首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In this study, eight kinds of nickel (Ni) compounds were orally administered to Wistar male rats and the distribution of each compound was investigated 24 h after the administration. The Ni compounds used in this experiment were nickel metal [Ni−M], nickel oxide (green) [NiO(G)], nickel oxide (black) [NiO(B)], nickel subsulfide [Ni3S2], nickel sulfide [NiS], nickel sulfate [NiSO4], nickel chloride [NiCl2], and nickel nitrate [Ni(NO3)2]. The solubilities of the nickel compounds in saline solution were in the following order; [Ni(NO3)2>NiCl2>NiSO4]≫[NiS>Ni3S2]>[NiO(B)>Ni−M>NiO(G)]. The Ni level in the visceral organs was higher in the rats given soluble Ni compounds; Ni(NO3)2, NiCl2, NiSO4, than that in the rats receiving other compounds. In the rats to which soluble Ni compounds were administered, 80–90% of the recovered Ni amounts in the examined organs was detected in the kidneys. On the other hand, the Ni concentration in organs administered scarcely soluble Ni compounds; NiO(B), NiO(G), and Ni−M were very low. The estimated absorbed fraction of each Ni compounds was increased with the increase of the solubility. These results suggest that the kinetic behavior of Ni compounds administered orally is closely related with the solubility of Ni compounds, and that the solubility of Ni compounds is one of the important factors for determining the health effect of Ni compounds.  相似文献   

2.
Seventeen nickel compounds were incubated in water, rat serum, and rat renal cytosol for 72 hr at 37°C. Concentrations of dissolved nickel were analyzed by electrothermal atomic absorption spectrophotometry, and dissolution half-times (T50) were computed by the Weibull equation. Eleven of the nickel compounds (Ni, βNiS, amorphous NiS, αNi3S2, NiSe, Ni3Se2, NiTe, NiAs, Ni11As8, Ni5As2, and NiFeS4) dissolved more rapidly in serum or cytosol than in water. Four of the compounds (NiO, NiSb, NiFe alloy, and NiTiO3) had no detectable dissolution in any of the media (i.e., T50 > 11 yr). One compound (NiAsS) had approximately equal T50 values in the three media; the T50 value of one compound (NiS2) could not be determined in serum or cytosol owing to precipitation. T50 values of 34 and 21 days for dissolution of αNi3S2 in serum and cytosol, respectively, agree closely with the excretion half-time of 24 days derived from previously reported data for excretion of 63Ni in urine and feces of rats after intramuscular injection of α63Ni3S2. These findings suggest that in vitro dissolution half-times of nickel compounds may be used to predict their in vivo excretion half-times, since the dissolution process is rate-limiting to their metabolism and excretion.  相似文献   

3.
Wistar male rats were exposed to three types of nickel compounds, NiO(G), NiO(B), and Ni3S2, for 6 h/d, 5 d/wk for 6 mo. The solubility of these chemicals to saline solution was 0.3 ppm for NiO(G), 3.5 ppm for NiO(B), and 310 ppm for Ni3S2. Controls were exposed to clean air under similar conditions. Some rats were sacrificed 24 h after the termination of the final repeated exposure, and the remaining rats were kept for a 12-mo clearance period before sacrifice. There was no significant difference in body weight between exposed rats and controls and also no significant differences in organs weights, except for lungs in the case of Ni3S2, between exposed rats and controls. Nickel concentration in the lungs just after the exposure to nickel compounds was the highest when compared to other organs. The apparent deposition fractions (%) in the lungs were 0.5 ± 0.1 for NiO(G), 1.0 ± 0.3 for NiO(B), and 0.5 ± 0.1 for Ni3S2., After the clearance period, there were no significant differences in organ weights, except for the lungs in case of Ni3S2, between the exposed rats and the controls. During the 12 mo of clearance, 82% of deposited NiO(G), 73% of NiO(B), and 98% of Ni3S2 were cleared from lungs.  相似文献   

4.
Ten Indian mustard (Brassica juncea L.) genotypes were screened for their nickel (Ni) phytoremediation potential under controlled environmental conditions. All ten genotypes were grown hydroponically in aqueous solution containing Ni concentrations (as nickel chloride) ranging from 0 to 50 μM and changes in plant growth, biomass and total Ni uptake were evaluated. Of the ten genotypes (viz. Agrini, BTO, Kranti, Pusa Basant, Pusa Jai Kisan, Pusa Bahar, Pusa Bold, Vardhan, Varuna, and Vaibhav), Pusa Jai Kisan was the most Ni tolerant genotype accumulating up to 1.7 μg Ni g?1 dry weight (DW) in its aerial parts. Thus Pusa Jai Kisan had the greatest potential to become a viable candidate in the development of practical phytoremediation technologies for Ni contaminated sites.  相似文献   

5.
Sadiq  Muhammad 《Hydrobiologia》1989,(1):225-232
Six sediment samples were collected from the northern Arabian Gulf. Nickel was added to each sediment- seawater suspension and the concentration of total dissolved Ni in the suspensions was monitored for 75 days. The analytical data were used to obtain a linear regression equation relating Ni2+ activity in the sediment suspensions to pH. Using this equation and thermodynamic information, the distribution of Ni species in the suspensions was calculated. The major inorganic species, extrapolated to 35 salinity and pH 8.1, were: Ni2+ (60.1%), NiCl+ (16.9%), NiCl inf2 sup0 (5.0%), NiOH+ (0.4%), and NiSO inf4 sup0 (17.5%). An increase in the seawater salinity increased the concentration of total dissolved Ni and Ni chloro-complexes. A decrease in pH of seawater increased total dissolved Ni and decreased NiOH+ complex, but the proportion of other species remained unchanged. There was no significant (P < 0.05) effect of Cu, Cd, Pb, Fe, Mn, and Al additions on Ni sorption in the marine sediment suspensions.  相似文献   

6.
Highly flexible and conductive fabric (CF)‐supported cauliflower‐like nickel selenide nanostructures (Ni3Se2 NSs) are facilely synthesized by a single‐step chronoamperometry voltage‐assisted electrochemical deposition (ECD) method and used as a positive electrode in supercapacitors (SCs). The CF substrate composed of multi‐layered metallic films on the surface of polyester fibers enables to provide high electrical conductivity as a working electrode in ECD process. Owing to good electrical conductivity, high porosity and intertwined fibrous framework of CF, cauliflower‐like Ni3Se2 NSs are densely integrated onto the entire surface of CF (Ni3Se2 NSs@CF) substrate with reliable adhesion by applying a chronoamperometry voltage of ?1.0 V for 240 s. The electrochemical performance of the synthesized cauliflower‐like Ni3Se2 NSs@CF electrode exhibits a maximum specific capacity (C SC) of 119.6 mA h g?1 at a discharge current density of 2 A g?1 in aqueous 1 m KOH electrolyte solution. Remarkably, the specific capacity of the same electrode is greatly enhanced by introducing a small quantity of redox‐additive electrolyte into the aqueous KOH solution, indicating the C SC≈251.82 mA h g?1 at 2 A g?1 with good capacity retention. Furthermore, the assembled textile‐based asymmetric SCs achieve remarkable electrochemical performance such as higher energy and power densities, which are able to light up different colored light‐emitting diodes.  相似文献   

7.
Nickel sulfide (Ni3S2) is a promising hydrogen evolution reaction (HER) catalyst by virtue of its metallic electrical conductivity and excellent stability in alkaline medium. However, the reported catalytic activities for Ni3S2 are still relatively low. Herein, an effective strategy to boost the H adsorption capability and HER performance of Ni3S2 through nitrogen (N) doping is demonstrated. N‐doped Ni3S2 nanosheets achieve a fairly low overpotential of 155 mV at 10 mA cm?2 and an excellent exchange current density of 0.42 mA cm?2 in 1.0 m KOH electrolyte. The mass activity of 16.9 mA mg?1 and turnover frequency of 2.4 s?1 obtained at 155 mV are significantly higher than the values reported for other Ni3S2‐based HER catalysts, and comparable to the performance of best HER catalysts in alkaline medium. These experimental data together with theoretical analysis suggest that the outstanding catalytic activity of N‐doped Ni3S2 is due to the enriched active sites with favorable H adsorption free energy. The activity in the Ni3S2 is highly correlated with the coordination number of the surface S atoms and the charge depletion of neighbor Ni atoms. These new findings provide important guidance for future experimental design and synthesis of optimal HER catalysts.  相似文献   

8.
The overriding obstacle to mass production of hydrogen from water as the premium fuel for powering our planet is the frustratingly slow kinetics of the oxygen evolution reaction (OER). Additionally, inadequate understanding of the key barriers of the OER is a hindrance to insightful design of advanced OER catalysts. This study presents ultrathin amorphous high‐surface area nickel boride (Nix B) nanosheets as a low‐cost, very efficient and stable catalyst for the OER for electrochemical water splitting. The catalyst affords 10 mA cm?2 at 0.38 V overpotential during OER in 1.0 m KOH, reducing to only 0.28 V at 20 mA cm?2 when supported on nickel foam, which ranks it among the best reported nonprecious catalysts for oxygen evolution. Operando X‐ray absorption fine‐structure spectroscopy measurements reveal prevalence of NiOOH, as well as Ni‐B under OER conditions, owing to a Ni‐B core@nickel oxyhydroxide shell (Ni‐B@NiOx H) structure, and increase in disorder of the NiOx H layer, thus revealing important insight into the transient states of the catalyst during oxygen evolution.  相似文献   

9.
The dinickel(II) compound [Ni2(μ-OAc)2(OAc)2(μ-H2O)(asy·dmen)2]·2.5H2O, 1; undergoes facile reaction in a 1:2 molar ratio with benzohydroxamic acid (BHA) in ethanol to give the novel nickel(II) tetranuclear hydroxamate complex [Ni4(μ-OAc)3(μ-BA)3(asy·dmen)3][OTf]2·H2O, 2, in which the bridging acetates, bridging two nickel atoms in 1, undergo a carboxylate shift from the μ211 bridging mode of binding to the μ312 bridging three nickel atoms in the tetramer. The structure of complex 2 was determined by single-crystal X-ray crystallography. The two monodentate acetates, water and two bidentate bridging acetates of two moles of complex 1 are replaced by three monodentate bridging acetates and three benzohydroxamates. Three nickel atoms in the tetramer, Ni(2), Ni(3) and Ni(4) are in a N2O4 octahedral environment, while the fourth nickel atom Ni(1) is in an O(6) octahedral environment. The Ni-Ni separations are Ni(1)-Ni(2) = 3.108 Å, Ni(1)-Ni(3) = 3.104 Å and Ni(1)-Ni(4) = 3.110 Å, which are longer than previously studied in dinuclear urease inhibited models but shorter than in the nickel(II) tetrameric glutarohydroxamate complex [Ni4(μ-OAc)2(μ-gluA2)2(tmen)4][OTf]2, isolated and characterized previously in this laboratory. Magnetic studies of the tetrameric complex show that the four Ni(II) ions are ferromagnetically coupled, leading to a total ground spin state ST = 4. Three analogous tetranuclear nickel hydroxamates were prepared from AHA and BHA and the appropriate dinuclear complex with either sy·dmen or asy·dmen as capping ligands.  相似文献   

10.
3D‐networked, ultrathin, and porous Ni3S2/CoNi2S4 on Ni foam (NF) is successfully designed and synthesized by a simple sulfidation process from 3D Ni–Co precursors. Interestingly, the edge site‐enriched Ni3S2/CoNi2S4/NF 3D‐network is realized by the etching‐like effect of S2? ions, which made the surfaces of Ni3S2/CoNi2S4/NF with a ridge‐like feature. The intriguing structural/compositional/componental advantages endow 3D‐networked‐free‐standing Ni3S2/CoNi2S4/NF electrodes better electrochemical performance with specific capacitance of 2435 F g?1 at a current density of 2 A g?1 and an excellent rate capability of 80% at 20 A g?1. The corresponding asymmetric supercapacitor achieves a high energy density of 40.0 W h kg?1 at an superhigh power density of 17.3 kW kg?1, excellent specific capacitance (175 F g?1 at 1A g?1), and electrochemical cycling stability (92.8% retention after 6000 cycles) with Ni3S2/CoNi2S4/NF as the positive electrode and activated carbon/NF as the negative electrode. Moreover, the temperature dependences of cyclic voltammetry curve polarization and specific capacitances are carefully investigated, and become more obvious and higher, respectively, with the increase of test temperature. These can be attributed to the components' synergetic effect assuring rich redox reactions, high conductivity as well as highly porous but robust architectures. This work provides a general, low‐cost route to produce high performance electrode materials for portable supercapacitor applications on a large scale.  相似文献   

11.
Efficient removal of dissolved nickel was observed in a biologically active moving-bed `MERESAFIN' sand filter treating rinsing water from an electroless nickel plating plant. Although nickel is fully soluble in this waste water, its passage through the sand filter promoted rapid removal of approximately 1 mg Ni/l. The speciation of Ni in the waste water was modelled; the most probable precipitates forming under the conditions in the filter were predicted using PHREEQC. Analyses of the Ni-containing biosludge using chemical, electron microscopical and X-ray spectroscopic techniques confirmed crystallisation of nickel phosphate as arupite (Ni3(PO4)2.8H2O), together with hydroxyapatite within the bacterial biofilm on the filter sand grains. Biosorption contributed less than 1% of the overall sequestered nickel. Metabolising bacteria are essential for the process; the definitive role of specific components of the mixed population is undefined but the increase in pH promoted by metabolic activity of some microbial components is likely to promote nickel desolubilisation by others.  相似文献   

12.
A facile one‐step hydrothermal co‐deposition method for growth of ultrathin Ni(OH)2‐MnO2 hybrid nanosheet arrays on three dimensional (3D) macroporous nickel foam is presented. Due to the highly hydrophilic and ultrathin nature of hybrid nanosheets, as well as the synergetic effects of Ni(OH)2 and MnO2, the as‐fabricated Ni(OH)2‐MnO2 hybrid electrode exhibits an ultrahigh specific capacitance of 2628 F g?1. Moreover, the asymmetric supercapacitor with the as‐obtained Ni(OH)2‐MnO2 hybrid film as the positive electrode and the reduced graphene oxide as the negative electrode has a high energy density (186 Wh kg?1 at 778 W kg?1), based on the total mass of active materials.  相似文献   

13.
Several strategies have been employed to improve the performance of energy storage devices through the development of new electrode materials. The construction of transition metal compound composite electrodes plays an important role in promoting the performance of energy storage devices. However, understandings of and insight into how to enhance the composites properties are rarely reported. Taking nickel‐based compounds as an example, Ni3N@Ni3S2 hybrid nanosheets are reported as a high‐performance anode material for lithium‐ion batteries that delivers higher lithium storage properties than the pristine Ni3N and Ni3S2 electrodes. This demonstrates that the phase boundaries between the Ni3N and Ni3S2 may contribute additional lithium storage, which leads to a synergistic effect via the high pseudocapacitance contribution from the outstanding conductivity of Ni3N and enhanced diffusion‐controlled capacity of Ni3S2. The use of composites prepared through sulfuration of hydrothermally annealed nickel hydroxide‐based precursor provides an enhancement of the energy storage properties. These results provide an important approach for increasing the electrochemical activity of composites by the combined effect of interfacial mismatch and pseudocapacitance, as well as understandings of the mechanism of the enhancement of the composite electrode properties.  相似文献   

14.
Electrocatalytic water splitting is one of the sustainable and promising strategies to generate hydrogen fuel but still remains a great challenge because of the sluggish anodic oxygen evolution reaction (OER). A very effective approach to dramatically decrease the input cell voltage of water electrolysis is to replace the anodic OER with hydrazine oxidation reaction (HzOR) due to its lower thermodynamic oxidation potential. Therefore, developing the low‐cost and efficient HzOR catalysts, coupled with the cathodic hydrogen evolution reaction (HER), is tremendously important for energy‐saving electrolytic hydrogen production. Herein, a new‐type of copper–nickel nitride (Cu1Ni2‐N) with rich Cu4N/Ni3N interface is rationally constructed on carbon fiber cloth. The 3D electrode exhibits extraordinary HER performance with an overpotential of 71.4 mV at 10 mA cm?2 in 1.0 m KOH, simultaneously delivering an ultralow potential of 0.5 mV at 10 mA cm?2 for HzOR in a 1.0 m KOH/0.5 m hydrazine electrolyte. Moreover, the electrolytic cell utilizing the synthesized Cu1Ni2‐N electrode as both the cathode and anode display a cell voltage of 0.24 V at 10 mA cm?2 with an excellent stability over 75 h. The present work develops the promising copper–nickel‐based nitride as a bifunctional electrocatalyst through hydrazine‐assistance for energy‐saving electrolytic hydrogen production.  相似文献   

15.
Three new nickel complexes have been synthesized with the ligands Hbss (4-mercapto-2-thia-1-butylbenzene) and Hbsms (2-(benzylsulfanyl)-2-methyl-1-propanethiol). [Ni(bss)2] is a mononuclear complex with an S4 coordination environment. [Ni3(bss)4](BF4)2 and [Ni3(bsms)4](BF4)2 are linear trinuclear complexes that can be synthesized either directly from the ligands Hbss and Hbsms in a reaction with Ni(BF4)2, or via the mononuclear complexes [Ni(bss)2] and [Ni(bsms)2] in a reaction with Ni(BF4)2. These reactions have been monitored with ligand field spectroscopy. Crystals suitable for X-ray diffraction were obtained for [Ni3(bss)4](BF4)2. The complex crystallizes in the space group P21/c. The nickel centers are in a square-planar environment; two peripheral nickel centers with an S2S2 (S=thiolato; S=thioether) coordination environment and the central nickel ion with an S4 coordination environment.The mononuclear nickel complexes [Ni(bss)2] and [Ni(bsms)2] were reacted with FeCl2, resulting in the hetero-tetranuclear nickel-iron complexes [Ni(bss)2FeCl2]2 and [Ni(bsms)2FeCl2]2. All complexes were characterized by analytical and spectroscopic methods.  相似文献   

16.
An effective multifaceted strategy is demonstrated to increase active edge site concentration in Ni0.33Co0.67Se2 solid solutions prepared by in situ selenization process of nickel cobalt precursor. The simultaneous control of surface, phase, and morphology result in as‐prepared ternary solid solution with extremely high electrochemically active surface area (C dl = 197 mF cm?2), suggesting significant exposure of active sites in this ternary compound. Coupled with metallic‐like electrical conductivity and lower free energy for atomic hydrogen adsorption in Ni0.33Co0.67Se2, identified by temperature‐dependent conductivities and density functional theory calculations, the authors have achieved unprecedented fast hydrogen evolution kinetics, approaching that of Pt. Specifically, the Ni0.33Co0.67Se2 solid solutions show a low overpotential of 65 mV at ?10 mV cm?2, with onset potential of mere 18 mV, an impressive small Tafel slope of 35 mV dec?1, and a large exchange current density of 184 µA cm?2 in acidic electrolyte. Further, it is shown that the as‐prepared Ni0.33Co0.67Se2 solid solution not only works very well in acidic electrolyte but also delivers exceptional hydrogen evolution reaction (HER) performance in alkaline media. The outstanding HER performance makes this solid solution a promising candidate for mass hydrogen production.  相似文献   

17.
Metallic binary compounds have emerged in recent years as highly active and stable electrocatalysts toward the hydrogen evolution reaction. In this work, the origin of their high activity from a theoretical and experimental point of view is elucidated. Here, different metallic ceramics as Ni3S2, Ni3N, or Ni5P4 are grown directly on Ni support in order to avoid any contaminations. The correlation of theoretical calculations with detailed material characterization and electrochemical testing paves the way to a deeper understanding of possible active adsorption sites for each material and the observed catalytic activity. It is shown that heteroatoms as P, S, and N actively take part in the reaction and do not act as simple spectator. Due to the anisotropic nature of the materials, a variety of adsorption sites with highly coverage‐dependent properties exists, leading to a general shift in hydrogen adsorption free energies ΔG H close to zero. Extending the knowledge gained about the here described materials, a new catalyst is prepared by modifying a high surface Ni foam, for which current densities up to 100 mA cm?2 at around 0.15 V (for Ni3N) are obtained.  相似文献   

18.
A homologous Ni–Co based nanowire system, consisting of both nickel cobalt oxide and nickel cobalt sulfide nanowires, is developed for efficient, complementary water splitting. The spinel‐type nickel cobalt oxide (NiCo2O4) nanowires are hydrothermally synthesized and can serve as an excellent oxygen evolution reaction catalyst. Subsequent sulfurization of the NiCo2O4 nanowires leads to the formation of pyrite‐type nickel cobalt sulfide (Ni0.33Co0.67S2) nanowires. Due to the 1D nanowire morphology and enhanced charge transport capability, the Ni0.33Co0.67S2 nanowires function as an efficient, stable, and robust nonnoble metal electrocatalyst for hydrogen evolution reaction (HER), substantially exceeding CoS2 or NiS2 nanostructures synthesized under similar methods. The Ni0.33Co0.67S2 nanowires exhibit low onset potential of ?65, ?39, and ?50 mV versus reversible hydrogen electrode, Tafel slopes of 44, 68, and 118 mV dec?1 at acidic, neutral, and basic conditions, respectively, and excellent stability, comparable to the best reported non‐noble metal‐based HER catalysts. Furthermore, the homologous Ni0.33Co0.67S2 nanowires and NiCo2O4 nanowires are assembled into an all‐nanowire based water splitting electrolyzer with a current density of 5 mA cm?2 at a voltage as 1.65 V, thus suggesting a unique homologous, earth abundant material system for water splitting.  相似文献   

19.
The effects of serum components and amino acids on the uptake and cytotoxicity of NiCl2 were examined in cultured Chinese hamster ovary (CHO) cells. CHO cells maintained in a minimal salts/glucose medium accumulated 10-fold more63Ni than did cells maintained in complete medium supplemented with 10% fetal bovine serum. Cell-surface binding of63Ni appeared to account for the majority of this increased accumulation of cell-associated nickel observed in the simple maintenance medium since such increases were reduced 70% by trypsin treatment. The addition of the Ni2+-binding amino acids cysteine or histidine to the salts/glucose medium markedly decreased63Ni accumulations, an effect not observed following addition of any of several amino acids that do not bind Ni2+. Supplementation of the salts/glucose medium with fetal bovine serum decreased in a concentration dependent fashion both the63Ni2+ uptake and cell detachment caused by Ni2+, while dialyzed (amino acid-free) serum was 3–5-fold less effective than undialyzed serum at reducing63Ni2+ uptake and similarly exhibited only a slight protective effect against nickel-induced cytotoxicity. Supplementation of dialyzed serum with cysteine at levels approximating those in whole serum partially restored its inhibitory activity toward nickel uptake by cells and restored completely its inhibition of nickel's cytotoxicity, indicating the predominant role of specific amino acids over serum proteins in regulating the uptake and subsequent cytotoxicity of Ni2+. Addition of cysteine to the salts/glucose medium during a 2 h exposure of cells to either 100 μM HgCl2 or 1 mM NiCl2 masked the cytotoxic effects of these metal ions. These results demonstrate the importance of extracellular small molecular weight metal ion chelators in altering the biological effects of metal ions at the level of metal uptake.  相似文献   

20.
Cobalt‐free layered lithium‐rich nickel manganese oxides, Li[LixNiyMn1?x?y]O2 (LLNMO), are promising positive electrode materials for lithium rechargeable batteries because of their high energy density and low materials cost. However, substantial voltage decay is inevitable upon electrochemical cycling, which makes this class of materials less practical. It has been proposed that undesirable voltage decay is linked to irreversible structural rearrangement involving irreversible oxygen loss and cation migration. Herein, the authors demonstrate that the voltage decay of the electrode is correlated to Mn4+/Mn3+ redox activation and subsequent cation disordering, which can be remarkably suppressed via simple compositional tuning to induce the formation of Ni3+ in the pristine material. By implementing our new strategy, the Mn4+/Mn3+ reduction is subdued by an alternative redox reaction involving the use of pristine Ni3+ as a redox buffer, which has been designed to be widened from Ni3+/Ni4+ to Ni2+/Ni4+, without compensation for the capacity in principle. Negligible change in the voltage profile of modified LLNMO is observed upon extended cycling, and manganese migration into the lithium layer is significantly suppressed. Based on these findings, we propose a general strategy to suppress the voltage decay of Mn‐containing lithium‐rich oxides to achieve long‐lasting high energy density from this class of materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号