首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polymerase chain reaction (PCR) can confirm the presence of bacteria, but it is unable to differentiate between live and dead bacteria. Although ethidium monoazide (EMA)- and propidium monoazide (PMA)-based PCR have been evaluated, a quantity of ≥ 10(3)cells/ml dead cells produces a false-positive reading at 40 to 50 cycles (K. Rudi et al., Appl. Environ. Microbiol. 71 (2005) 1018-1024). After confirming the precision of real-time PCR of a long DNA target (16S or 23S ribosomal RNA [rRNA] gene, 1490 or 2840 bp), we evaluated the degree of suppression of an EMA treatment on the 16S/23S PCR using various amplification lengths (110-2840 bp) with heat-killed cells of Enterobacteriaceae (e.g., Salmonella enteritidis). We found that the inhibition rate was proportional to the PCR amplification length; short DNA (110 bp) amplification slightly delayed the threshold cycle (C(T)) of heat-killed cells of Enterobacteriaceae when compared with no EMA treatment. Regardless of the amplification length, the C(T) delay using live cells of Enterobacteriaceae with EMA was negligible. Thus, our real-time PCR of a long DNA (16S or 23S) template following EMA treatment is a rapid viable bacterial assay, which can potentially target all genera, for testing pasteurized milk that may have originally been contaminated with high levels of dead bacteria.  相似文献   

2.
Using an evolution-mimicking algorithm (EMA), we have recently identified DNA aptamers that inhibit Taq DNA polymerase. In the present study, we have attempted to improve further the inhibitory activities of aptamers, as well as to characterize those aptamers with the most potent inhibitory activities. To characterize the most potent aptamer and demonstrate its applicability, the abilities to inhibit Tth DNA polymerase and to modulate specific amplification in PCR were investigated. This aptamer inhibited both Tth DNA polymerase and Taq DNA polymerase and improved the specificity of detection of a low-copy-number target gene in PCR using these DNA polymerases.  相似文献   

3.
基于EMA-qPCR的茄科青枯菌活体检测技术的建立   总被引:1,自引:0,他引:1  
【目的】利用特异性核酸染料叠氮溴乙锭(Ethidium monoazide bromide, EMA)与实时荧光定量PCR技术相结合, 建立一种能有效区分青枯菌死活细胞的检测方法。【方法】样品DNA制备前经EMA渗透预处理, 再进行实时荧光定量PCR特异扩增菌体DNA。【结果】终浓度为2.0 mg/L的EMA能有效排除1.0×107 CFU/mL灭活青枯菌细胞DNA的扩增, 对活细胞和不可培养状态(Viable but non-culturable, VBNC)活菌的DNA扩增均没有影响。当每个定量PCR反应体系中的活细胞在5.0×100?5.0×104 CFU范围内时, 扩增Ct值与定量PCR反应体系中活细胞CFU对数值呈良好的负相关性(R2=0.992 5)。比较EMA-qPCR法和平板计数法对经过不同温度短期保存的青枯菌检测结果发现, 待检样品可在24 °C与4 °C冷藏条件下短期保存。【结论】本研究建立的EMA-qPCR方法能有效检测青枯菌VBNC细胞和有效区分死活菌, 避免或减少青枯菌PCR检测的假阳性和假阴性。  相似文献   

4.
Contamination of polymerase chain reaction (PCR) reagents continues to be a major problem when consensus primers are used for detection of low concentrations of bacterial DNA. We designed a real-time polymerase chain reaction (PCR) for quantification of bacterial DNA by using consensus primers that bind specifically to the 16S region of bacterial DNA. We have tested four different methods of decontamination of PCR reagents in a project aimed at detecting bacterial DNA at low concentrations: deoxyribonuclease (DNAse) treatment, restriction endonuclease digestion, UV irradiation, and 8-methoxypsoralen in combination with long-wave UV light to intercalate contaminating DNA into double-stranded DNA. All four methods result in inhibition of the PCR reaction, and most of the decontamination procedures failed to eliminate the contaminating bacterial DNA. Only the DNAse decontamination proved to be efficient in eliminating contaminating DNA while conserving PCR efficiency. All four decontamination methods are time consuming and have the possibility of carrying new contamination into the reaction mixture. However, decontamination with DNAse may help, together with the use of highly purified PCR reagents, in detecting small amounts of bacterial DNA in clinical specimens.  相似文献   

5.
Ethidium bromide monoazide (EMA) was utilized to selectively allow the real-time PCR (RT-PCR) amplification of a targeted DNA sequence in viable but not dead cells of Vibrio vulnificus. The optimized light exposure time to achieve cross-linking of DNA by the EMA in dead cells and to photolyse the free EMA in solution was at least 15 min. The use of 3.0 microg/ml or less of EMA did not inhibit the PCR amplification of DNA derived from viable cells of V. vulnificus. The minimum amount of EMA to completely inhibit the RT-PCR amplification of DNA derived from heat-killed cells was 2.5 microg/ml. Amplification of DNA from dead cells in a mixture with viable cells was successfully inhibited by 2.5 microg/ml of EMA, whereas the DNA from viable cells present was successfully amplified by RT-PCR.  相似文献   

6.
Single cell genomics is a powerful and increasingly popular tool for studying the genetic make-up of uncultured microbes. A key challenge for successful single cell sequencing and analysis is the removal of exogenous DNA from whole genome amplification reagents. We found that UV irradiation of the multiple displacement amplification (MDA) reagents, including the Phi29 polymerase and random hexamer primers, effectively eliminates the amplification of contaminating DNA. The methodology is quick, simple, and highly effective, thus significantly improving whole genome amplification from single cells.  相似文献   

7.
Aims:  In this study we demonstrate the interference of yeast extract in enumeration of Saccharomyces cerevisiae using real-time PCR and develop a method for its removal from the media using ethidium monoazide (EMA).
Methods and Results:  Using real-time PCR and primers to S. cerevisiae we demonstrate the presence of yeast DNA in various media as well as the media impact on S. cerevisiae real-time PCR standard curves. By pretreatment with EMA, we were able to remove this interference.
Conclusions:  Saccharomyces cerevisiae DNA can be found in a number of common laboratory media and may impact the enumeration of this yeast by real-time PCR. However, pretreatment with EMA eliminates this concern.
Significance and Impact of the Study:  We have developed a method for removal of contaminating DNA in yeast growth media.  相似文献   

8.
Aims:  The DNA-intercalating dye ethidium bromide monoazide (EMA) has recently been used as a DNA binding agent to differentiate viable and dead bacterial cells by selectively penetrating through the damaged membrane of dead cells and blocking the DNA amplification during the polymerase chain reaction (PCR). We optimized and tested the assay in vitro using Staphylococcus aureus and Staphylococcus epidermidis cultures to distinguish viable from dead bacteria, with the goal of reducing false positive PCR results.
Methods and Results:  Viable and heat-inactivated bacteria were treated with EMA or left untreated before DNA extraction. A real-time PCR assay for the detection of the tuf gene in each DNA extract was used. Our results indicated that EMA influenced viable bacteria as well as dead bacteria, and the effect of EMA depended on the EMA concentration and bacterial number.
Conclusions:  EMA is not a suitable indicator of bacterial viability, at least with respect to Staphylococcus species.
Significance and Impact of the Study:  Determining the viability of pathogens has a major impact on interpreting the results of molecular tests for bacteria and subsequent clinical management of patients. To this end, several methods are being evaluated. One of these methods – intercalating DNA of dead bacteria by EMA – looked very promising, but our study found it unsatisfactory for S. aureus and coagulase-negative Staphylococci.  相似文献   

9.

Background

PCR in principle can detect a single target molecule in a reaction mixture. Contaminating bacterial DNA in reagents creates a practical limit on the use of PCR to detect dilute bacterial DNA in environmental or public health samples. The most pernicious source of contamination is microbial DNA in DNA polymerase preparations. Importantly, all commercial Taq polymerase preparations inevitably contain contaminating microbial DNA. Removal of DNA from an enzyme preparation is problematical.

Methodology/Principal Findings

This report demonstrates that the background of contaminating DNA detected by quantitative PCR with broad host range primers can be decreased greater than 10-fold through the simple expedient of Taq enzyme dilution, without altering detection of target microbes in samples. The general method is: For any thermostable polymerase used for high-sensitivity detection, do a dilution series of the polymerase crossed with a dilution series of DNA or bacteria that work well with the test primers. For further work use the concentration of polymerase that gave the least signal in its negative control (H2O) while also not changing the threshold cycle for dilutions of spiked DNA or bacteria compared to higher concentrations of Taq polymerase.

Conclusions/Significance

It is clear from the studies shown in this report that a straightforward procedure of optimizing the Taq polymerase concentration achieved “treatment-free” attenuation of interference by contaminating bacterial DNA in Taq polymerase preparations. This procedure should facilitate detection and quantification with broad host range primers of a small number of bona fide bacteria (as few as one) in a sample.  相似文献   

10.
We describe a polymerase chain reaction (PCR) that allowed detection of rRNA consensus sequences from the DNA extracted from a wide range of bacterial species in amounts as low as 10 fg. To avoid false-positive results with universal primers for 16S rRNA PCR, contaminating DNA had to be eliminated from the polymerase preparations. Decontamination was undertaken before PCR to optimize treatment with DNase I and was followed by DNase inactivation at 94°C for 50 min, which eliminated contaminating DNA at concentrations of up to 100 pg. After optimization of PCR conditions for each polymerase, Deep-Vent Exo-®polymerase (New England Biolabs, Beverly, MA), and super-Taq® polymerase (HT Biotechnology, Cambridge, UK) were more effective than Ampli-Taq® polymerase (Perkin-Elmer Cetus, Norwalk, CT), Ampli-Taq LD® polymerase (Perkin-Elmer Cetus) or Deep-vent® polymerase (New England Biolabs). The technique described in this article might prove to be a universal method for PCR detection of small numbers of unidentified bacteria in usually sterile clinical sites, such as blood and cerebrospinal fluids, in which a broad spectrum of pathogens can be expected.  相似文献   

11.
An optimized procedure for the ligation-mediated polymerase chain reaction (PCR) technique using Thermococcus litoralis exo- DNA polymerase (Vent exo-) was developed. The optimal dosage of Vent exo- at the primer extension and PCR amplification steps as well as the optimal DNA quantity to use were established. We showed that Vent exo- can efficiently create the blunt-ended termini required for subsequent linker ligation. Vent exo- proves to be more efficient than Pyrococcus furiosus exo- (Pfu exo-) for this task. Vent exo- resolves highly GC-rich sequence substantially better than Thermus aquaticus DNA polymerase (Taq) and with a similar efficiency as Pfu exo-. The DNA/DNA polymerase activity ratio is significantly higher for Vent exo- than for Pfu exo-, which is reflected by the sensibility of Vent exo- in efficiently amplifying genomic DNA. Furthermore, the range of efficiency of Vent exo- demonstrates the importance of conducting evaluative testing to identify the optimal dosage of use of this polymerase to obtain successful PCR amplification. Optimal MgSO4 concentrations to use with Vent exo- were established. Our results show that Vent exo- DNA polymerase produces bands of uniform and strong intensity and can efficiently be used for the analysis of DNA in living cells by ligation-mediated PCR.  相似文献   

12.
Differentiation of DNA derived from viable or non-viable microorganisms within mixed microbial communities continues to be one of the greatest challenges in molecular studies of environmental samples. A novel method developed for microbial food pathogens is tested here on environmental samples. This technique involves the use of ethidium monoazide bromide (EMA) for the distinction of live/dead cells. In non-viable cells EMA intercalates into the DNA which prevents amplification by PCR. We adapted and evaluated the EMA technique for soil, elemental sulfur and river biofilm samples. Quantitative PCR determined that EMA suppressed 99.99% of E. coli LKI gfp+ signal in non-viable cultures and 100.00% when the cultures were added to soil samples. The same technique was also successful at suppressing DNA amplification from spiked non-viable cells in elemental sulfur samples by 100.00%, but not in three Saskatchewan River biofilms. In sub Antarctic soil, EMA-Q-PCR was used to detect the prevalence of a functional gene, amoA, and this was closely correlated to nitrification activity measurements. The ability of EMA to differentiate between viable and non-viable populations in soil was confirmed by the similarity of the 16S rRNA denaturing-gradient-gel electrophoresis DNA fingerprint of EMA treated soil and the 16S rRNA cDNA fingerprint of non-EMA treated soil. The EMA technique effectively suppressed amplification of non-viable spiked controls, closely mirrored activity assays and yielded community composition profiles similar to rRNA techniques. The use of EMA in soil effectively suppressed amplification of non-viable organism DNA, however it was not effective in biofilm samples and EMA partially inhibited amplification of viable organism DNA in elemental sulfur samples.  相似文献   

13.
Aims: The detection of viable Enterobacter sakazakii cells is important due to the association of this pathogen with outbreaks of life-threatening neonatal infections. The aim of this study was to optimize a PCR-based method for selective detection of only viable Ent. sakazakii cells in the presence of dead cells, utilizing propidium monoazide (PMA) or ethidium bromide monoazide (EMA). Methods and Results: PMA or EMA was added to suspensions of viable and/or dead Ent. sakazakii cells at varying concentrations (10, 50 or 100 μg ml−1) prior to DNA isolation and PCR with Ent. sakazakii-specific primers. At concentrations of 50 and 100 μg ml−1, PMA completely inhibited PCR amplification from dead cells, while causing no significant inhibition of the amplification from viable cells. PMA was also effective in allowing selective PCR detection of only viable cells in mixtures of varying ratios of viable and dead cells. EMA was equally effective in preventing amplification from dead cells, however, it also inhibited DNA amplification from viable cells. Conclusions: This study demonstrated the efficiency of PMA for viable and dead differentiation of Ent. sakazakii, as well as the lack of selectivity of EMA for this purpose. Significance and Impact of the Study: PMA-PCR, in particular, will be useful for monitoring the resistance, survival strategies and stress responses of Ent. sakazakii in foods and the environment.  相似文献   

14.
Sequencing PCR DNA amplified directly from a bacterial colony   总被引:7,自引:0,他引:7  
We show that PCR product asymmetrically amplified directly from a bacterial colony can be sequenced to yield results as good as those obtained when purified template DNA is used for the PCR amplification step. With either template, greater than 300 nucleotides can be read from a typical sequencing reaction. Taq DNA polymerase was used for both the PCR amplification and sequencing reactions.  相似文献   

15.
16.
Agrobacterium-mediated genetic transformation is a method of choice for the development of transgenic plants. The presence of latentAgrobacterium that multiplies in the plant tissue in spite of antibiotic application confounds the results obtained by polymerase chain reaction (PCR) analysis of putative transgenic plants. The presence ofAgrobacterium can be confirmed by amplification of eitherAgrobacterium chromosomal genes or genes present out of transfer DNA (T-DNA) in the binary vector. However, the transgenic nature ofAgrobacterium-contaminated transgenic plants cannot be confirmed by PCR. Here we report a simple protocol for PCR analysis ofAgrobacterium-contaminated transgenic plants. This protocol is based on denaturation and renaturation of DNA. The contaminating plasmid vector becomes double-stranded after renaturation and is cut by a restriction enzyme having site(s) within the PCR amplicon. As a result, amplification by PCR is not possible. The genomic DNA with a few copies of the transgene remains single-stranded and unaffected by the restriction enzyme, leading to amplification by PCR. This protocol has been successfully tested with 4 different binary vectors and 3Agrobacterium tumefaciens strains: EHA105, LBA4404, and GV3101.  相似文献   

17.
The distinction between viable and dead bacterial cells poses a major challenge in microbial diagnostics. Due to the persistence of DNA in the environment after cells have lost viability, DNA-based quantification methods overestimate the number of viable cells in mixed populations or even lead to false-positive results in the absence of viable cells. On the other hand, RNA-based diagnostic methods, which circumvent this problem, are technically demanding and suffer from some drawbacks. A promising and easy-to-use alternative utilizing the DNA-intercalating dye ethidium monoazide bromide (EMA) was published recently. This chemical is known to penetrate only into "dead" cells with compromised cell membrane integrity. Subsequent photoinduced cross-linking was reported to inhibit PCR amplification of DNA from dead cells. We provide evidence here that in addition to inhibition of amplification, most of the DNA from dead cells is actually lost during the DNA extraction procedure, probably together with cell debris which goes into the pellet fraction. Exposure of bacteria to increasing stress and higher proportions of dead cells in defined populations led to increasing loss of genomic DNA. Experiments were performed using Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium as model pathogens and using real-time PCR for their quantification. Results showed that EMA treatment of mixed populations of these two species provides a valuable tool for selective removal of DNA of nonviable cells by using conventional extraction protocols. Furthermore, we provide evidence that prior to denaturing gradient gel electrophoresis, EMA treatment of a mature mixed-population drinking-water biofilm containing a substantial proportion of dead cells can result in community fingerprints dramatically different from those for an untreated biofilm. The interpretation of such fingerprints can have important implications in the field of microbial ecology.  相似文献   

18.
免疫胶体金法提取环境标本中细菌DNA技术   总被引:1,自引:0,他引:1  
将抗-DNA单克隆抗体标记在胶体金颗粒上制成免疫胶体金试剂,提取标本中DNA,直接用于PCR检测,从而建立一种简单、快速、高效的免疫胶体金方法提取环境标本中的DNA。结果表明:应用免疫胶体金试剂可有效去除环境标本中PCR抑制剂,浓缩模板,提高PCR检测敏感度3~4个数量级。操作步骤简单,无需使用有机溶剂,避免环境污染,吸附了DNA的免疫胶体金可直接用于PCR扩增。研制了免疫胶体金试剂并确定其最佳反应条件,有效提高PCR技术在检测现场环境标本中的敏感性和实用性。  相似文献   

19.
20.
The polymerase chain reaction (PCR) has been used to amplify DNA fragments by using eucaryotic genomic DNA as a template. We show that bacterial genomic DNA can be used as a template for PCR amplification. We demonstrate that DNA fragments at least as large as 4,400 base pairs can be amplified with fidelity and that the amplified DNA can be used as a substrate for most operations involving DNA. We discuss problems inherent in the direct sequencing of the amplified product, one of the important exploitations of this methodology. We have solved the problems by developing an "asymmetric amplification" method in which one of the oligonucleotide primers is used in limiting amounts, thus allowing the accumulation of single-stranded copies of only one of the DNA strands. As an illustration of the use of PCR in bacteria, we have amplified, sequenced, and subcloned several DNA fragments carrying mutations in genes of the histidine permease operon. These mutations are part of a preliminary approach to studying protein-protein interactions in transport, and their nature is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号