首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lead (Pb) is a non-biodegradable contaminant, present in the environment, especially near lead-based industrial sites, agricultural lands, and roadside soils. Bioavailability of Pb in the soil is controlled by the sorption and desorption behavior of Pb, which are further controlled by the soil chemical and physical properties. In this study, sorption and desorption amounts of Pb in soil were compared with soil physical (sand, silt, clay content) and chemical (pH; electrical conductivity, EC; percent organic carbon, (%OC); cation exchange capacity, CEC) properties. Twenty-six surface soils (0–5cm), expected to vary in physical and chemical properties, were collected from different parts of India and were treated with known concentration of Pb solution (40 μg/L). The amount of Pb sorbed and desorbed were measured and correlated with soil properties using simple linear regressions. Sorption was significantly (p ≤ 0.05) and positively correlated with pH, and %OC; desorption was significantly (p ≤ 0.05) negatively correlated with the same two factors. Stepwise multiple regressions were performed for better correlations. Predicted sorption and desorption amounts, based on multiple regression equations, showed reasonably good fit (R2 = 0.79 and 0.83, respectively) with observed values. This regression model can be used for estimation of sorption and desorption amounts at contaminated sites.  相似文献   

2.
Biochar (a kind of black carbon (BC)) has been advocated as a promising additive to farmland, thus it is crucial to understand the influence of BC on the fate of hydrophobic organic chemicals (HOCs) when they exist in soil. This study explored the sorption of pyrene onto a BC sample obtained by pyrolyzing pine sawdust, two soils, clay (kaolinite), and the mixtures thereof to investigate the influence of the interactions between BC and soil constituents on the sorption of HOCs and the mechanisms therein. Sorption of pyrene onto soil?BC mixtures was significantly less than that predicted by the sum of the individual soil and BC sorption, indicating that the sorption of pyrene onto soil and BC did not occur independently. The reduction of BC sorption capacity in soil seemed primarily to be caused by soil dissolved organic matter (DOM), which attenuated pyrene sorption onto BC by 18.7%?40.3% (within pyrene equilibrium concentration range of 0.05?0.5 S w). These were likely due to the blockage of micropores, reduced accessibility of sorption sites, and binding of pyrene by DOM in aqueous solution. In addition to the DOM effect, kaolinite also diminished pyrene sorption onto BC to some extent, which suggested additional interaction between BC and soil particles. Pyrene sorption onto the soil?BC mixtures varied with water content and contact time. The influence of wet versus dry conditions and contact time on the Koc of pyrene was more obvious when pyrene equilibrium concentrations were lower. The effect of aging also varied with soil properties. In summary, BC could not behave independently in soil, and its sorption capacity was changed by its interactions with soil constituents, which may be influenced by soil properties, environmental condition, and contact time.  相似文献   

3.
通过4个土壤深度100个样品14个波长(250、254、260、265、272、280、285、300、340、350、365、400、436和465 nm)土壤溶液吸光度值和土壤碳(可溶性碳DOC、全碳SOC)、土壤氮(可溶性氮DON、全氮SON)的测定,旨在探讨土壤溶液吸光度指示土壤碳氮指标的可行性及土壤深度对其可能影响。结论如下:(1)表层土壤和深层土壤吸光度值均随波长增加而指数下降,但表层土壤吸光度值较高,下降速度较快,较低波长更有利于区分表层和深层土壤溶液吸光度差异;和深层土壤相比,表层0~20 cm土壤SOC、DON和SON与不同波长吸光度有更好的相关性,但DOC与不同波长吸光度的相关性表层和深层差异较小;(2)250~300 nm的8个吸光度值具有高度相关性,它们在分析土壤溶液吸光度变化时具有等效性;基于所有数据的拟合分析发现,低波长(如254 nm)吸光度与土壤SOC、DON和SON相关性最高(R2=0.53~0.59),而更高波长(340 nm及以上)相关性明显降低。但DOC与254、340、365和400 nm吸光度相关性相差不大(R2=0.25~0.33)。这些发现说明,土壤溶液吸光度值,特别是低波长(250~300 nm)可以表征落叶松林土壤碳、氮相关指标的变化,但是需要考虑不同碳氮指标以及不同土层之间的差异。  相似文献   

4.
In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14–0.16 L/mg and n values were 1.51–2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K ≥ 1.49 L/mg and n ≥ 3.59.  相似文献   

5.
Phosphorus (P) is considered a primary cause for surface water eutrophication that leads to anoxia. Understanding the relationships between soil particle size and P sorption helps devise effective best management practices (BMPs) to control P transport by erosion, leaching, and overland flow from agricultural land. Consequently, this study examined the effect of surface soil particle size on the sorption of P in five soil series (four Ultisols and one Entisol) from the Mid-Atlantic region. The sorption of P in each soil was assessed by equilibrating (after shaking for 24?h) 5?g soil containing varied amounts of KH2PO4 in 20?mL of 0.01?M KCl solution. Phosphorus in solution was determined by the molybdate blue method of Murphy and Riley. The P adsorption characteristics of these soils were described using the Langmuir isotherm. Results indicated that variability in P sorption was related to particle size and soil type. Soil organic matter content contributed a great deal to P sorption in the Entisol. However, soil clay had influence on the P sorption characteristics of each soil. The maximum P retentive capacities of soils (as determined by Sm from Langmuir equation) and P sorbed at 500?mg P kg?1 addition showed a linear relationship (r2 = 0.94). Therefore, based on the results obtained, the single point method of Bache and Williams may be appropriate to describe the maximum P sorption capacity of non-sandy soils, as observed in this study.  相似文献   

6.
To explore the effect of exogenic dissolved organic matter (DOM) on Cu(II) sorption in agricultural soils, 26 agricultural soils were collected across China. Exogenic dissolved organic matter, extracting from wheat straw (DOMW) and swine manure (DOMS), respectively, were added to the soils to conduct a series of batch sorption and characterization experiments. The solid-liquid partition coefficient (Kd) ranged from 0.02 to 76.46 L g?1, suggesting different Cu(II) sorption on various soils. PCA analysis indicated that pH, free Fe/Al oxides, carbon, and total Cu content had a significant positive relationship with the Cu(II) sorption, respectively. And the contribution rate of pH was the highest (38.15%). Moreover, DOM markedly inhibited the Cu(II) sorption in alkaline soils while promoted the Cu(II) sorption in acidic soils, which were interacted by the soil properties and DOM characteristics. The effect of DOMS on Cu(II) sorption were more obvious than DOMW, which were further confirmed by Fourier transform infrared (FTIR) spectroscopy. FTIR also showed Cu(II) was primarily adsorbed on the specific functional groups, such as CO, OH, and CO, providing direct evidences for the binding of Cu(II) with DOM. This study can guide the rational use of organic fertilizers, and also provide baseline knowledge for the prevention and control of soil pollution.  相似文献   

7.
Batch sorptions of acetazolamide (AZ) were conducted using four soils from China. Sorption of AZ was found to be impacted by OC, clay content, and soil pH, with higher kd values for soils with higher clay content. The kd values of SOM-removed soils are much lower than those of bulk soils. Sorption data were well fitted with a Freundlich model (r2 > 0.99). Chelating with the metal ions on the surfaces of soil particles was probably involved. With pH increase, the electrostatic attraction between anionic AZ and positively charged soil surface may increase. The sorption capacity decreased when the temperature increased from 20 to 40°C, and the calculated thermodynamics parameters of ΔG0, ΔH0, and ΔS0 indicated that the sorption was a non-spontaneous, physisorption, and exothermic process. Sorption coefficients (kd) for the compound in soil were low (ranging from 0.42 to 1.19 L·kg?1) and indicated that low level sorption of AZ with appreciable risk of ground water contamination.  相似文献   

8.
黄土旱塬区冬小麦不同施肥处理的土壤呼吸及土壤碳动态   总被引:16,自引:0,他引:16  
依据黄土旱塬区黑垆土上中国科学院长武站长期定位试验 (始于1984年),于2008年3月到6月,测定了冬小麦连作系统中返青期、拔节期、抽穗期、灌浆期和收获期土壤呼吸日变化、生育期变化以及土壤可溶性有机碳(Dissolved organic C, DOC)和微生物量碳(Soil microbial biomass C, MBC),研究了施肥措施对土壤呼吸、DOC和MBC的影响以及土壤呼吸与碳组分之间的关系.研究涉及6个处理:休闲地(F)、不施肥(CK)、有机肥(M)、氮肥(N)、氮磷肥(NP)和氮磷有机肥(NPM).结果表明,冬小麦连作系统中土壤呼吸的日变化格局呈单峰曲线,最高值出现在12:00左右(拔节期)和14:30左右(成熟期),最小值出现在0:00~3:00之间或6:00左右;冬小麦土壤呼吸速率拔节期最高,其次是灌浆后期,抽穗期最低;不同施肥条件下,各生育期土壤呼吸速率大小顺序:NPM>M>NP>N>CK>F.土壤水分亏缺是导致抽穗期和灌浆期土壤呼吸速率降低的重要原因.各施肥处理DOC含量高低顺序为灌浆期>抽穗期>成熟期>返青期>拔节期;除M,NPM处理MBC含量拔节期>灌浆期外,各施肥处理MBC含量高低顺序为成熟期>抽穗期>灌浆期>拔节期>返青期.同一处理不同生育期土壤呼吸速率与DOC,MBC的相关性较低,但同生育期不同施肥处理土壤呼吸与土壤有机碳组分间存在显著的相关性.以F处理土壤呼吸为基础,估算CK、N和NP处理生育期根系对土壤呼吸的平均贡献率依次为36%、45%和54%.  相似文献   

9.
Sorption and desorption of 1, 2, 3-trichlorobenzene (TCB) and 1,2,4,5-tetrachlorobenzene (TeCB) onto wood char prepared from maple wood shavings heated at 500°C were studied in the presence of dissolved organic matter (DOM), including humic acid (HA), L-malic acid (L-MA), and peptone. Compared to TCB, TeCB exhibited more nonlinear and stronger sorption onto wood char. Nonlinearity of the sorption isotherms increased in the presence of DOM. The presence of HA enhanced the sorption capacity and desorption hysteresis of TCB and TeCB on wood char mainly due to the strong sorption of HA on wood char surface. Moreover, there were positive relations between Kd values of TCB and TeCB and the HA concentration (p < 0.01). In contrast, peptone reduced the sorption capacity and increased the sorption reversibility because of the partition of TCB and TeCB in peptone solution. L-MA at 50-200 mg·L?1 also leads to a decrease in sorption capacity and irreversibility attributed to solubilization, although the sorbed L-MA on the wood char surface can slightly increase TCB and TeCB sorption. At the same concentration, peptone leads to a higher decrease in TCB sorption than L-MA. Also, negative correlations were found between Kd values of TCB and TeCB and the L-MA and peptone concentration (p < 0.01). Our results may help to understand the different impacts of DOM on the transport and fate of halogenated aromatic hydrocarbons in aquatic environments polluted with chars.  相似文献   

10.
The adsorption of atrazine onto untreated and soils when oxides and hydroxides of Fe, Mn, and organic matter have been reduced was studied under aerobic and anoxic conditions. The Freundlich model appeared to fit the isotherm data better than the Langmuir model, while second-order reaction rates were best fit for atrazine in the aqueous phase. Simple regression analysis indicated that the Fe content of the geosorbents is the most important primary factor controlling the sorption processes of atrazine (r2 = 0.947). Similar sorption capacity of atrazine by geosorbents but different isotherm nonlinearity indicated different sorption domains due to structural modifications and hydrophobicity. The sample treated to significantly remove organic carbon exhibited the greatest organic carbon–normalized sorption capacity. There existed apparent sorption–desorption hysteresis for each sorbent–sorbate system with desorption being more significant under anoxic conditions. The study suggests that, in remediation exercise, in situ redox barriers such as Fe2+-enriched zones can be created by stimulation of Fe3+ through chemical reduction. This study observed that soil predominated by Fe and with low OC content is probably a more effective sorbent for atrazine, implying that atrazine applied to such soils is less likely to leach into groundwater.  相似文献   

11.
Because of low net production in arctic and subarctic surface water, dissolved organic matter (DOM) discharged from terrestrial settings plays an important role for carbon and nitrogen dynamics in arctic aquatic systems. Sorption, typically controlling the export of DOM from soil, may be influenced by the permafrost regime. To confirm the potential sorptive control on the release of DOM from permafrost soils in central northern Siberia, we examined the sorption of DOM by mineral soils of Gelisols and Inceptisols with varying depth of the active layer. Water‐soluble organic matter in the O horizons of the Gelisols was less (338 and 407 mg C kg?1) and comprised more dissolved organic carbon (DOC) in the hydrophobic fraction (HoDOC) (63% and 70%) than in the O horizons of the Inceptisols (686 and 706 mg C kg?1, 45% and 48% HoDOC). All A and B horizons from Gelisols sorbed DOC strongly, with a preference for HoDOC. Almost all horizons of the Inceptisols showed a weaker sorption of DOC than those of the Gelisols. The C horizons of the Inceptisols, having a weak overall DOC sorption, sorbed C in the hydrophilic fraction (HiDOC) stronger than HoDOC. The reason for the poor overall sorption and also the preferential sorption of HiDOC is likely the high pH (pH>7.0) of the C horizons and the smaller concentrations of iron oxides. For all soils, the sorption of HoDOC related positively to oxalate‐ and dithionite–citrate‐extractable iron. The A horizons released large amounts of DOC with 46–80% of HiDOC. The released DOC was significantly (r=0.78, P<0.05) correlated with the contents of soil organic carbon. From these results, we assume that large concentrations of DOM comprising large shares of HiDOC can pass mineral soils where the active layer is thin (i.e. in Gelisols), and enter streams. Soils with deep active layer (i.e. Inceptisols), may release little DOM because of more frequent infiltration of DOM into their thick mineral horizons despite their smaller contents of reactive, poorly crystalline minerals. The results obtained for the Inceptisols are in agreement with the situation observed for streams connecting to Yenisei at lower latitudes than 65°50′ with continuous to discontinuous permafrost. The smaller sorption of DOM by the Gelisols is in agreement with the larger DOM concentrations in more northern catchments. However, the Gelisols preferentially retained the HoDOC which dominates the DOC in streams towards north. This discrepancy can be explained by additional seepage water from the organic horizons that is discharged into streams without intensive contact with the mineral soil.  相似文献   

12.
Several areas of the Massachusetts Military Reservation (MMR) have soils with significant levels of high explosives (HE) contamination because of a long history of training and range activities (such as open burning, open detonation, disposal, and artillery and mortar firing). Site-specific transport and attenuation mechanisms were assessed in sandy soils for three contaminants of concern: the nitramine hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and the nitroaromatics 2,4-dinitrotolune (2,4-DNT) and 2,4,6-trinitrotoluene (TNT). For all three contaminants, linear distribution coefficients (Kd) were dependent on the fraction of organic carbon in soil. The nitroaromatics sorbed much more strongly than RDX in both soils. Over 120 hours, the desorption rate of RDX from field contaminated surface soil was much slower than its sorption rate, with the desorption Kd (1.5 L/kg) much higher than Kd for sorption (0.37 L/kg). Desorption of 2,4-DNT was negligible over 120 hours. Thus, applying sorption-derived Kd values for transport modeling may significantly overestimate the flux of explosives from MMR soils. Based on multiple component column transport tests, RDX will be the most mobile of these contaminants in MMR soils. In saturated columns packed with uncontaminated soil, RDX broke through rapidly, whereas the nitroaromatics were significantly attenuated by irreversible sorption or abiotic transformations.  相似文献   

13.
Dissolved organic matter (DOM) plays an important role in transporting carbon and nitrogen from forest floor to mineral soils in temperate forest ecosystems. Thus, the retention of DOM via sorption or microbial assimilation is one of the critical steps for soil organic matter formation in mineral soils. The chemical properties of DOM are assumed to control these processes, yet we lack fundamental information that links litter quality, DOM chemistry, and DOM retention. Here, we studied whether differences in litter quality affect solution chemistry and whether changes in litter inputs affect DOM quality and removal in the field. The effects of litter quality on solution chemistry were evaluated using chemical fractionation methods for laboratory extracts and for soil water collected from a temperate coniferous forest where litter inputs had been altered. In a laboratory extraction, litter type (needle, wood, root) and the degree of decomposition strongly influenced solution chemistry. Root litter produced more than 10 times more water-extractable dissolved organic N (DON) than any other litter type, suggesting that root litter may be most responsible for DON production in this forest ecosystem. The chemical composition of the O-horizon leachate was similar under all field treatments (doubled needle, doubled wood, and normal litter inputs). O-horizon leachate most resembled laboratory extracts of well-decomposed litter (that is, a high proportion of hydrophobic acids), in spite of the significant amount of litter C added to the forest floor and a tendency toward higher mean DOM under doubled-Litter treatments. A lag in DOM production from added litter or microbial modification might have obscured chemical differences in DOM under the different treatments. Net DOM removal in this forest soil was strong; DOM concentration in the water deep in the mineral soil was always low regardless of concentrations in water that entered the mineral soil and of litter input manipulation. High net removal of DOM from O-horizon leachate, in spite of extremely low initial hydrophilic neutral content (labile DOM), coupled with the lack of influence by season or soil depth, suggests that DOM retention in the soil was mostly by abiotic sorption.  相似文献   

14.
以宁夏荒漠草原典型植物柠条(Caragana korshinskii)、沙蒿(Artemisia ordosica)、短花针茅(Stipa breviflora)和蒙古冰草(Agropyron mongolicum)群落为研究对象,分析不同植物群落不同土层深度(0~5、5~10和10~15cm)土壤活性有机碳组分土壤微生物量碳(MBC)、可溶性有机碳(DOC)和易氧化有机碳(EOC)特征及其与土壤酶(蔗糖酶、脲酶、碱性磷酸酶和过氧化氢酶)活性之间的关系。结果表明:(1)4种典型植物群落土壤SOC、MBC、EOC含量均随土层深度的增加而减少,且表层(0~5cm)土壤显著高于亚表层(5~10cm)和深层(10~15cm)土壤(P0.05),而土壤DOC含量随土层深度的增加呈先增加后减少的趋势。在同一土层深度,灌木(柠条和沙蒿)群落土壤活性有机碳组分含量高于禾本科植物(短花针茅和蒙古冰草)。(2)4种典型植物群落土壤酶(蔗糖酶、脲酶、磷酸酶和过氧化氢酶)活性整体上随土层深度的增加而降低,局部土层深度表现出波动性;同一土层不同植被群落土壤酶活性未表现出一定的变化规律。(3)4种典型群落土壤活性有机碳各组分除DOC外,其余均与SOC呈显著正相关关系,与土壤酶活性、微生物量熵以及有机碳活度具有一定的相关关系,表明土壤活性有机碳不仅依赖于总有机碳,也与土壤酶活性密切相关。  相似文献   

15.
The influence of biostimulation using dissolved organic carbon (DOC) on rhizodegradation of perchlorate and plant uptake was studied under greenhouse conditions using soil and hydroponic bioreactors. One set of bioreactors planted with willow (Salix babylonica) plants was spiked with 300 mg L?1 DOC in the form of chicken manure extract, whereas a second set was not treated with DOC. A similar experiment without willow plants was run in parallel to the planted bioreactors. The planted soil bioreactors amended with DOC reduced perchlorate from 65.85 to 2.67 mg L?1 in 21 days for humic soil (95.95% removal) and from 68.99 to 0.06 mg L? 1 for sandy loam (99.91% removal) in 11 days. Nonplanted DOC treated soil bioreactors achieved complete perchlorate removal in 6 and 8 days for humic and sandy loam, respectively. Both planted and nonplanted soil bioreactors without DOC removed > 95% perchlorate within 8 days. Planted soil bioreactors respiked with perchlorate reduced perchlorate to nondetectable levels in 6 days. Hydroponics experiment amended with DOC reduced perchlorate from approximately 100 mg L? 1 to nondetectable levels within 7 to 9 days. Hydroponic bioreactors without DOC had low perchlorate removal rates, achieving 30% removal in 42 days. Leaf samples from sandy loam soil bioreactors without DOC had four times perchlorate phytoaccumulation than the DOC-treated plants. Similar results were obtained with the nonplanted bioreactors. Persistence of perchlorate in solution of planted hydroponic bioreactors without DOC amendment suggested that natural DOC from the plant exudates was not enough to biostimulate perchlorate reducing microbes. The hydroponic bioreactor study provided evidence that DOC is a limiting factor in the rhizodegradation of perchlorate.  相似文献   

16.
Nonlinear isotherm behavior has been reported for the sorption of hydrophobic organic compounds (HOCs) in soil/water systems, but the mechanisms are unclear. The model of “soft” and “hard” carbon domains has been extensively cited in the sorption literature to account for nonlinear sorption behaviors, but the structural compositions of soil organic matter (SOM) are not well understood. The objective of this study was to examine the characteristics of SOM and the effect of SOM heterogeneity on sorption isotherm by elemental analysis, organic petrographic examination, scanning electron microscopy, 13C nuclear magnetic resonance and studying the sorption behaviors of phenanthrene, naphthalene, 1,3,5-trichlorobenzene and o-xylene in soil and its isolated fractions, humic acid (HA) and humin (denser particulates and lighter particulates). DP mainly contained low maturation and high paraffinic carbon huminite. LP was composed of inertinite, huminite, vitrinite and exinite, with smaller particle size and higher maturation than DP. Humic acid approached the lignite coal rank.

All isotherms were nonlinear, and nonlinearity increased in the following order: HA > DP > soil > BE > LP. The sorption of HOCs in soil was primarily regulated by SOM. Humic acid seemed to be the soft carbon domain and insoluble condensed organic matter (humin) the hard carbon domain. Isotherm nonlinearity was negatively correlated with hydrophobicity and molecular size, while sorption capacity increased with increase of these parameters. Aliphatic structures of SOM, as observed for LP, could also contribute to both isotherm nonlinearity and large sorption capacity.  相似文献   


17.
The objectives of this paper were to determine the efficiency of physicochemically modified soils with a surfactant in the sorption of pesticides, the stability against washing of the pesticides sorbed, and the effective sorption capacity of surfactant adsorbed by soils as a function of pesticide hydrophobicity and soil characteristics. Five soils of different characteristics and five pesticides (penconazole, linuron, alachlor, atrazine and metalaxyl) with different Kow values were selected and octadecyltrimethylammonium bromide (ODTMA) was chosen as model of cationic surfactants. Sorption-desorption isotherms were obtained and constants Kf and Kfd for natural soils (from Freundlich equation) and K and Kd for ODTMA-soils (from linear equation) were determined. Sorption on ODTMA-soils was higher than on natural soils. K increased 27–165 times for penconazole, 22–77 times for linuron, 7–14 times for alachlor, 9–23 times for atrazine, and 21–333 times for metalaxyl in relation to Kf. Sorption coefficients normalized to 100% of total organic matter (TOM) from organo soils KOM (K 100/%TOM), were always higher than those from natural soils KfOM (Kf 100/%OM), indicating that the organic matter (OM) derived from the ODTMA (OMODTMA) had a greater sorption capacity than the OM of the natural soil. KOM values were also higher than the Kow (octanol/water distribution coefficient) value for each pesticide. The similarity of the high KOM values for the sorption of each pesticide by the five soils and the linearity of isotherms point to a partitioning of the pesticides between surfactant and water. The use in this work of different soils and various pesticides, unusual in this type of investigation, allowed us to obtain equations to know the sorbed amount of a given pesticide by the surfactant-modified soils as a function of the OM content derived from the cation and the Kow of the pesticide. The results obtained are of interest when it becomes necessary to increase the sorption capacity of soils with low OM contents with a view to delaying pesticide mobility in soils from pollution point sources (high concentration in small area), and preventing the pollution of waters.  相似文献   

18.
19.
20.
Past studies have shown that dissolved organic carbon (DOC) washing can effectively remove heavy metals from contaminated soil. In this study, we used alkaline DOC solutions for remediation of arsenic (As)-contaminated soil (with an initial As concentration in the topsoil of 390 mg kg?1). The removal of As and the change in soil nutrients during DOC washing were studied for 60 min at pH 10 with a 60:1 liquid/soil ratio (v/m). Approximately 88% of As was removed by washing the soil twice using a 3000 mg L?1 DOC solution at 25°C. Following this treatment, the pH of the soil had increased from 5.6 to 9.2; organic carbon content had increased from 3.5% to 4.1%; cation exchange capacity, ammonium-N, and available phosphorus had increased to 2.3, 1.4, and 6.6 times their original levels, respectively; and exchangeable K, Na, Ca, and Mg had increased to 91, 6.1, 4.2, and 2.2 times their original levels, respectively. A sequential extraction investigation revealed that residual As and easily exchangeable As in the fraction were initially 10.2% and 9.2%, respectively, but that the former became the maximum remainder (64%) after the ultimate DOC washing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号