chemical constituents were analysed using gas chromatography. The antifungal activity of the oils was tested in vitro against mycelia growth and conidia germination. In situ tests were carried out by spraying the oil on healthy bananas followed by the inoculation with C. musae conidia and the assessment of the necrosis symptoms. The obtained results revealed that the yield of the oil extracted from Ocimum basilicum and Ocimum gratissimum were 0.17% and 0.40%, respectively. Thujanol (24.38%), eugenol (23.78%) and (Z)‐ß‐ocimene (16.59%) were the main components found in O. basilicum while thymol (42.65%), trans‐sabinene hydrate (21.63%) and limonene (8.68%) were the major components found in O. gratissimum. The total reduction in the C. musae mycelial growth was observed at 800 and 275 µl/L, for the O. basilicum and O. gratissimum oils, respectively. These oils also inhibited completely the conidia germination at 400 and 185 µl/L. In situ tests showed the necrosis reduction bananas anthracnose. The minimum inhibitory concentration (MIC) for the preventive and curative test after the application of O. basilicum oil was 6,000 and 4,000 µl/L, respectively, whereas for the O. gratissimum oil, the MIC was 3,000 and 1,000 µl/L, jointly. Positive correlations were identified between the oil concentration and the reduction in bananas necrosis. These results indicated that the O. gratissimum EOs might be used as a biocide for the control of bananas anthracnose disease.  相似文献   

11.
The essential oil and the aqueous, hexane and methanolic fractions from Hyptis ovalifolia leaves were evaluated for their antifungal activity in vitro against 60 strains of dermatophytes: 10 strains of Microsporum canis, 10 of M. gypseum, 20 of Trichophyton rubrum and 20 of T. mentagrophytes. The extracts inhibited growth of the dermatophytes tested at different concentrations. The most biologically active was the essential oil from the leaves which inhibited 57 isolates (95%) at a concentration of 500 g/ml.  相似文献   

12.
Anidulafungin is a new and very useful pharmacological tool for the treatment of invasive mycoses. The antifungal spectrum of anidulafungin reaches the most common pathogenic fungi. Anidulafungin is especially active against the genera Candida and Aspergillus. Its antifungal mechanism is based on the inhibition of the beta-1,3-D-glucan synthesis, an essential molecule for the cell wall architecture, with different consequences for Candida and Aspergillus, being anidulafungin fungicide for the former and fungistatic for the latter. This review describes the in vitro antifungal spectrum of anidulafungin based in the scientific and medical literature of recent years. We can underline that most than 99% of Candida isolates are susceptible to < or = 2 microg/ml of anidulafungin. MIC are very low (< or =0.125 microg/ml) for most clinical isolates of the species Candida albicans, Candida glabrata, Candida tropicalis and Candida krusei while Candida parapsilosis and Candida guilliermondii isolates are susceptible to anidulafungin concentrations < or = 2 microg/ml. An excellent activity of anidulafungin has been also described against Aspergillus, Pneumocystis and other fungi. However, its activity is very low against Cryptococcus and the Zygomycetes. The excellent activity of anidulafungin has made this antifungal a first line therapeutic indication for candidemia and invasive candidiasis in non-neutropenic patients.  相似文献   

13.
We determined the MIC of amphotericin B against 45 Trichosporon asahii isolates from various clinical and environmental sources, and used in vitro time-kill methods to characterize the relationship between amphotericin B concentrations and MIC for four representative T. asahii isolates. Amphotericin B had concentration-dependent antifungal activity. MICs ranged from 0.5 to 16 microg/ml, and most T. asahii isolates (76%, 34/45) were inhibited at safely achievable amphotericin B serum concentrations (< or = 2 microg/ml). However, 40% (18/45) of isolates were not killed at these concentrations (MFCs from 1.0 to 32 microg/ml). At concentrations > or = 2 x MIC, amphotericin B exhibited fungicidal activity (< 99.9% reduction in CFU) over a 12-hr time-period; the maximal effect was achieved at > or =4 x MIC. Susceptibility testing confirmed the resistance of T. asahii to amphotericin B, and in vitro pharmacodynamic results also suggest that amphotericin B is not suitable therapy for T. asahii infection.  相似文献   

14.
15.
The echinocandins anidulafungin and micafungin and the triazole posaconazole are currently undergoing phase III clinical trials. Caspofungin and voriconazole have recently been licensed for the treatment of aspergillosis (both agents), other less common mould (voriconazole) and candidal (caspofungin) infections. This review summarizes the published in vitro data obtained by NCCLS or NCCLS modified methods on the in vitro fungistatic and fungicidal activities of these five agents for yeasts and moulds in comparison to the established agents, amphotericin B, fluconazole, itraconazole, and flucytosine. Among the yeasts, the echinocandins have less activity for Candida parapsilosis and Candida guilliermondii, no activity for Cryptococcus neoformans and Trichosporon spp., but good fungistatic and fungicidal activity in vivo and in vitro for most of the other Candida spp.; this fungicidal activity has been reported by minimum fungicidal concentrations (MFCs) or time kill curve results. The new triazoles exhibit good fungistatic activity (but not fungicidal) for most Candida spp., C. neoformans, and Trichosporon spp. For the Aspergillus spp. evaluated, the echinocandins have similar or better fungistatic activity than those of amphotericin B and the triazoles, but fungicidal activity has been demonstrated only with amphotericin B and the triazoles, with the exception of fluconazole. Most studies showed posaconazole and voriconazole minimum inhibitory concentrations (MICs) ranging from 0.25 to 8 microg/ml for non-solani Fusarium spp., while MIC and minimum effective concentration (MEC) endpoints of the echinocandins were >8 microg/ml. The fungistatic activity of the triazoles is also superior to that of the echinocandins for most of the dimorphic fungi and the Zygomycetes. However, micafungin has activity for the mould phase of most dimorphic fungi, but not for the parasitic or yeast phase of Paracoccidioides brasiliensis. The echinocandins appear to have variable and species dependent fungistatic activity for the dematiaceous fungi, but all agents have poor or no activity against most isolates of Scedosporium prolificans. Only amphotericin B exhibit good fungistatic activity against the Zygomycetes. The combination of caspofungin with some triazoles, amphotericin B or liposomal amphotericin B has been synergistic in vitro, in animal models and in patients. Breakpoints are not available for any mould and antifungal agent combination. In vitro/in vivo correlations should aid in the interpretation of these results, but standard testing conditions are needed for the echinocandins, especially for mould testing, to obtain reliable results.  相似文献   

16.
Panomycocin, the killer toxin of Pichia anomala NCYC 434 (K5), is a 49 kDa monomeric glycoprotein with exo-beta-1,3-glucanase activity (patent pending). In this study we evaluated the in vitro activity of panomycocin against a panel of 109 human isolates of seven different pathogenic Candida spp. using microdilution and time-kill methods. Panomycocin was most active against C. tropicalis, C. pseudotropicalis and C. glabrata with MIC(90) values of 1 microg/ml. It displayed significant activity against C. albicans and C. parapsilosis with MIC(90) values of 4 and 2 microg/ml, respectively. For C. krusei, the MIC(90) value was 8 microg/ml. Panomycocin was fungicidal against all the tested Candida spp. The MFC values were only one or 2 dilutions higher than the MICs with the exception of C. krusei isolates with MFCs greater than or equal to 4xMIC. Results of this study indicated that panomycocin could be considered as a natural antifungal agent against Candida infections and has significant potential for further investigation.  相似文献   

17.
In the current study, the results of antibacterial, antifungal, and antiviral activity tests of four flavonoid derivatives, scandenone (1), tiliroside (2), quercetin-3,7-O-alpha-L-dirhamnoside (3), and kaempferol-3,7-O-alpha-L-dirhamnoside (4), are presented. Antibacterial and antifungal activities of these compounds were tested against Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus, Bacillus subtilis, and Enterococcus faecalis, as well as the fungus Candida albicans by a micro-dilution method. On the other hand, both DNA virus Herpes simplex (HSV) and RNA virus Parainfluenza-3 (PI-3) were employed for antiviral assessment of the compounds using Madin-Darby bovine kidney and Vero cell lines. According to our data, all of the compounds tested were found to be quite active against S. aureus and E. faecalis with MIC values of 0.5 microg/ml, followed by E. coli (2 microg/ml), K. pneumoniae (4 microg/ml), A. baumannii (8 micro/g/ml), and B. subtilis (8 microg/ml), while they inhibited C. albicans at 1 microg/ml as potent as ketoconazole. However, only compound 3 displayed an antiviral effect towards PI-3 in the range of 8-32 microg/ml of inhibitory concentration for cytopathogenic effect (CPE).  相似文献   

18.
Antifungal susceptibility testing was performed on 197 yeast isolates from the BCCM/IHEM biomedical fungi and yeasts collection (Belgian Co-ordinated Collections of Micro-organisms / IPH-Mycology) to study the in vitro activity of voriconazole against fluconazole, itraconazole and amphotericin B. MICs of the four antifungal agents were determined by an adapted NCCLS M27-A microdilution reference method. MIC readings were visually and spectrophotometrically determined. Optical density data were used for calculation of the MIC endpoints. For amphotericin B, the MIC endpoint was defined as the minimal antifungal concentration that exerts 90% inhibition, compared to the control growth. The azoles endpoints were determined at 50% inhibition of growth. The MIC distribution of voriconazole susceptibilities showed that 193 isolates had a MIC < or = 2 microg/ml and 185 a MIC < or = 1 microg/ml. Cross-tabulation of voriconazole, fluconazole, and itraconazole MICs indicated that voriconazole MICs raised with fluconazole and itraconazole MICs. The in vitro data obtained in this study suggest that voriconazole may also be effective treating yeast infection in patients infected with fluconazole or itraconazole resistant isolates.  相似文献   

19.
Currently, no standardized method to study the in vitro activity of antifungal agents on biofilms is available, thus, the comparison among different authors is difficult. The studies discussed in this review use the XTT reduction to measure the activity of antifungals on biofilms of 24 h of maturation. To date, biofilm anidulafungin MICs of 47 isolates of Candida spp. (25 Candida albicans, 16 Candida tropicalis, 5 Candida dubliniensis and 1 Candida parapsilosis) have been published. The geometric mean MIC of anidulafungin on biofilms of Candida spp. is of 1.18 microg/ml. Against isolates of species with great capacity of biofilm formation, the geometric mean MIC is 0.325 (C. albicans), 2 (C. parapsilosis) and 0.5 microg/ml (C. dubliniensis). No echinocandin has activity on C. tropicalis biofilms. In addition, anidulafungin can be used for lock therapy of catheters since it is the echinocandin with the least in vitro paradoxical effect.  相似文献   

20.
Morphological, chemical and genetic differences of 12 tree basil (Ocimum gratissimum L.) accessions were studied to determine whether volatile oils and flavonoids can be used as taxonomical markers and to examine the relationship between RAPDs to these chemical markers. Eugenol, thymol, and geraniol were the major volatile oil constituents found in Ocimum gratissimum. Xantomicrol and cirsimaritin were the major external flavones. The accessions morphologically described as O. gratissimum var. gratissimum contained eugenol as the major volatile oil constituent, and cirsimaritin as the major flavone. Ocimum gratissimum var. macrophyllum accessions contained thymol as the major volatile oil constituent, and xantomicrol as the major flavone. A distinct essential oil and flavone chemotype (producing geraniol and a mixture of the flavones cirsimaritin, isothymusin, xanthomicrol, and luteolin) was found in an accession genetically more distant from the other two groups when analyzed by molecular markers. The accessions could be divided based on volatile oil constituents into six groups: (1) thymol: alpha-copaene (ot24, ot25, ot26, and ot28); (2) eugenol:spathulenol (ot17, ot63, and ot52); (3) thymol:p-cymene (ot65); (4) eugenol:gamma-muurolene (ot27 and ot29); (5) eugenol:thymol: spathulenol (ot85); and (6) geraniol (ot84). Cluster analysis of RAPD markers showed that there are three groups that are distinct genetically and highly correlated (r=0.814) to volatile oil constituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号