首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human erythrocyte membranes were labeled with a hydrophobic photoactivable reagent, 2-[3H]Diazofluorene. Electrophoretic analysis of the protein fraction showed that several membrane spanning proteins like Band 3 (the anion transporter), Band 4.5 (the glucose transporter), and the sialoglycoproteins PAS 1, 2, and 3 have been labeled. To isolate the diazofluorene-labeled glucose transporter, the membrane preparation was solubilized with Triton X-100 and passed through a DEAE-cellulose column. The flow-through fraction was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Radioactive analysis of the gel indicated that besides the Band 4.5, two more proteins corresponding to the Band 3 and Band 6 regions also coelute with the glucose transporter in the flow-through fraction. On the other hand, use of n-octyl glucoside gave a relatively better preparation. The 2-[3H]DAF-labeled glucose transporter isolated by the latter method on tryptic digestion indicated that the Mr 18,000 fragment corresponding to the C-terminal transmembrane fragment is labeled.  相似文献   

2.
Three antipeptide antibodies were prepared by immunizing rabbits with synthesized short peptides corresponding to residues 215-226, 466-479, and 478-492 predicted from the cDNA of both the human hepatoma HepG2 and rat brain glucose transporters. All three antibodies were found to precipitate quantitatively the [3H]cytochalasin B photoaffinity-labeled human erythrocyte glucose transporter. Each antibody also recognized the rat brain protein of Mr 45,000 on immunoblots, and a similar molecular weight protein was labeled with [3H]cytochalasin B in a D-glucose-inhibitable manner, suggesting that this protein is glucose transporter. However, only up to 30% of the labeled rat brain glucose transporters were precipitated, even by repeated rounds of immunoprecipitation. In addition, these antibodies were observed to be unable to immunoprecipitate significantly the [3H]cytochalasin B-labeled rat adipocyte glucose transporter. Further, one-dimensional peptide maps of [3H]cytochalasin B-labeled human erythrocyte and adipocyte glucose transporters generated distinct tryptic fragments. Although Mr 45,000 protein in rat adipocyte low density microsomes was detected on immunoblots and its amount was decreased in insulin-treated cells, the rat adipocyte low density microsomes were much less reactive on immunoblots than the rat brain membranes in spite of the fact that the rat adipocyte low density microsomes contained more [3H]cytochalasin B-labeled glucose transporters. In addition, the ratio of cytochalasin B-labeled glucose transporter per unit HepG2-type glucose transporter mRNA was more than 10-fold higher in rat adipocyte than in rat brain. These results indicate that virtually all the human erythrocyte glucose transporters are of the HepG2 type, whereas this type of glucose transporter constitutes only approximately 30 and 3% of all the glucose transporters present in rat brain and rat adipocyte, respectively; and the rest, of similar molecular weight, is expressed by a different gene.  相似文献   

3.
DEAE-column-purified band 4.5 polypeptides of human erythrocyte membranes are mostly glucose transporters with nucleoside transporters as a minor component. The purpose of the present work was to differentially identify and isolate the nucleoside transporters in band 4.5 free from glucose transporters. Equilibrium binding studies demonstrated that the band 4.5 preparation binds nibrobenzylthioinosine (NBTI), a potent nucleoside transport inhibitor, at two distinct sites, one with a high affinity (dissociation constant, KD of 1 nM) with a small capacity, BT (0.4 nmol/mg protein), and the other with a low affinity (KD of 15 microM) with a large BT (14-16 nmol/mg protein). The BT of the low-affinity site was equal to that of the cytochalasin B binding site in the preparation. A gel-filtration chromatography of band 4.5 photolabeled with [3H]NBTI and [3H]cytochalasin B identified three polypeptides of apparent Mr 55,000, 50,000 and 40,000. Of these, the 55 kDa polypeptide was specifically labeled by cytochalasin B (p55GT), indicating that it is a glucose transporter. Both the 50 and 40 kDa polypeptides were labeled with NBTI at low ligand concentrations (less than 0.1 microM), which was abolished by an excess (20 microM) of nitrobenzylthioguanosine, indicating that they are two forms (p50NT and p40NT, respectively) of the high affinity NBTI binding protein or nucleoside transporter. At higher (not less than 10 microM) NBTI concentrations, however, p55GT was also labeled with NBTI, indicating that the low-affinity NBTI binding is due to a glucose transporter. Treatment of band 4.5 with trypsin reduced the p50NT labeling with a concomitant and stoichiometric increase in the p40NT NBTI labeling without affecting the high-affinity NBTI binding of the preparation. These findings indicate that the nucleoside transporter is slightly smaller in mass than the glucose transporter and that trypsin digestion produces a truncated nucleoside transporter of apparent Mr 40,000 which retains the high-affinity NBTI binding activity of intact nucleoside transporter. Both p55GT and p50 NT were coeluted in a major protein fraction, P1 in the chromatography, while p40NT was eluted separately as a minor protein fraction, P1a. All three polypeptides formed mixed dimers, which were eluted in a fraction PO. We have purified and partially characterized the truncated nucleoside transporter, p40NT. The purified p40NT may be useful for biochemical characterization of the nucleoside transporter.  相似文献   

4.
We have recently described a monoclonal antibody (1F8) that recognizes a form of glucose transporter unique to fat and muscle (James, D. E., Brown, R., Navarro, J., and Pilch, P. F. (1988) Nature 333, 183-185), tissues that respond acutely to insulin by markedly increasing their glucose uptake. Here, we report that rat adipocytes possess two immunologically distinct glucose-transporters: one recognized by 1F8, and one reactive with antibodies raised against the human erythrocyte glucose transporter. Immunoadsorption experiments indicate that these glucose transporters reside in different vesicle populations and that both transporter isoforms translocate from intracellular sites to the plasma membrane in response to insulin. The insulin-regulatable transporter resides in a unique vesicle that comprises 3% or less of the low density microsomes of fat cells and has a limited protein composition that does not include the bulk of another translocatable protein, the insulin-like growth factor II receptor. Immunoprecipitation with 1F8 of microsomal glucose transporters photoaffinity labeled with [3H]cytochalasin B brings down 90% of the label. Similarly, immunoprecipitation with 1F8 of glucose transporters from insulin-stimulated plasma membranes photolabeled with 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetyl-f ors kolin, another transporter-selective reagent, results in 75% of the labeled transporter localized in the immunoprecipitate. Thus, insulin action involves the combined effect of translocation from at least two vesicle pools each containing different glucose transporters. The 1F8-reactive transporter comprises the majority of the total transporter pool that is responsible for the insulin-induced increase in glucose transporter number.  相似文献   

5.
The glucose transport across the bovine retinal pigment epithelium (RPE) was studied in a modified Ussing chamber. Unidirectional fluxes were recorded with radioactive tracers L-[14C]-glucose (LG) and 3-O-methyl-D-[3H]-glucose (MDG). There was no significant difference between the unidirectional MDG fluxes (retina to choroid, and choroid to retina directions) with or without ouabain. The effects of two glucose transporter inhibitors, phloretin and cytochalasin B, on the glucose fluxes from choroid to retina cells were also investigated. The MDG flux was found to be inhibited by 45.5% by phloretin (10(-4) M) and 87.4% by cytochalasin B (10(-4) M). These inhibitory characteristics resembled the facilitated diffusion mode of glucose transport. The glucose transporter protein in the plasma membrane of RPE was located by means of photolabeling [3H]-cytochalasin B. The labeled plasma membrane enriched fraction was analysed by SDS-PAGE. The glucose transporter of bovine RPE was found to have a molecular weight range of 46-53 kDa. The molecular weight range of this transporter protein agreed with those of facilitated glucose transporters in other tissues indicating a molecular similarity between them. The results indicated that the glucose transport across the RPE is via passive facilitated diffusion.  相似文献   

6.
Glucose transporter 4 (GLUT4) is the main insulin-responsive glucose transporter in skeletal muscle and adipose tissue of human and rodent, and is translocated to the plasma membrane in response to insulin. GLUT2 is well known as the main glucose transporter in pancreatic islets and could highly regulate glucose-stimulated insulin secretion by B-cells as a glucose sensor. We confirmed the presence of GLUT4 mRNA and GLUT4 protein in pancreas in the human. Indirect immunohistochemistry showed that the pancreatic islets of human and rat were conspicuously labeled by anti-GLUT4 antibody. The presence of placental leucine aminopeptidase (P-LAP), a homologue of insulin-regulated aminopeptidase (IRAP), was also shown in the human pancreatic islet. IRAP/P-LAP is thought to be involved in glucose metabolism. This study provides the first evidence that GLUT4 is present in human and rat pancreatic islets and may suggest its specific role in glucose homeostasis in conjunction with IRAP/P-LAP.  相似文献   

7.
Glucose-6-phosphatase (G6Pase) is a multiple protein complex in the endoplasmic reticulum (ER) that includes a mechanism (known as T3) for glucose exit from the ER to the cytosol. The molecular identity of T3 is not known. T3 has been shown to be functional in the absence of GLUT2, indicating that it is not GLUT2. Here we found a 55-kDa protein in high-density microsomal fraction (HDM) of rat hepatocytes that is recognized by polyclonal GLUT2 antibody raised against the GLUT2 C-terminal 14-amino-acid-sequence peptide. HDM contained calnexin but no integrin-beta1 or Na/K ATPase in Western blotting. Significant GLUT2 immunoreactivity was colocalized with colligin, an ER marker, in confocal microscopy. Furthermore, the 55-kDa protein in HDM was labeled with a covalently reactive, impermeable glucose transporter substrate, 1,3-bis-(3-deoxy-D-glucopyranose-3-yloxy)-2-propyl 4-benzoyl-benzoate (B3GL) when hepatocyte homogenates, but not intact cells, were labeled. In addition glucose efflux from HDM vesicles was sensitive to B3GL treatment in a dose-dependent manner. Based on these findings, we suggest that T3 may be a novel facilitative glucose transporter that is highly homologous to GLUT2 in the C-terminal sequence, thus cross-reacting with the GLUT2 antibody. The finding will be useful in molecular identification and cloning of T3.  相似文献   

8.
P K Tai  C Carter-Su 《Biochemistry》1988,27(16):6062-6071
A monoclonal antibody to the glucose transporter has been prepared with band 4.5 (Mr 45,000-65,000) from human erythrocyte ghosts as antigen. This antibody, designated 7F7.5, is of the IgG2b type. The antibody bound exclusively to proteins in the band 4.5 region of immunoblots of human erythrocyte ghosts separated on sodium dodecyl sulfate-polyacrylamide gels. Immobilized 7F7.5 antibody removed glucose transport activity from solubilized alkaline-treated ghosts. The material that was eluted from the immobilized antibody matrix migrated primarily in the band 4.5 region of electrophoretic gels and bound the antibody in immunoblots. To test the specificity of the antibody, glucose and nucleoside transporters in alkaline-treated human erythrocyte ghosts were affinity labeled with [3H]cytochalasin B and [3H]-S-(nitrobenzyl)thioinosine (NBMPR), respectively. Both of these transporters are band 4.5 proteins and "copurify" by DEAE-cellulose chromatography. A filter paper assay was developed to assess the presence of the labeled transporters. Immobilized 7F7.5 antibody bound 99% of the labeled glucose transporter. In contrast, only 3% of the specifically labeled nucleoside transporter bound to the immobilized antibody. Furthermore, the antibody did not remove nucleoside transport or NBMPR binding activities from detergent solution. The antibody recognized two tryptic fragments, Mr 23,000 and 18,000, which contain the cytochalasin B binding site of the glucose transporter. By immunoblot, the monoclonal antibody recognized the glucose transporter in cultured human IM9 lymphocytes, synovial cells, and HBL 100 mammary cells but not cells of murine or rat origin. These results indicate that the glucose and nucleoside transporters are distinct proteins which can be distinguished by monoclonal antibody 7F7.5. The method developed to quantitate covalently labeled glucose and nucleoside transporters should have broad applicability as a rapid and easy method for determining the recovery of affinity-labeled membrane proteins in detergent solution during purification. Because of the location of the epitope, the antibody itself should prove to be a valuable tool in establishing the molecular basis for the function and regulation of the glucose transporter.  相似文献   

9.
Complementary DNA encoding a facilitative glucose transporter was isolated from a human hepatoma cell line (HepG2) cDNA library and subcloned into a metal-inducible mammalian expression vector, pLEN (California Biotechnology) containing human metallothionein gene II promoter sequences. Chinese hamster ovary (CHO) cells transfected with this transporter expression vector, pLENGT, exhibited a 2-17-fold increase in immunoreactive HepG2-type glucose transporter protein, as measured by protein immunoblotting with antipeptide antibodies directed against the HepG2-type glucose transporter C-terminal domain. Expression of the human glucose transporter was verified by protein immunoblotting with a mouse polyclonal antiserum that recognizes the human but not the rodent HepG2-type transporter. 2-Deoxy-D-glucose uptake was increased 2-7-fold in transfected cell lines. Polyclonal antisera directed against purified red blood cell glucose transporter were raised in several rabbits. Antiserum from one rabbit, delta, was found to bind to the surface of intact red cells but not to inside-out red cell ghosts. Using this delta-antiserum in intact cell-binding assays, 1.6-9-fold increases in cell surface expression of the human glucose transporter were measured in CHO-K1 cell lines transfected with the transporter expression vector. Measurements of total cellular glucose transporter immunoreactive protein using anti-HepG2 transporter C-terminal peptide serum, cell surface glucose transporter protein using delta-antiserum and 2-deoxyglucose uptake revealed proportional relationships among these parameters in transfected cell lines expressing different levels of transporter protein. Insulin increased 2-deoxyglucose uptake 40% in control CHO-K1 cells and in CHO-K1 cells expressing modest levels of the human glucose transporter protein. However, stimulation of sugar-uptake by insulin was only 10% in cells overexpressing human glucose transporter protein 9-fold, and no effect of insulin on sugar uptake was detected in several cell lines expressing very high levels (12-17-fold over controls) of human HepG2 glucose transporter protein. No insulin stimulation of anti-cell surface glucose transporter antibody binding was detected in any control or transfected CHO-K1 cell lines. These data indicate that a glucose transporter protein that is insensitive to insulin in HepG2 cells is regulated by insulin when expressed at low but not at high levels in insulin-response CHO-K1 cells. Additionally, the results suggest that insulin does not increase 2-deoxyglucose uptake by increasing the number of cell surface HepG2-type glucose transporters in CHO-K1 fibroblasts.  相似文献   

10.
Glucose-6-phosphatase (G6Pase) is a multiple protein complex in the endoplasmic reticulum (ER) that includes a mechanism (known as T3) for glucose exit from the ER to the cytosol. The molecular identity of T3 is not known. T3 has been shown to be functional in the absence of GLUT2, indicating that it is not GLUT2. Here we found a 55-kDa protein in high-density microsomal fraction (HDM) of rat hepatocytes that is recognized by polyclonal GLUT2 antibody raised against the GLUT2 C-terminal 14-amino-acid-sequence peptide. HDM contained calnexin but no integrin-β1 or Na/K ATPase in Western blotting. Significant GLUT2 immunoreactivity was colocalized with colligin, an ER marker, in confocal microscopy. Furthermore, the 55-kDa protein in HDM was labeled with a covalently reactive, impermeable glucose transporter substrate, 1,3-bis-(3-deoxy-d-glucopyranose-3-yloxy)-2-propyl 4-benzoyl-benzoate (B3GL) when hepatocyte homogenates, but not intact cells, were labeled. In addition glucose efflux from HDM vesicles was sensitive to B3GL treatment in a dose-dependent manner. Based on these findings, we suggest that T3 may be a novel facilitative glucose transporter that is highly homologous to GLUT2 in the C-terminal sequence, thus cross-reacting with the GLUT2 antibody. The finding will be useful in molecular identification and cloning of T3.  相似文献   

11.
We have used baculovirus (AcNPV) to express the Na+/glucose cotransporter protein in cultured Sf9 cells. We constructed a baculovirus transfer vector containing the cDNA for the rabbit intestinal Na+/glucose cotransporter (SGLT1) under the control of the polyhedrin gene promoter. Recombinant baculovirus was obtained by cotransfection of SF9 cells with wild-type AcNPV DNA and the transfer vector. Recombinant virus was identified by Southern blotting and then purified. Recombinant infected Sf9 cells expressed a protein which was recognized by anti-peptide antibodies raised to sequences of the cloned Na+/glucose cotransporter. This protein migrated with a molecular mass of 55 kD by SDS-PAGE, similar to the in vitro translation product of SGLT1. An identical protein was metabolically labeled with [35S]methionine. Cells which synthesized the transport protein showed Na(+)-dependent alpha MeGlc transport. Micromolar phlorizin inhibited transport. Uninfected and wild-type virus infected Sf9 cells did not have Na(+)-dependent glucose transport. All transport protein migrated at 45% sucrose (w/w) by density gradient sedimentation, suggesting that the expressed transporter is membrane associated. We conclude that we have functionally expressed the rabbit intestinal Na+/glucose cotransporter in Sf9 cells. The transporter is not heavily glycosylated, and this is consistent with previous work showing that glycosylation is not necessary for function. We are poised to purify and characterize this protein from a structure-function perspective.  相似文献   

12.
The glucose transporter in the plasma membrane of rat skeletal muscle has been identified by two approaches. In one, the transporter was detected as the polypeptide that was differentially labeled by photolysis with [3H]cytochalasin B in the presence of l- and d-glucose. [3H]Cytochalasin B is a high-affinity ligand for the transporter that is displaced by d-glucose. In the other, the transporter was detected by means of its reaction with rabbit antibodies against the purified glucose transporter from human erythrocytes. By both procedures, the transporter was found to be a polypeptide with a mobility corresponding to a molecular weight of 45,000–50,000 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

13.
The presence of glycolytic enzymes and a GLUT-1-type glucose transporter in rod and cone outer segments was determined by enzyme activity assays, glucose uptake measurements, Western blotting, and immunofluorescence microscopy. Enzyme activities of six glycolytic enzymes including hexokinase, phosphofructokinase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, pyruvate kinase, and lactate dehydrogenase, were found to be present in purified rod outer segment (ROS) preparations. Immunofluorescence microscopy of bovine and chicken retina sections labeled with monoclonal antibodies against glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and lactate dehydrogenase have confirmed that these enzymes are present in rod and cone outer segments and not simply contaminants from the inner segments or other cells. Rod outer segments were also found to contain glucose transport activity as detected by 3-O-[14C]methylglucose uptake and exchange. The glucose transporter had a Km of 6.3 mM and a Vmax of 0.15 nmol of 3-O-methylglucose/s/mg of ROS membrane protein for net uptake and a Km of 29 mM and a Vmax of 1.06 nmol of 3-O-methylglucose/s/mg of ROS membrane protein for equilibrium exchange. These Km values for net uptake and equilibrium exchange are similar to values obtained for human red blood cells and are characteristic of GLUT-1-type glucose transporter. The transport was inhibited by both cytochalasin B and phloretin. Western blot analysis and immunofluorescence microscopy using type-specific glucose transporter antibodies indicated that both rod and cone outer segment plasma membranes have a GLUT-1 glucose transporter of Mr 45K as found in red blood cells and brain microsomal membranes. Solid-phase radioimmune competitive inhibition studies indicated that rod outer segment plasma membranes contained 15% the number of glucose transporters found in human red blood cell membranes and had an estimated density of 400 glucose transporter per micron2 of plasma membrane. These studies support the view that outer segments can generate energy in the form of ATP and GTP by anaerobic glycolysis to supply at least some of the energy requirements for phototransduction and other metabolic processes.  相似文献   

14.
The glucose transporter from human erythrocytes is a heterogeneously glycosylated protein that runs as a very broad band of average apparent Mr 55 000 upon sodium dodecyl sulfate polyacrylamide gel electrophoresis. When the purified preparation of transporter, solubilized in Triton X-100, was treated with endoglycosidase F, much of it ran as a sharp band of Mr 46 000 upon electrophoresis. Moreover, endoglycosidase F released 80% of the radioactivity in a preparation of the transporter labeled in its oligosaccharides with galactose oxidase and tritiated borohydride, and almost none of the remaining radioactivity was located in the Mr 46 000 band. These results suggest that endoglycosidase F can release virtually all of the carbohydrate linked to the transporter polypeptide. A quantitative analysis of the gels was complicated by partial aggregation of polypeptides that occurs due to prolonged incubation in Triton X-100, but at least 65% of the protein in the preparation of purified transporter is the 46 kDa polypeptide. The extracellular domain of the transporter is very resistant to proteolysis; no cleavage occurred upon treatment of intact erythrocytes with seven different proteases at high concentration.  相似文献   

15.
The human erythrocyte D-glucose transporter is an integral membrane glycoprotein with an heterogeneous molecular mass spanning a range 45-70 kDa. The protein structure of the transporter was investigated by photoaffinity labeling with [3H]cytochalasin B and fractionating the labeled transporter according to molecular mass by preparative SDS-polyacrylamide gel electrophoresis. Each fraction was digested with either papain or S. aureus V8 proteinase, and the labeled proteolytically derived peptide fragments were compared by SDS polyacrylamide gel electrophoresis. Papain digestion yielded two major peptide fragments, of approx. molecular mass 39 +/- 2 and 22 +/- 2 kDa; treatment with V8 proteinase resulted in two fragments, with mass of 24 +/- 2 and 15 +/- 2. Proteolysis of each transporter fraction produced the same pattern of labeled peptide fragments, irrespective of the molecular mass of the original fractions. The binding characteristics of [3H]cytochalasin-B-labeled transporter to Ricinis communis agglutinin lectin was examined for each transporter molecular mass fraction. It was found that higher-molecular-mass fractions of intact transporter had a 2-fold greater affinity for the lectin than lower-molecular-mass fractions (i.e., 67 kDa greater than 45 kDa fraction). However, proteolytically derived labeled peptide fragments from each fraction had minimal affinity for the lectin. These results suggest that the labeled peptide fragments have been separated from the glycosylated regions of the parent transporter protein. The present findings indicate that, although transporter proteins have an apparently heterogeneous molecular mass, some regions of the protein share a common peptide. Furthermore, the glycosylated regions appear to be located some distance from the [3H]cytochalasin-B-labeled site(s).  相似文献   

16.
Antibodies were raised in rabbits against synthetic peptides corresponding to the N-terminal (residues 1-15) and the C-terminal (residues 477-492) regions of the human erythrocyte glucose transporter. The antisera recognized the intact transporter in enzyme-linked immunosorbent assays (ELISA) and Western blots. In addition, the anti-C-terminal peptide antibodies were demonstrated, by competitive ELISA and by immunoadsorption experiments, to bind to the native transporter. Competitive ELISA, using intact erythrocytes, unsealed erythrocyte membranes, or membrane vesicles of known sidedness as competing antigen, showed that these antibodies bound only to the cytoplasmic surface of the membrane, indicating that the C terminus of the protein is exposed to the cytoplasm. On Western blots, the anti-N-terminal peptide antiserum labeled the glycosylated tryptic fragment of the transporter, of apparent Mr = 23,000-42,000, showing that this originates from the N-terminal half of the protein. The anti-C-terminal peptide antiserum labeled higher Mr precursors of the Mr = 18,000 tryptic fragment, although not the fragment itself, indicating that the latter, with its associated cytochalasin B binding site, is derived from the C-terminal half of the protein. Antiserum against the intact transporter recognized the C-terminal peptide on ELISA, and the Mr = 18,000 fragment but not the glycosylated tryptic fragment on Western blots.  相似文献   

17.
We labeled rat adipocyte cell surface glucose transporters with an impermeable, photoreactive glucose analogue, 1,3-bis-(3-deoxy-D-glucopyranose-3-yloxy)-2-propyl 4-benzoylbenzoate (B3GL) and its radioactive tracer [3H]B3GL. The labeling did not affect glucose transporter subcellular distribution in basal and insulin-stimulated adipocytes. When basal or insulin-stimulated adipocytes were labeled with [3H]B3GL and incubated at 37 degrees C in steady state, labeled GLUT4 was rapidly reduced at the cell surface and stoichiometrically recovered in microsomes without any change in GLUT4 protein levels in either pool. The labeled GLUT4 equilibrium exchange was found to be a simple first order process describable by two first order rate constants, one for internalization (k(in)) and the other for externalization (kex). Insulin affected both rate constants, reducing k(in) by 2.8-fold and increasing kex by 3.3-fold. It is concluded that GLUT4 constantly and rapidly recycles in adipocytes between the cell surface and its storage pool, and insulin increases the cell surface GLUT4 level in rat adipocytes by modulating both the internalization and the externalization steps of constitutively recycling GLUT4.  相似文献   

18.
The monoamine transporter of the chromaffin granule membranes can be specifically labeled by the photoaffinity reagent 7-azido-8-[125I]iodoketanserin. The characteristics of the labeled protein have been investigated. Two-dimensional gel electrophoresis of the labeled membranes indicated a MW of about 70,000 and an isoelectric point ranging from 3.8 to 4.6. No clear protein spot was associated with the radioactive material, which migrated between glycoproteins GPII and GPIV. The diffuse aspect of the radioactive material indicated a heterogeneity, which was not modified after a second electrophoresis. This heterogeneity was, at least partially, due to glycosylation of the transporter; neuraminidase treatment increased the protein pI up to 6.3, whereas digestion with N-glycopeptidase markedly decreased the apparent MW, from 70,000 to 50,000. SDS-polyacrylamide gel electrophoresis showed that, at low acrylamide concentrations, the labeled material migrated more rapidly than predicted from the mobility of the markers of molecular weight, a behavior which indicated a marked hydrophobicity of the transporter. The labeled protein was purified to homogeneity by a combination of chromatography on DEAE-cellulose at pH 4.5, on immobilized wheat germ agglutinin, and on hydroxylapatite in the presence of SDS. During this purification, the specific radioactivity was increased by a factor of 300-500, with a yield of 10-20%.  相似文献   

19.
An iodinated photoaffinity label for the glucose transporter, 3-iodo-4-azidophenethylamido-7-O-succinyldeacetyl-forskolin (IAPS-forskolin), has been synthesized, purified, and characterized. The I50 for inhibition of 3-O-methylglucose transport in red blood cells by IAPS-forskolin was found to be 0.05 microM. The carrier free radioiodinated label is a highly specific photoaffinity label for the human erythrocyte glucose transporter. Photolysis of erythrocyte membranes (ghosts) and purified glucose transporter preparations with 1-2 nM [125I]IAPS-forskolin and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed specific derivatization of a broad band with an apparent molecular mass of 40-70 kDa. Photoincorporation into erythrocyte membranes using 2 nM [125I]IAPS-forskolin was protected with D-glucose (I50 400 mM), cytochalasin B (I50 0.5 microM), and forskolin (I50 10 microM). No protection was observed with L-glucose (600 mM). Endo-beta-galactosidase digestion of [125I] IAPS-forskolin-labeled ghosts and purified transporter resulted in a dramatic sharpening of the specifically radiolabeled transporter to 40 kDa. Trypsinization of [125I]IAPS-forskolin-labeled ghosts and purified transporter reduced the specifically radiolabeled transporter to a sharp peak at 18 kDa. [125I]IAPS-forskolin will be a useful tool to study the structural aspects of the glucose transporter.  相似文献   

20.
Two photolabels, N-(3-(4-azido-3-125I-phenyl)-propionamide)-6- aminoethylcarbamylforskolin(125I-6-AIPP-Fsk) and N-(3-(4-azido-3-125I-phenyl)propionamide)-7-aminoethylcarbamyl-7- desacetylforskolin (125I-7-AIPP-Fsk) were synthesized with specific activities of 2200 Ci/mmol and used to label adenylyl cyclase and the glucose transporter. The affinities of the photolabels for adenylyl cyclase were determined by their inhibition of [3H]forskolin binding to bovine brain membranes. 6-AIPP-Fsk and 7-AIPP-Fsk inhibited [3H]forskolin binding with IC50 values of 15 nM and 200 nM, respectively. 125I-6-AIPP-Fsk labeled a 115-kDa protein in control and GTP gamma S-preactivated bovine brain membranes. This labeling was inhibited by forskolin but not by 1,9-dideoxyforskolin or cytochalasin B. 125I-6-AIPP-Fsk labeling of partially purified adenylyl cyclase was inhibited by forskolin but not by 1,9-dideoxyforskolin. 125I-7-AIPP-Fsk specifically labeled a 45-kDa protein and not a 115-kDa protein in control and GTP gamma S-preactivated brain membranes. This labeling was inhibited by forskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose but not cytochalasin E or L-glucose. Human erythrocyte membranes were photolyzed with 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk. 125I-7-AIPP-Fsk, but not 125I-6-AIPP-Fsk, strongly labeled a broad 45-70-kDa band. Forskolin, 7-bromoacetyl-7-desacetylforskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose, but not cytochalasin E or L-glucose, inhibited 125I-7-AIPP-Fsk labeling of the 45-70-kDa band. 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk are high affinity photolabels with specificity for adenylyl cyclase and the glucose transporter, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号