首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biotechnological upgrading of fossil fuels is of increasing interest as remaining stocks of petroleum show increasing levels of contaminants such as heavy metals, sulfur and nitrogen-containing heteroaromatic compounds. Carbazole is of particular interest as a major petroleum component known to reduce refining yields through catalyst poisoning. In this study, the biotransformation of carbazole was successfully demonstrated in a liquid two-phase system, when solubilized in either 1-methylnaphthalene or in diesel fuel. The effects of solvent toxicity were investigated by expressing the carbazole-transformation genes from MB1332, a rifampicin-resistant derivative of Pseudomonas sp. LD2, in a solvent-resistant heterologous host, P. putida Idaho [1]. This solvent-resistant strain successfully degraded carbazole solubilized in 1-methylnaphthalene and in the presence of 10 vol% xylenes similar to the non-recombinant strain Pseudomonas sp. LD2. Identification of a suitable recombinant host, however, was essential for further investigations of partial pathway transformations. Recombinant P. putida Idaho expressing only the initial dioxygenase enzymes transformed carbazole to an intermediate well retained in the oil phase. Partial carbazole transformation converts carbazole to non-aromatic species; their effect is unknown on refinery catalyst poisoning, but would allow almost complete retention of carbon content and fuel value. Electronic Publication  相似文献   

2.

Objectives

With the view of designing a single biocatalyst for biorefining, carbazole dioxygenase was cloned from Pseudomonas sp. and expressed in Rhodococcus sp.

Results

The recombinant, IGTS8, degraded both carbazole and dibenzothiophene at 400 mg/l in 24 h. Maximum carbazole degradation was in 1:1 (v/v) hexadecane/aqueous phase. Anthracene, phenanthrene, pyrene, fluoranthene and fluorine were also degraded without affecting the aliphatic component.

Conclusions

Recombinant Rhodococcus sp. IGTS8 can function as a single biocatalyst for removing major contaminants of fossil fuels viz. dibenzothiophene, carbazole and polyaromatic compounds.
  相似文献   

3.
Enrichment culture experiments employing soil and water samples obtained from petroleum-contaminated environments succeeded in the isolation of a pure culture possessing the ability to utilize quinoline as a sole nitrogen source but did not utilize quinoline as a carbon source. This culture was identified as Pseudomonas ayucida based on a partial 16S rRNA gene sequence, and the strain was given the designation IGTN9m. Examination of metabolites using thin-layer chromatography and gas chromatography-mass spectrometry suggests that P. ayucida IGTN9m converts quinoline to 2-quinolinone and subsequently to 8-hydroxycoumarin. Resting cells of P. ayucida IGTN9m were shown to be capable of selectively removing about 68% of quinoline from shale oil in a 16-h treatment time. These results suggest that P. ayucida IGTN9m may be useful in petroleum biorefining for the selective removal of organically bound nitrogen from petroleum.  相似文献   

4.
The presence of sulphur in fossil fuels and the natural environment justifies the study of sulphur-utilising bacterial species and genes involved in the biodesulphurisation process. Technology has been developed based on the natural ability of microorganisms to remove sulphur from polycyclic aromatic hydrocarbon chains. This biotechnology aims to minimise the emission of sulphur oxides into the atmosphere during combustion and prevent the formation of acid rain. In this study, the isolation and characterization of desulphurising microorganisms in rhizosphere and bulk soil samples from Antarctica that were either contaminated with oil or uncontaminated was described. The growth of selected isolates and their capacity to utilise sulphur based on the formation of the terminal product of desulphurisation via the 4S pathway, 2-hydroxybiphenyl, was analysed. DNA was extracted from the isolates and BOX-PCR and DNA sequencing were performed to obtain a genomic diversity profile of cultivable desulphurising bacterial species. Fifty isolates were obtained showing the ability of utilising dibenzothiophene as a substrate and sulphur source for maintenance and growth when plated on selective media. However, only seven genetically diverse isolates tested positive for sulphur removal using the Gibbs assay. DNA sequencing revealed that these isolates were related to the genera Acinetobacter and Pseudomonas.  相似文献   

5.
Enrichment culture experiments employing soil and water samples obtained from petroleum-contaminated environments succeeded in the isolation of a pure culture possessing the ability to utilize quinoline as a sole nitrogen source but did not utilize quinoline as a carbon source. This culture was identified as Pseudomonas ayucida based on a partial 16S rRNA gene sequence, and the strain was given the designation IGTN9m. Examination of metabolites using thin-layer chromatography and gas chromatography-mass spectrometry suggests that P. ayucida IGTN9m converts quinoline to 2-quinolinone and subsequently to 8-hydroxycoumarin. Resting cells of P. ayucida IGTN9m were shown to be capable of selectively removing about 68% of quinoline from shale oil in a 16-h treatment time. These results suggest that P. ayucida IGTN9m may be useful in petroleum biorefining for the selective removal of organically bound nitrogen from petroleum.  相似文献   

6.
Nitrate-N-removing bacterial strains were isolated from a constructed wetland soil treated with three ionophoric antibiotics: monensin, salinomycin and narasin. Five isolates were selected after initial screening for nitrogen removing potential. Nucleotide sequence analysis of the 16S rRNA gene showed that these isolates were highly similar to Bacillus, and Pseudomonas species. The isolates were assessed for their ability to grow in the presence of ionophoric antibiotics. All strains were found to withstand these pharmaceuticals. In particular, Bacillus subtilis strain BRAZ2B was found to thrive in the drug-exposed wetland environment, showing higher nitrate removal rate than the uninoculated control. The strains were also assessed for nitrogen removal potential under three different C/N ratios: 4, 8 and 12; optimum removal efficiency was observed at C/N 8 for most isolates.  相似文献   

7.
For the purpose of proving possibility of desulfurization from petroleum oil by microbial procedures, first approach was made to obtaining microorganisms capable of converting petro-sulfur compounds. Dibenzothiophene was used in this study as a model of the sulfur compounds in heavy oil.

Six strains of microorganisms were isolated with dibenzothiophene from various soils. These strains produced organic acid compounds containing sulfur from dibenzothiophene. As a result of the taxonomic studies, three of the strains were found to be new species belonging to the Genus Pseudomonas, so the authors proposed to assign the names, Pseudomonas abikonensis nov. sp. to one strain, and Pseudomonas jianii nov. sp. to the other two strains.  相似文献   

8.
A plant growth-promoting isolate of a fluorescent Pseudomonas sp. EM85 and two bacilli isolates MR-11(2) and MRF, isolated from maize rhizosphere, were found strongly antagonistic to Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina, causal agents of foot rots and wilting, collar rots/stalk rots and root rots and wilting, and charcoal rots of maize, respectively. Pseudomonas sp. EM85 produced antifungal antibiotics (Afa+), siderophore (Sid+), HCN (HCN+) and fluorescent pigments (Flu+) besides exhibiting plant growth promoting traits like nitrogen fixation, phosphate solubilization, and production of organic acids and IAA. While MR-11(2) produced siderophore (Sid+), antibiotics (Afa+) and antifungal volatiles (Afv+), MRF exhibited the production of antifungal antibiotics (Afa+) and siderophores (Sid+). Bacillus spp. MRF was also found to produce organic acids and IAA, solubilized tri-calcium phosphate and fixed nitrogen from the atmosphere. All three isolates suppressed the diseases caused by Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina in vitro. A Tn5:: lac Z induced isogenic mutant of the fluorescent Pseudomonas EM85, M23, along with the two bacilli were evaluated for in situ disease suppression of maize. Results indicated that combined application of the two bacilli significantly (P = 0.05) reduced the Macrophomina-induced charcoal rots of maize by 56.04%. Treatments with the MRF isolate of Bacillus spp. and Tn5:: lac Z mutant (M23) of fluorescent Pseudomonas sp. EM85 significantly reduced collar rots, root and foot rots, and wilting of maize caused by Fusarium moniliforme and F. graminearum (P = 0.05) compared to all other treatments. All these isolates were found very efficient in colonizing the rhizotic zones of maize after inoculation. Evaluation of the population dynamics of the fluorescent Pseudomonas sp. EM85 using the Tn5:: lac Z marker and of the Bacillus spp. MRF and MR-11(2) using an antibiotic resistance marker revealed that all the three isolates could proliferate successfully in the rhizosphere, rhizoplane and endorhizosphere of maize, both at 30 and 60 days after seeding. Four antifungal compounds from fluorescent Pseudomonas sp. EM85, one from Bacillus sp. MR-11(2) and three from Bacillus sp. MRF were isolated, purified and tested in vitro and in thin layer chromatography bioassays. All these compounds inhibited R. solani, M. phaseolina, F. moniliforme, F. graminearum and F. solani strongly. Results indicated that antifungal antibiotics and/or fluorescent pigment of fluorescent Pseudomonas sp. EM85, and antifungal antibiotics of the bacilli along with the successful colonization of all the isolates might be involved in the biological suppression of the maize root diseases.  相似文献   

9.
Purified laccase from Coriolopsis gallica UAMH8260 oxidized carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene in the presence of 1-hydroxybenzotriazole and 2,2-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) as free radical mediators. Susceptibility to laccase oxidation appears related to the ionization potential (IP) of the substrate: compounds with an IP above 8.52, dibenzofuran (IP = 8.77) and benzothiophene (IP = 8.73) were not attacked. Carbazole (IP = 7.68) was the most sensitive to oxidation with >99% transformed with 10 milliunits of laccase after 1 h, though most reactions were carried out for 18 h. 9-Fluorenone was identified as the product of fluorene (IP = 8.52) oxidation, and dibenzothiophene sulfone from dibenzothiophene (IP = 8.44). Although carbazole and N-ethylcarbazole were both completely removed within 18 h, no oxidation or condensation metabolites were detected. This investigation is the first to report the oxidation of dibenzothiophene, carbazole, and N-ethylcarbazole by laccase.  相似文献   

10.
A novel Klebsiella sp. strain LSSE-H2 (CGMCC No. 1624) was isolated from dye-contaminated soil based on its ability to metabolize carbazole as a sole source of carbon and nitrogen. This strain efficiently degraded carbazole from either aqueous and biphasic aqueous–organic media, displaying a high denitrogenation activity and a high level of solvent tolerance. LSSE-H2 could completely degrade 12 mmol/L carbazole after 56 h of cultivation. The co-culture of LSSE-H2 and Pseudomonas delafieldii R-8 strains can degrade approximately 92% of carbazole (10 mmol/L) and 94% of dibenzothiophene (3 mmol/L) from model diesel in 12 h.  相似文献   

11.
A search was undertaken to screen microorganisms that produce an enzyme capable of deacylating glutaryl-7-aminocephalosporanic acid to 7-aminocephalosporanic acid in soil samples. The screening was carried out by preparing enrichment cultures containing glutaryl-7ACA and cephalosporin C as selective carbon sources. A non-β-lactam model compound, glutaryl-p-nitroanilide, was synthesized as a substrate suitable for the rapid screening of microorganisms isolated from the enrichment cultures. Two isolates exhibiting acylase activity, designated BY7.4 and BY8.1, were identified as strains ofPseudomonas species.Pseudomonas BY8.1 showed higher acylase activity toward Gl-7ACA thanPseudomonas BY7.4. Environmental conditions for the optimal acylase activity ofPseudomonas BY8.1 were shown to be pH 9 and 30°C.  相似文献   

12.
Two Rhodococcus erythropolis isolates, named A66 and A69, together with the well-characterized R. erythropolis strain IGTS8 were compared biochemically and genetically. Both isolates, like strain IGTS8, desulfurized DBT to 2-hydroxybiphenyl (2-HBP), following the 4S pathway of desulfurization. Strain IGTS8 showed the highest (81.5%) desulfurization activity in a medium containing DBT at 30 °C. Strain A66 showed approximately the same desulfurization activity either when incubated at 30 °C or at 37 °C, while strain A69 showed an increase of desulfurization efficiency (up to 79%) when incubated at 37 °C. Strains A66 and A69 were also able to grow using various organosulfur or organonitrogen-compounds as the sole sulfur or nitrogen sources. The biological responses of A66, A69 and IGTS8 strains to a series of mutagens and environmental agents were evaluated, trying to mimic actual circumstances involved in exposure/handling of microorganisms during petroleum biorefining. The results showed that strains A69 and IGTS8 were much more resistant to UVC treatment than A66. The three desulfurization genes (dszA, dszB and dszC) present in strains A66 and A69 were partially characterized. They seem to be located on a plasmid, not only in the strain IGTS8, but also in A66 and A69. PCR amplification was observed using specific primers for dsz genes in all the strains tested; however, no amplification product was observed using primers for carbazole (car) or quinoline (qor) metabolisms. All this information contributes to broaden our knowledge concerning both the desulfurization of DBT and the degradation of organonitrogen compounds within the R. erythropolis species.  相似文献   

13.
Three Pseudomonas species isolated from oil polluted soils in Lagos, Nigeria were studied for their pyrene degradation potentials. These isolates exhibited broad substrate specificities for hydrocarbon substrates including polycyclic aromatic hydrocarbons, petroleum fractions and chlorobenzoates. All three isolates tolerated salt concentrations of more than 3%. They resisted ampicillin, cenfuroxime, but susceptible to ofloxacin and ciprofloxacin. Pseudomonas sp. strain LP1 exhibited growth rates and pyrene degradation rates of 0.018 h−1 and 0.111 mg l−1 h−1 respectively, while P. aeruginosa strains LP5 and LP6 had corresponding values of 0.024, 0.082 and 0.017, 0.067 respectively. The overall respective percentage removal of pyrene obtained for strains LP1, LP5 and LP6 after a 30-day incubation period were 67.79, 66.61 and 47.09. Resting cell assay revealed that strain LP1 had the highest uptake rate. Strains LP1, LP5, and LP6 also used the ortho-cleavage pathway. Enzyme study confirmed activity of catechol 1,2-dioxygenase in all with values 0.6823, 0.9199, and 0.8344 μmol min−1 mg−1 respectively for LP1, LP3 and LP6. To the best of our knowledge, ours is the first report of pyrene-degraders from the sub-Saharan African environment.  相似文献   

14.
Carbazole, carbazoles with monomethyl or dimethyls substituted on different positions (C1-carbazoles or C2-carbazoles), and benzocarbazoles, as toxic and mutagenic components of petroleum and creosote contamination, were biodegradable by an isolated bacterial strain Pseudomonas sp. XLDN4-9. C1-carbazoles were degraded in preference to carbazole and C2-carbazoles. The biodegradation of C1-carbazoles or C2-carbazoles was influenced by the positions of methyl substitutions. Among C1-carbazole isomers, 1-methyl carbazole was the most susceptible. C2-carbazole isomers with substitutions on the same benzo-nucleus were more susceptible at a concentration of less than 3.4 μg g−1 petroleum, especially when harboring one substitution on position 1. In particular, 1,5-dimethyl carbazole was the most recalcitrant dimethyl isomer.  相似文献   

15.
Beneficial effects of phosphate solublising Pseudomonas isolates were studied. Out of 30 cultures of bacteria and fungi, 25 cultures solubilised 8–70% P on solid and 9–73 μg ml?1 in liquid medium. These were tested for antifungal activity against Aspergillus niger, Sclerotium rolfsii, Rhizoctonia solani, Fusarium oxysporum and Pythium aphanidermatum. The cultures of Pf-1, Pf-6, Pf-8, Pf-11, T-9 and T-10 did not inhibit any of the fungi tested, whereas Pf-9 was inhibitory to all. On the basis of P-solubilisation and antifungal activity Pf-9 and T-4 were finally selected for subsequent studies and were identified as Pseudomonas spp.  相似文献   

16.
The transfer of the IncP-7 carbazole degradative plasmid pCAR1 from Pseudomonas putida SM1443 (derived from strain KT2440) into bacteria of river water samples was monitored using a reporter gene encoding red fluorescent protein (RFP). The number of transconjugants drastically increased in the presence of carbazole, and most appeared to belong to the genus Pseudomonas. The results suggest that the presence of carbazole benefits the appearance of transconjugants belonging to the genus Pseudomonas. Intriguingly, we also detected the transfer of pCAR1 into non-Pseudomonas, Stenotrophomonas-like bacteria.  相似文献   

17.
A bacterial consortium capable of degrading chloroaromatic compounds was isolated from pulp and paper mill effluents by selective enrichment on 4-chlorobenzoic acid as sole source of carbon and energy. The four different bacterial isolates obtained from bacterial consortium were identified as Pseudomonas aeruginosa AY792969 (A), P. aeruginosa PA01 NC (B), Pseudomonas sp. ZZ5 DQ113452 (C) and Pseudomonas sp. AY762360 (D) based on their morphological and biochemical characteristics and by phylogenetic analysis based on 16S rRNA gene sequences. These bacterial isolates were found to be versatile in degrading a variety of chloroaromatic compounds including fluoro- and iodobenzoic acids. P. aeruginosa PA01 NC utilized 4-chlorobenzoic acid at 2 g/l as growth substrate. Biodegradation studies have revealed that this organism degraded 4-chlorobenzoic acid through 4-chlorocatechol which was further metabolized by ortho-cleavage pathway and the dechlorination occurred after the ring-cleavage.  相似文献   

18.
In this work, a bacterial strain with suitable capability to metabolize carbazole (CAR) as a main nitrogen containing compound of petroleum was isolated and characterized. 16S rDNA gene analysis and morphological characteristics of the strain showed that the isolate belonged to the genus Achromobacter and was tentatively named as Achromobacter sp. strain CAR1389. The growth monitoring and biodegradation rate measurements of carbazole in minimal medium supplemented by 6?mM CAR revealed that the strain CAR1389 is able to remove more than 90?% of this compound at 25, 30, and 37?°C during 7?days. The effect of higher concentrations of the carbazole on growth rate and metabolizing activity of the strain exhibited the Achromobacter sp. strain CAR1389 can tolerate increasing levels of CAR concentration up to 21?mM in culture media and degrade 43?% of this toxic material. According to these results and high tolerance of this bacterium in regards to higher concentrations of CAR, we suggest the strain CAR1389 as a suitable isolate to do biorefining of crude oil and also bioremediation processes in highly contaminated area of carbazole.  相似文献   

19.
The carbazole dioxygenase genes were introduced into a dibenzothiophene degrader. The recombinant Rhodococcus erythropolis SN8 was capable of efficiently degrading dibenzothiophene and carbazole simultaneously. SN8 could also degrade various alkylated derivatives of carbazole and dibenzothiophene in FS4800 crude oil by just a one-step bioprocess.  相似文献   

20.
Microorganisms degrading carbazole (CA), a model substrate of heterocyclic nitrogen compounds in crude petroleum oil, were screened under microaerobic conditions, i.e. nitrogen gas substituted conditions. Eight bacteria were isolated and identified. For example, Bacillus sp. KUKK-4 degraded 31 % of CA when cultivated for 28 days in a medium initially containing CA at 1000 mg/l with shaking under the micro aerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号