首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Equipment was devised which permitted the addition of specific gaseous ions to the atmosphere of plastic chambers in which seedlings of HORDEUM VULGARIS were grown in sand culture supplied with chemically defined nutrient solutions. Moderate densities of O2 or O2 + ions (1.8×104/cm3)in air containing an added 8% of O2 accelerated the growth rate. A like number of CO2 or CO2 + ions in air containing 8% of CO2 inhibited growth, impeded the production of chlorophyll and devitalized the young seedlings. Evidence is presented that O2 and O2 + stimulate the production of cytochromes and other Fe-containing enzymes through their action on the plant regulatory system responsible for the control of Fe metabolism. The toxic effect of CO2 and CO2 + cannot be explained as yet.
Zusammenfassung Eine Apparatur wurde entwickelt, die die Zufuhr von ionisiertem Gas der AtmosphÄre in Kammern gestattet. Darin wurden Keimlinge von HORDEUM VULGARIS in Sand mit chemisch definierten NÄhrlösungen gezüchtet. Konzentrationen von 1,8×104/cm3 O2 und O2 + in Luft mit zusÄtzlich 8% O2 beschleunigten die Wachstumsrate. Die gleiche Menge CO2 und CO2 + in Luft mit zusÄtzlich 8% CO2 hemmte die Wachstumsrate, die Bildung von Chlorophyll und entkrÄftigte die Keimlinge. Es wird gezeigt,dass O2 und O2 + die Bildung von Cytochrom und anderen eisenhaltigen Enzymen anregen durcn ihre Wirkung auf das den Fe-Stoffwechsel regulierende System der Pflanze. Die toxische Wirkung von CO2 und CO2 + lÄsst sich noch nicht erklÄren.

Resume On a construit un appareil permettant d'introduire dans 1'atmosphères des ions de gaz déterminés. On a alors effectué de telles adjonctions à l'air contenu dans des cellules de plastique dans lesquelles on cultivait HORDEUM VULGARIS sur du sable et dans une solution nutritive chimiquement définie. Des densités modérées d'ions O2 ou O2 + (1,8×104/cm3) dans de l'air additionné de 8% d'O2 accélèrent la croissance. La meme concentration de CO2 et CO2 + additionnée de 8% de CO2 a ralenti la croissance et la formation de chlorophylle et a diminué la vitalite des plantes nouvellement germées. On démontre que O2 et O2 + active la formation de cytochrome et d'autres enzymes ferreuses par suite de l'action de ces ions sur le système régularisant le métabolisme du fer dans la plante. L'effet toxique du CO2 et CO2 + reste encore inexpliqué.
  相似文献   

3.
Recently, it was suggested that the measured rate of reduction of ferricyto chrome C by O?2 below pH 8, was too high in the presence of high concentrations of formate (Koppenol, W.H., Van Buuren, K.J.H., Butler J. and Braams, R. (1976) Biochim. Biophys. Acta 449, 157–168).The high values were attributed to the presence of impurities of copper, which compete for O?2. This assumption is consistent with either a decrease in the reduction yield of ferricytochrome C in the presence of copper, or with a very fast reaction of Cu(I) with ferricytochrome C.It was previously shown by us and by others that the reduction yield of ferricytochrome C by O?2 is 100%. We measured the rate of reduction of ferricytochrome C by Cu(I), and found that this reaction is slow: k = (1.5±0.5) · 103M?1) · s?1.Therefore, our results rule out the possibility that below pH 8 copper impurities affect the measured rate constant of the reduction of ferricytochrome C by O?2.  相似文献   

4.
The ligand bonding geometry of carboxy-and cyanomet-myoglobin (MbCO and MbCN) has been measured by the XANES method (X-ray Absorption Near Edge Structure). A comparison between the ligand bonding geometry of carboxy- and cyanomet-myoglobin and of chelated protoheme methyl ester shows that the bent Fe–C–O configuration is the same in both systems. Therefore, we suggest that this configuration is not associated with any steric contraint imposed by the side chains of the aminoacid residues at the distal side of the heme pocket.  相似文献   

5.
The widely expressed chloride channel ClC-2 is stimulated by the serum and glucocorticoid inducible kinase SGK1. The SGK1-dependent regulation of several carriers involves the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3). The present experiments explored whether SGK1-dependent regulation of ClC-2 similarly involves PIKfyve. The conductance of Xenopus oocytes is increased more than eightfold by ClC-2 expression. In ClC-2-expressing oocytes, but not in water-injected oocytes, the current was further enhanced by coexpression of either, PIKfyve or constitutively active S422DSGK1. Coexpression of the inactive SGK1 mutant K127NSGK1 did not significantly alter the current in ClC-2-expressing oocytes and abrogated the stimulation of the current by PIKfyve-coexpression. The stimulating effect of PIKfyve was abolished by replacement of the serine with alanine in the SGK1 consensus sequence (S318APIKfyve). Coexpression of S318APIKfyve significantly blunted the stimulating effect of S422DSGK1 on ClC-2-activity. In conclusion, PIKfyve is a potent stimulator of ClC-2-activity and contributes to SGK1-dependent regulation of ClC-2.  相似文献   

6.
7.
8.
9.
《BBA》1987,892(2):224-235
The effects of Cl depletion and removal of the 33 kDa extrinsic protein on the charge stabilization in O2-evolving Photosystem II (PS II) particles were studied by curve fitting and deconvolution of thermoluminescence bands. The following results were obtained. (1) Cl depletion reversibly decreases the redox potential of the S2 state by 60–80 mV, and thereby elevates the recombination temperature of both S2QB and S2QA charge pairs. (2) Removal of the 33 kDa extrinsic protein specifically elevates the recombination temperature of the S2QA charge pair, with practically no effect on the S2QB pair. This was tentatively interpreted as showing that the protein removal decreases the redox potential of both S2 and QB, but not of QA, and, thus, the effects are mutually cancelled for the S2QB pair, but are manifested for the S2QA pair. (3) Deconvolution of glow curves demonstrated that S3 is not formed in Cl-depleted PS II, but is formed in 33 kDa protein-depleted PS II even at a low (20 mM) Cl concentration. Analysis of thermoluminescence oscillations confirmed that Cl depletion interrupts S2-S3 transition, whereas the protein removal interrupts S3-(S4)-S0 transition at mM Cl. (4) Cl depletion by SO2−4 replacement in the absence of 33 kDa protein affected thermoluminescence in a different way from that in the presence of the protein. Based on these findings, the properties of charge pairs in the Cl-depleted PS II particles were discussed in relation to the role of the 33 kDa extrinsic protein.  相似文献   

10.
11.
Does copper-d-penicillamine catalyze the dismutation of O2−?   总被引:1,自引:0,他引:1  
It has been reported (M. Younes and U. Weser, 1977, Biochem. Biophys. Res. Commun.78, 1247–1253; E. Lengfelder and E. F. Elstner, 1978, Hoppe-Seyler's Z. Physiol. Chem.359, 751–757) that the complex [Cu(I)8Cu(II)6(D-penicillamine)12Cl]5?-efficiently catalyzes the dismutation of O2? and that this activity is resistant to both EDTA and CN?. However, careful study has demonstrated that this complex is unable to catalyze the dismutation of O2?, but that it slowly decomposes to simpler copper complexes which are active. Moreover, the activity which is observed is suppressed by EDTA or by Chelex 100 treatment.  相似文献   

12.
Radmer R  Ollinger O 《FEBS letters》1986,195(1-2):285-289
A modified mass spectrometer was used to determine whether the higher oxidation states of the photosynthetic O2-evolving system contain substrate water that is not freely exchangeable with the external medium. Our data indicated that the higher oxidation states contain no appreciable bound, non-exchangeable H2O. This suggests that H2O oxidation takes place via a rapid, concerted, all-or-none mechanism rather than by a mechanism involving stable, partially oxidized, H2O-derived intermediates. These findings set definite constraints on possible mechanisms of O2 evolution.  相似文献   

13.
14.
Xanthine/xanthine oxidase and H2O2 stimulated sugar transport. Application of superoxide dismutase and catalase to the cells showed an inhibitory effect on these agent-stimulated sugar transports. Addition of amiloride and 4-acetamide-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS), which abolish the cytoplasmic alkalinization, inhibited the stimulation of sugar transport by xanthine/xanthine oxidase in the presence of catalase. The calmodulin antagonists, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and trifluoperazine inhibited H2O2-stimulated sugar transport. These results suggest that O2 stimulates sugar transport in an intracellular pH-dependent manner and that H2O2 stimulates sugar transport in a calcium-calmodulin-dependent manner. These mechanisms may be involved in sugar-transport stimulation in mouse fibroblast BALB/3T3 cells by the tumor-promoting phorbol ester phorbol-12,13-dibutyrate and insulin, since the stimulatory effects of these agents were inhibited by scavengers of oxygen radicals.  相似文献   

15.
《Carbohydrate research》1987,163(2):155-167
A liquid-liquid distribution method, with heptane as the organic solvent, involving evaluation of the concentration of free 1 by magnetic circular dichroism, has been developed for determining the bound amounts of I2/I3 in the amylose-iodine complex in unbuffered aqueous solutions. The effect of I2 and I concentrations on the bound species of iodine in the complex was investigated by using this method. We found that the stoichiometric bound species of I2/I3 is independent of the concentration of I2 at a given I concentration. However, the bound species strongly depends on I concentration, and varies from I3 at 10 mM KI to I15 at 0M KI. Moreover, the number of d-glucosyl residues required for including one iodine atom is within the range of 2.7 to 3.0, regardless of I concentration. It was concluded that the bound species are governed by the distribution of the actual species I2·I2 (I4), (I4), I2·I3 (I5), and I3·I3 (I2−6), which are responsible for the blue color of the complex.  相似文献   

16.
Secretion of bicarbonate has been described for distal nephron epithelium and attributed to apical Cl/HCO 3 exchange in beta-intercalated cells. We investigated the presence of this mechanism in cortical distal tubules by perfusing these segments with acid (pH 6) 10 mm phosphate Ringer. The kinetics of luminal alkalinization was studied in stationary microperfusion experiments by double-barreled pH (ion-exchange resin)/1 m KCl reference microelectrodes. Luminal alkalinization may be due to influx (into the lumen) of HCO 3 or OH, or efflux of H+. The magnitude of the Cl/ HCO 3 exchange component was measured by perfusing the lumen with solutions with or without chloride, which was substituted by gluconate. This component was not different from zero in control and alkalotic (chronic plus acute) Wistar rats. Homozygous Brattleboro rats (BRB), genetically devoid of antidiuretic hormone, were used since this hormone has been shown to stimulate H+ secretion, which could mask bicarbonate secretion. In these rats, no evidence for Cl/HCO 3 exchange was found in control BRB and in early distal segments of alkalotic animals, but in late distal tubule a significant component of 0.14±0.033 nmol/cm2 · sec was observed, which, however, is small when compared to the reabsorptive flow found in control Wistar rats, of 0.95±0.10 nmol/cm2 · sec. In addition, 5×10–4 m SITS had no effect on distal bicarbonate reabsorption in controls as well as on secretion in alkalotic Wistar and Brattleboro rats, which is compatible with the absence of effect of this drug on the apical Cl/HCO 3 exchange in other tissues. It is concluded that most distal alkalinization is not Cl dependent, and that Cl/HCO 3 exchange may be found in cortical distal tubule, but its magnitude is, even in alkalosis, markedly smaller than the reabsorptive flux, which predominates in the rats studied in this paper, keeping luminal pH lower than that of blood.  相似文献   

17.
Leaf anatomical, ultrastructural, and CO2-exchange analyses of three closely related species of Flaveria indicate that they are C3–C4 intermediate plants. The leaf mesophyll of F. floridana J.R. Johnston, F. linearis Lag., and F. chloraefolia A. Gray is typical of that in dicotyledonous C3 plants, but the bundle sheath cells contain granal, starch-containing chloroplasts. In F. floridana and F. chloraefolia, the chloroplasts and numerous associated mitochondria are arranged largely centripetally, as in the closely related C4 species, F. brownii A.M. Powell. In F. linearis, fewer mitochondria are present and the chloroplasts are more evenly distributed throughout the bundle sheath cytosol. There is no correlation between the bundle sheath ultrastructure and CO2 compensation concentration. () values of these C3–C4 intermediate Flaveria species. At 21% O2 and 25°C, for F. chloraefolia, F. linearis, and F. floridana is 23–26, 14–19, and 8–10 l CO2 l-1, respectively. The O2 dependence of is the greatest for F. chloraefolia and F. linearis (similar to that for C3–C4 intermediate Panicum and Moricandia species) and the least for F. floridana, whose O2 response is identical to that for F. brownii from 1.5 to 21% O2, but greater at higher pO2. The variation in leaf anatomy, bundle sheath ultrastructure, and O2 dependence of among these Flaveria species may indicate an active evolution in the pathway of photosynthetic carbon metabolism within this genus.Abbreviations CO2 compensation concentration - IRGA infrared gas analysis Published as Paper No. 7068, Journal Series, Nebraska Agricultural Experiment Station  相似文献   

18.
This minireview summarizes the current state of knowledge concerning the role of Cl in the oxygen-evolving complex (OEC) of photosystem II (PSII). The model that proposes that Cl is a Mn ligand is discussed in light of more recent work. Studies of Cl specificity, stoichiometry, kinetics, and retention by extrinsic polypeptides are discussed, as are the results that fail to detect Cl ligation to Mn and results that show a lack of a requirement for Cl in PSII-catalyzed H2O oxidation. Mutagenesis experiments in cyanobacteria and higher plants that produce evidence for a correlation between Cl retention and stable interactions among intrinsic and extrinsic polypeptides are summarized, and spectroscopic data on the interaction between PSII and Cl are discussed. Lastly, the question of the site of Cl action in PSII is discussed in connection with the current crystal structures of the enzyme.  相似文献   

19.
PDZ domains are key players in signalling pathways. These modular domains generally recognize short linear C-terminal stretches of sequences in proteins that organize the formation of complex multi-component assemblies. The development of new methodologies for the characterization of the molecular principles governing these interactions is critical to fully understand the functional diversity of the family and to elucidate biological functions for family members. Here, we applied an in vitro evolution strategy to explore comprehensively the capacity of PDZ domains for specific recognition of different amino acids at a key position in C-terminal peptide ligands. We constructed a phage-displayed library of the Erbin PDZ domain by randomizing the binding site−2 and adjacent residues, which are all contained in helix α2, and we selected for variants binding to a panel of peptides representing all possible position−2 residues. This approach generated insights into the basis for the common natural class I and II specificities, demonstrated an alternative basis for a rare natural class III specificity for Asp−2, and revealed a novel specificity for Arg−2 that has not been reported in natural PDZ domains. A structure of a PDZ-peptide complex explained the minimum requirement for switching specificity from class I ligands containing Thr/Ser−2 to class II ligands containing hydrophobic residues at position−2. A second structure explained the molecular basis for the specificity for ligands containing Arg−2. Overall, the evolved PDZ variants greatly expand our understanding of site−2 specificities and the variants themselves may prove useful as building blocks for synthetic biology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号