首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
程婧  魏林  李苗 《生理学报》2020,72(4):475-487
线粒体形态和功能的异常与多种疾病的发生密切相关。线粒体通过不断的分裂和融合,维持线粒体网络的动态平衡,该过程称为线粒体动力学,是维持线粒体形态、分布和数量,保证细胞稳态的重要基础。此外,机体还通过线粒体自噬过程降解胞内功能异常的线粒体,维持线粒体稳态。线粒体动力学与线粒体自噬二者之间可相互调控,共同维持线粒体质量平衡。探讨线粒体动力学和线粒体自噬的调控机制对揭示多种疾病发生的分子机制、开发新的靶向线粒体动力学蛋白或线粒体自噬调控蛋白的药物具有重要意义。本文从线粒体动力学与线粒体自噬出发,对线粒体动力学调控机制、线粒体自噬及其发生机制以及二者的相互作用关系、线粒体动力学及线粒体自噬与人类相关疾病等方面作一综述。  相似文献   

2.
线粒体自噬     
细胞自噬(autophagy)是细胞依赖溶酶体对蛋白和细胞器进行降解的一条重要途径.目前,将通过细胞自噬降解线粒体的途径称为线粒体自噬(mitophagy).最近几年的证据表明,线粒体自噬是一个特异性的选择过程,并受到各种因子的精密调节,是细胞清除体内损伤线粒体和维持自身稳态的一种重要调节机制.自噬相关分子,如“核心”Atg 复合物,酵母线粒体外膜分子Atg32、Atg33、Uth1和Aup1,哺乳细胞线粒体外膜蛋白PINK1、NIX和胞质的Parkin等,在线粒体自噬中起关键的作用. 线粒体自噬异常与神经退行性疾病如帕金森氏病(Parkinson’s disease,PD)的发生密切相关. 本文就线粒体自噬的研究进展做简要的介绍.  相似文献   

3.
线粒体自噬(mitophagy)是指细胞通过自噬机制选择性清除多余或损伤线粒体的过程,对于线粒体质量控制以及细胞生存具有重要作用。在线粒体自噬的过程中,线粒体自噬受体FUNDCl、Nix、BNIP3,接头蛋白OPTN、NDP52以及去泛素化酶UPS30、UPS8等发挥了重要的调控作用。近年来,研究发现线粒体自噬与神经退行性疾病、脑损伤以及胶质瘤相关。因此,研究线粒体自噬的分子机制具有重要意义。本文就与哺乳动物相关的线粒体自噬分子机制及最新研究进展做一综述。  相似文献   

4.
线粒体自噬(mitophagy)属于巨自噬的范畴,即受损线粒体被一种双层膜结构(如粗面内质网的无核糖体附着区脱落的双层膜)包裹后形成自噬小体(autophagosome),接着自噬小体的外膜与溶酶体膜融合,底物蛋白进入溶酶体,最终被各类水解酶降解的一系列过程.然而,一些病毒的细胞感染过程与线粒体自噬的发生有着密切联系.本文对线粒体自噬发生的前提条件、起始与发展的全过程以及病毒感染对线粒体自噬的影响等进行综述,以期为进一步研究线粒体自噬提供新思路.  相似文献   

5.
由于线粒体在生物氧化和能量转换过程中会产生活性氧,线粒体DNA又比核DNA更容易发生突变,因此线粒体是一种比较容易受到损伤的细胞器.及时清除细胞内受损的线粒体对细胞维持正常的状态具有重要的作用.细胞主要通过自噬来清除损伤线粒体,维持细胞稳态.越来越多的研究表明,线粒体自噬是一种特异性的过程,线粒体通透性孔道通透性的改变在这个过程中起着重要的作用.线粒体自噬在维持细胞内线粒体的正常功能和基因组稳定性上起着重要作用,但是线粒体发生自噬的信号通路及其调控机制还有待进一步深入研究.  相似文献   

6.
郑仕桥  夏志  尚画雨 《生命科学》2023,(8):1071-1079
线粒体作为细胞的能量中心,在细胞内呈现高度的动态变化,其数量、质量及功能的稳定对维持细胞的正常活动至关重要。线粒体动力学与线粒体自噬之间可互相调控,共同构成线粒体质量控制的重要环节。泛素特异性蛋白酶30 (USP30)作为去泛素化酶,既可通过线粒体融合蛋白1/2 (Mfn1/2)、线粒体动力蛋白相关蛋白1 (Drp1)等融合与分裂蛋白参与调控线粒体动力学过程,还能通过E3泛素连接酶Parkin、泛素(Ub)及电压依赖性阴离子通道1 (VDAC1)等多种信号而调控PTEN诱导激酶1 (PINK1)/Parkin途径介导的线粒体自噬,但其详细机制尚未完全阐明。本文对USP30在调控线粒体动力学和线粒体自噬中的作用与其机制进行了综述。  相似文献   

7.
线粒体自噬(mitophagy)是指细胞通过自噬的机制选择性地清除线粒体的过程。选择性清除受损伤或功能不完整的线粒体对于整个线粒体网络的功能完整性和细胞生存来说十分关键。线粒体自噬的异常和很多疾病密切相关,因此对于线粒体自噬的具体分子机制以及生理意义研究有很重要的生物学意义。线粒体自噬的研究是目前生物学领域的研究热点,该文主要综述了近年来在线粒体自噬领域取得的研究进展,旨在为相关领域的研究提供参考。  相似文献   

8.
MiRNA为小分子非编码RNA,通过与靶基因的相互作用调节靶基因的表达,参与调控细胞的多个生物学过程。本文综述了miRNA与线粒体生物合成、线粒体动力学、线粒体能量代谢、线粒体钙稳态、线粒体自噬间的关系及其调节机制,阐述了microRNA调节线粒体功能的研究进展。  相似文献   

9.
线粒体为细胞正常生命活动提供物质和能量,然而各种因素会导致线粒体损伤,衰老及功能紊乱。线粒体自噬是维持细胞稳态,及时清除细胞潜在危险因素的关键过程,FUNDC1是新近发现的一种线粒体自噬受体蛋白,在介导线粒体自噬方面有重要作用。运动是激活线粒体自噬的应激条件,其诱导骨骼肌线粒体自噬及FUNDC1在此过程中的作用机制正逐步明确。本文介绍FUNDC1的结构、功能和调节,分析FUNDC1与线粒体分裂、融合、自噬的关系,探讨运动诱导线粒体自噬过程中FUNDC1的调控机制,为进一步研究提供参考依据。  相似文献   

10.
衰老性肌萎缩中的线粒体功能障碍与线粒体未折叠蛋白反应(mitochondrial unfolded protein response,UPRmt)和线粒体自噬构成的线粒体质量控制(mitochondrial quality control, MQC)的损伤密切相关。线粒体质量控制是线粒体维持内环境稳态的保护机制,其中UPRmt和线粒体自噬分别负责受损线粒体的修复和清除。UPRmt应对未折叠蛋白应激,维持线粒体和细胞蛋白质稳态,延长寿命并调节代谢重构,而线粒体自噬选择性地去除受损严重的线粒体,两者共同维护线粒体稳态。本文总结UPRmt与线粒体自噬的互作、衰老骨骼肌UPRmt与线粒体自噬的变化和运动逆转衰老骨骼肌UPRmt和线粒体自噬的机制,重点总结运动源的活性氧(reactive oxygen species, ROS)调控UPRmt与线粒体自噬互作的信号通路研究进展,并为衰老性肌萎缩进程中线粒体质量控制的维持提供参考。  相似文献   

11.
线粒体在生物体的新陈代谢中起着非常重要的作用,不仅为代谢活动提供能量,还可以产生具有信号传递和基因调节作用的活性氧.线粒体发生功能障碍或损坏都可能造成严重的后果,甚至导致细胞死亡.受损线粒体通常通过线粒体自噬降解,研究发现线粒体自噬紊乱与多种疾病发生有关.本文阐述了线粒体自噬的调节机制和介导途径,详细论述了近年来线粒体自噬在神经退行性疾病、心脏病及肿瘤中的作用,总结指出线粒体自噬的两面性,即一方面正常范围内的线粒体自噬可以维持人体细胞的正常生理机能,另一方面,线粒体自噬水平过高和过低都会引发疾病.  相似文献   

12.
线粒体自噬是指细胞通过自噬的机制选择性地清除线粒体的过程。通过该途径,细胞可降解并清除受损或功能障碍的线粒体,以维持细胞内线粒体质量和数量的平衡,从而维持细胞稳态。在生理状态及应激状态下,多种因子可调控心肌细胞线粒体自噬,进而发挥保护心肌细胞的作用。本文就线粒体自噬及其调控机制以及其在心肌保护中的作用做一综述。  相似文献   

13.
线粒体动力学主要涉及线粒体融合、分裂及自噬,在维持细胞生理机能和稳态中发挥重要作用。线粒体是人体能量工厂,因此其融合、分裂及自噬的变化对细胞呼吸及能量的合成供给有重要意义,另一方面细胞能量代谢变化反过来也影响线粒体动力学。本文对调节线粒体融合、分裂及自噬的相关蛋白与能量代谢关系的研究进展进行综述,重点分析运动干预下线粒体动力学与电子链复合物表达、氧化磷酸化、ATP合成的关系,为运动训练及疾病干预研究提供参考。  相似文献   

14.
线粒体自噬作为一种选择性自噬方式是近年研究的热点.细胞通过自噬机制选择性清除受损伤或不必需的线粒体,从而维持其功能稳态.近年来,越来越多的研究聚焦于病原体通过胁迫线粒体自噬在机体感染过程中调节先天免疫信号通路,从而影响感染性疾病的进程.本文分别从线粒体自噬在病毒、细菌和真菌感染性疾病中的作用机制研究进展进行综述,以期为...  相似文献   

15.
线粒体自噬指细胞通过自噬机制选择性除去损伤或多余的线粒体。真核生物通过线粒体自噬调控线粒体质量,维持供能细胞器的功能。大量研究表明,帕金森病相关基因PINK1和parkin可通过线粒体自噬参与并维持线粒体功能。PINK1与parkin能协同特异性识别损伤的线粒体,PINK1作为线粒体质量调控的探测器被活化,此过程中泛素化酶和去泛素化酶对维持parkin活性及线粒体自噬的效率有重要作用。本文主要总结PINK1/parkin通路在线粒体自噬中的功能与作用。  相似文献   

16.
线粒体质量控制对于线粒体网络的稳态和线粒体功能的正常发挥具有重要意义。三磷酸腺苷酶家族蛋白3A(ATAD3A)是同时参与调节线粒体结构功能、线粒体动力学和线粒体自噬等重要生物学过程的线粒体膜蛋白之一。近期研究表明,ATAD3A既可与Mic60/Mitofilin和线粒体转录因子A (TFAM)等因子相互作用以维持线粒体嵴的形态和氧化磷酸化功能,又能与发动蛋白相关蛋白1 (Drp1)结合而正性/负性调节线粒体分裂,还可作为线粒体外膜转位酶(TOM)复合物和线粒体内膜转位酶(TIM)复合物之间的桥接因子而介导PTEN诱导激酶(PINK1)输入线粒体进行加工,显示出促自噬或抗自噬活性。本文对ATAD3A在调控线粒体质量控制中的作用及其机制进行了综述。  相似文献   

17.
青光眼作为不可逆致盲性眼病之首,严重影响人们的视力。青光眼致盲的主要机制是视神经损害,青光眼视神经损害表现为特征性的视神经萎缩,是视网膜神经节细胞变性、坏死的体现。有研究发现,视网膜神经节细胞的凋亡与线粒体自噬密切相关。线粒体自噬广泛存在于真核细胞中,是线粒体降解的主要机制,完整的线粒体自噬对视神经具有一定的保护作用,而不完整的线粒体自噬可能加速视网膜神经节细胞的凋亡,线粒体自噬在青光眼中的作用有利有弊。本文对线粒体自噬对青光眼的利弊进行综述,为青光眼的防治研究提供新思路。  相似文献   

18.
线粒体复合体II,也被称为琥珀酸脱氢酶,参与线粒体呼吸作用及代谢重编程的调控过程。复合体II由四个亚基构成,其突变与肿瘤的发生密切相关。本论文探讨了复合体II与线粒体自噬调控及细胞增殖之间的关系。本实验采用复合体II的特异性抑制剂TTFA或敲除复合体II的B亚基SDHB使其功能缺失。结果发现,复合体II功能的缺失显著引起线粒体形态的片段化进而发生线粒体自噬,导致线粒体蛋白水平减少,抑制ATP生成,由于线粒体功能受到抑制,细胞葡萄糖消耗及乳酸产生水平增加,并显著抑制细胞的细胞的增殖。综上所述,复合体II功能缺失可能通过调控线粒体自噬而影响细胞增殖,从而在肿瘤发生中起重要作用。  相似文献   

19.
线粒体不但是细胞内重要的能量提供者,而且在病毒感染后引起的细胞凋亡中扮演着极为重要的角色。新发现的线粒体抗病毒蛋白将线粒体与先天性免疫联系起来,这也意味着宿主免疫反应和细胞凋亡可能与线粒体密切相关,显示出线粒体在细胞内的重要作用,提示应加强对线粒体在抗病毒感染和治疗等方面作用的研究。  相似文献   

20.
氧化应激下植物线粒体自噬分析   总被引:1,自引:0,他引:1  
线粒体自噬,是指通过选择性的识别并清除损伤、衰老及功能紊乱的线粒体,对维持细胞内线粒体质量和数量的平衡产生了重要作用。与动物和酵母中线粒体自噬的研究进展相比,植物线粒体自噬的途径及具体调控机制尚不明确。基于GFP标签,本文探究了氧化胁迫下植物线粒体自噬发生情况。研究发现甲基紫精诱导线粒体在液泡中积累,并呈现两种状态:1) GFP小体包含的线粒体; 2)不含GFP的线粒体。本研究发展的GFP标签策略可为植物线粒体自噬关键调控因子的筛选提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号