首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
1. It has been shown that Penicillium charlesii continues to synthesize galactocarolose when l-malic acid, malonic acid, succinic acid, fumaric acid, maleic acid or oxaloglycollic acid is substituted for dl-tartaric acid in the Raulin-Thom nutrient medium. 2. The quantity of galactocarolose synthesized per g. of mycelia was markedly decreased by substitution of l-malic acid, malonic acid, succinic acid, fumaric acid or maleic acid for dl-tartaric acid. Substitution of oxaloglycollic acid for dl-tartaric acid did not depress the galactocarolose synthesized/g. of mycelia; however, the quantity of fungal mass formed was decreased approximately fivefold. 3. Based upon (14)C incorporation into galactocarolose, succinic acid, fumaric acid or malonic acid did not serve as direct precursors of galactose as did tartaric acid. Oxaloglycollic acid, l-malic acid and maleic acid were not tested. 4. The relative quantity of galactocarolose synthesized per g. of mycelia decreased as the concentration of diammonium dicarboxylate added to the growth medium was increased. Tartaric acid, oxaloglycollic acid, fumaric acid and malonic acid were tested. 5. The quantity of mycelia formed and the quantity of galactocarolose synthesized per g. of mycelia were greater when the growth medium contained l-tartrate than when it contained d-tartrate.  相似文献   

2.
Ribonucleic acid polymerase and deoxyribonucleic acid polymerase have been partially purified from bovine lymphosarcoma, lymph node, and thymus. An examination of the deoxyribonucleic acid requirements of the two enzymes indicates that “native” deoxyribonucleic acid is the preferred template for ribonucleic acid synthesis; heat-denatured deoxyribonucleic acid is considerably less active. The primer requirements for deoxyribonucleic acid synthesis differ: “native” deoxyribonucleic acid is usually inactive, while denatured deoxyribonucleic acid is active. The two enzymes also differ in pH optima and in their requirements for metal cofactors.  相似文献   

3.
Bacillus cereus strain K-22 produced two distinct omega-amino acid transaminases, one catalyzing the transamination between beta-alanine and pyruvic acid and the other that between gamma-aminobutyric acid and alpha-ketoglutaric aic. The two enzymes were partially purified and separated from each other by various chromatographies. beta-Alanine:pyruvic acid transaminase and gamma-aminobutyric acid:alpha-ketoglutaric acid transaminase were induced by the addition of beta-alanine and gamma-aminobutyric acid, respectively, to the growth medium. beta-Alanine transaminase showed an optimum pH of 10.0 and optimum temperature of 35 degrees C, and its Km values for beta-alanine and pyruvic acid were both 1.1 mM. gamma-Aminobutyric acid, epsilon-aminocaproic acid, 2-aminoethylphosphonic acid, and propylamine showed about 30-40% of the activity of beta-alanine as amino donors, and oxalacetic acid was as good an amino acceptor as pyruvic acid. The optimum pH and temperature of gamma-aminobutyric acid transaminase were 9.0 and 50 degrees C, respectively, and its Km value for gamma-aminobutyric acid was 2.8 mM, while that for alpha-ketoglutaric acid was 2.3 mM. gamma-Aminobutyric acid and delta-aminovaleric acid were good amino donors but other omega-amino acids were virtually inactive with gamma-aminobutyric acid transaminase; alpha-ketoglutaric acid, and to a lesser extent glyoxylic acid, were active amino acceptors. Sulfhydryl reagents specifically activated gamma-aminobutyric acid transaminase.  相似文献   

4.
In studies on the metabolism of polyunsaturated fatty acids, acyl-CoA synthetase for 5,8,11,14-20:4 (arachidonic acid) and 5,8,11,14,17-20:5 (eicosapentaenoic acid) and the incorporation of these fatty acids into complex lipids and their conversion to CO2 were investigated in rat aorta. The activity of acyl-CoA synthetase was 35.9 for arachidonic acid and 63.0 for eicosapentaenoic acid (nmol/mg protein per 10 min) and the apparent Km values were 45 microM for arachidonic acid and 56 microM for eicosapentaenoic acid. Inhibition of eicosapentaenoyl-CoA synthesis by arachidonic acid was stronger than that of arachidonyl-CoA synthesis by eicosapentaenoic acid. Arachidonic acid and eicosapentaenoic acid were mostly incorporated into phospholipids. The incorporation of these fatty acids into cholesterol ester and their conversion to CO2 were less than those of palmitic acid, but their incorporation into triacyglycerol was greater. The incorporation of these fatty acids into phosphatidylserine + phosphatidylinositol and phosphatidylethanolamine was also greater than that of palmitic acid. The patterns of incorporation of arachidonic acid and eicosapentaenoic acid were similar. The physiological roles of these polyunsaturated fatty acids and the interference of eicosapentaenoic acid in arachidonic acid metabolism are discussed on the basis of these results.  相似文献   

5.
Oxidized sulfur-containing amino acids are recognized as agonists of excitatory amino acid receptors in the mammalian nervous system. Homologues of glutamic acid (homocysteine sulfinic acid and homocysteic acid) and aspartic acid (cysteine sulfinic acid and cysteic acid) have been shown to be agonistic to N-methyl-D-aspartate receptors in animal brain and have been demonstrated in brain tissue. Considerable evidence exists for the role of homocysteic acid and cysteine sulfinic acid as endogenous ligands for excitatory amino acid receptors. We report, for the first time, the quantitation of these compounds in normal human serum, by a newly developed gas chromatography-mass spectrometry method that employs stable isotope-dilution selected ion monitoring using internal standards prepared in our laboratory. We also report new methods of synthesis of stable isotope-labeled internal standards used in measuring cysteine sulfinic acid, cysteic acid, homocysteine sulfinic acid, and homocysteic acid.  相似文献   

6.
Fibroblasts derived from a rat carrageenin granuloma were cultured in the presence of radioactive arachidonic acid, palmitic acid and linoleic acid. More than 90% of each labeled fatty acid was incorporated into a phospholipid fraction by the cells in 18 hrs. Arachidonic acid was evenly incorporated into phosphatidylcholine and phosphatidylethanolamine, while both palmitic acid and linoleic acid were almost entirely incorporated into phosphatidylcholine. The position of phosphatidylcholine where the fatty acids were incorporated was different for each fatty acid. The ratio of the amount of fatty acid incorporated into the 2-position to the amount incorporated into the 1-position of phosphatidylcholine for each fatty acid was greater than 90% for arachidonic acid, 2:1 for palmitic acid and 5:1 for linoleic acid. In the case of phosphatidylethanolamine, most arachidonic acid (greater than 90%) was incorporated into the 2-position. PGF2alpha caused the stimulation of arachidonic acid release but not of palmitic acid and linoleic acid from pre-labeled fibroblasts. The serum in the medium was completely replaceable by bovine serum albumin. The effect of PGF2Alpha increased with an increasing concentration of bovine serum albumin, suggesting that serum only acts as a "trap" for released arachidonic acid. The effect of PGF2Alpha was greater than bradykinin, and no synergistic effect was seen, although an additive effect was observed. The effect of PGF2Alpha depended on the concentration of calcium ions under magnesium-supplemented conditions.  相似文献   

7.
Phytanic acid and pristanic acid are branched-chain fatty acids, present at micromolar concentrations in the plasma of healthy individuals. Here we show that both phytanic acid and pristanic acid activate the peroxisome proliferator-activated receptor alpha (PPARalpha) in a concentration-dependent manner. Activation is observed via the ligand-binding domain of PPARalpha as well as via a PPAR response element (PPRE). Via the PPRE significant induction is found with both phytanic acid and pristanic acid at concentrations of 3 and 1 microM, respectively. The trans-activation of PPARdelta and PPARgamma by these two ligands is negligible. Besides PPARalpha, phytanic acid also trans-activates all three retinoic X receptor subtypes in a concentration-dependent manner. In primary human fibroblasts, deficient in phytanic acid alpha-oxidation, trans-activation through PPARalpha by phytanic acid is observed. This clearly demonstrates that phytanic acid itself, and not only its metabolite, pristanic acid, is a true physiological ligand for PPARalpha. Because induction of PPARalpha occurs at ligand concentrations comparable to the levels found for phytanic acid and pristanic acid in human plasma, these fatty acids should be seen as naturally occurring ligands for PPARalpha.These results demonstrate that both pristanic acid and phytanic acid are naturally occurring ligands for PPARalpha, which are present at physiological concentrations.  相似文献   

8.
12-Lipoxygenase and cyclooxygenase 1 are the dominating enzymes that metabolize arachidonic acid in human platelets. In addition to the conversion of arachidonic acid to 12(S)-hydroxyeicosatetraenoic acid, 12-lipoxygenase can also utilize 5(S)-hydroxyeicosatetraenoic acid and 15(S)-hydroxyeicosatetraenoic acid to form 5(S), 12(S)-dihydroxyeicosatetraenoic acid and 14(R), 15(S)-dihydroxyeicosatetraenoic acid, respectively. Furthermore, 15(S)-hydroxyeicosatetraenoic acid works as an inhibitor for 12-lipoxygenase. In the present paper we have studied the influence of albumin on the in vitro metabolism of 5 - and 15 -hydroxyeicosatetraenoic acids, and 5,15 -dihydroxyeicosatetraenoic acid by the platelet 12-lipoxygenase. The presence of albumin reduced the formation of 5(S),12(S)- dihydroxyeicosatetraenoic acid from 5(S)-hydroxyeicosatetraenoic acid, however, it had no effect on the 12(S)-hydroxyeicosatetraenoic acid production from endogenous arachidonic acid. In contrast, when 15(S)-hydroxyeicosatetraenoic acid was incubated with activated platelets, the formation of 14(R), 15(S)- dihydroxyeicosatetraenoic acid was stimulated by the presence of albumin. Furthermore, albumin reduced the inhibitory action 15(S)-hydroxyeicosatetraenoic acid had on 12(S)-hydroxyeicosatetraenoic acid formation from endogenous arachidonic acid. However, addition of exogenous arachidonic acid (20 microm) to the incubations inverted the effects of albumin on the conversion of 15(S)-hydroxyeicosatetraenoic acid to 14(R),15(S)- dihydroxyeicosatetraenoic acid and the production of 12(S)-hydroxyeicosatetraenoic acid in these incubations. Based on the Scatchard equation, the estimates of the binding constants to albumin were 1.8 x 10(5) for 15 -HETE, 1.4 x 10(5) for 12-HETE, and 0.9 x 10(5) for 5 -HETE respectively. These results suggest an important role of albumin for the regulation of the availability of substrates for platelet 12-lipoxygenase.  相似文献   

9.
Kainic acid is a linear competitive inhibitor (Kis 250 μm ) of the ‘high affinity’ uptake of l -glutamic acid into rat brain slices. Kainic acid inhibits the ‘high affinity’ uptake of l -glutamic, d -aspartic and l -aspartic acids to a similar extent. Kainic acid is not actively taken up into rat brain slices and is thus not a substrate for the ‘high affinity’ acidic amino acid transport system or any other transport system in rat brain slices. Kainic acid (300 μm ) does not influence the steady-state release or potassium-stimulated release of preloaded d -aspartic acid from rat brain slices. Kainic acid binds to rat brain membranes in the absence of sodium ions in a manner indicating binding to a population of receptor sites for l -glutamic acid. Only quisqualic and l -glutamic acid inhibit kainic acid binding in a potent manner. The affinity of kainic acid for these receptor sites appears to be some 4 orders of magnitude higher than for the ‘high affinity’l -glutamic acid transport carrier. Dihydrokainic acid is approximately twice as potent as kainic acid as an inhibitor of ‘high affinity’l -glutamic acid uptake but is some 500 times less potent as an inhibitor of kainic acid binding and at least 1000 times less potent as a convulsant of immature rats on intraperitoneal injection. Dihydrokainic acid might be useful as a ‘control uptake inhibitor’ for the effects of kainic acid on ‘high affinity’l -glutamic acid uptake since it appears to have little action on excitatory receptors. N-Methyl-d -aspartic acid is a potent convulsant of immature rats, but does not inhibit kainic acid binding or ‘high affinity’l -glutamic acid uptake. N-Methyl-d -aspartic acid might be useful as a ‘control excitant’ that activates different excitatory receptors to kainic acid and does not influence ‘high affinity’l -glutamic acid uptake.  相似文献   

10.
The correlation between automated fluorimetric methods and high-performance liquid chromatography is described for the determination of homovanillic acid and 5-hydroxyindoleacetic acid in cerebrospinal fluid, and for dopamine, 3, 4-dihydroxyphenylacetic acid and homovanillic acid in striata of rat brain. The automated fluorimetric methods for 3, 4-dihydroxyphenylacetic acid and homovanillic acid showed a good correlation with the high-performance liquid chromatographic methodology. The fluorimetric determination for dopamine was somewhat less reliable than the high-performance liquid chromatographic assay. The fluorimetric assay for 5-hydroxyindoleacetic acid correlated poorly with the chromatographic method.  相似文献   

11.
Ascorbic acid requirements for norepinephrine biosynthesis were investigated in intact bovine chromaffin granules using the physiologic substrate dopamine and a novel coulometric electrochemical detection high pressure liquid chromatography system for ascorbic acid. 10 mM external dopamine, 1 mM Mg-ATP, and 1 mM ascorbic acid produced maximal norepinephrine biosynthesis without granule lysis. When external ascorbic acid was omitted, intragranular ascorbic acid was consumed in a 1:1 ratio with respect to norepinephrine biosynthesis. The initial concentration of intragranular ascorbic acid was 10.5 mM, which was depleted in stepwise fashion to 15 lower concentrations over the range of 9.2-0.2 mM. Chromaffin granules containing these varying concentrations of intragranular ascorbic acid were then incubated with 1 mM exogenous ascorbic acid, and norepinephrine biosynthesis from dopamine was determined. The apparent Km of norepinephrine biosynthesis for intragranular ascorbic acid was 0.57 mM by Eadie-Hofstee analysis and 0.68 mM by Lineweaver-Burk analysis. These data indicate that intragranular ascorbic acid is available and required for norepinephrine biosynthesis, that ascorbic acid is a true co-substrate for dopamine beta-monooxygenase, and that intragranular ascorbic acid is maintained by extragranular ascorbic acid. Continued norepinephrine biosynthesis in granules is dependent on both intragranular and extragranular concentrations of the vitamin. Furthermore, in situ kinetics of dopamine beta-monooxygenase for ascorbic acid may be most accurately determined using intact granules and the true physiologic substrate.  相似文献   

12.
Agonists for muscle contraction in silkworms were screened by injecting test solutions into the hemolymph of decapitated silkworm larvae. Kainic acid, a glutamate receptor agonist, and D-glutamic acid induced muscle contractions, and D-aspartic acid was partially effective, whereas NMDA and AMPA, representative mammalian glutamate receptor agonists, did not induce contraction. L-Glutamic acid inhibited the kainic acid or D-glutamic acid-induced contraction. Amino acid analysis revealed that 3% of the total glutamic acid in the silkworm hemolymph is D-glutamic acid. These results suggest that d-glutamic acid acts physiologically as an agonist for muscle contraction in silkworms, and that L-glutamic acid functions as an inhibitor.  相似文献   

13.
Metabolism of 3 beta-hydroxy-5-cholenoic acid to chenodeoxycholic acid has been found to occur in rabbits and humans, species that cannot 7 alpha-hydroxylate lithocholic acid. This novel pathway for chenodeoxycholic acid synthesis from 3 beta-hydroxy-5-cholenoic acid led to a reinvestigation of the pathway for chenodeoxycholic acid from 3 beta-hydroxy-5-cholenoic acid in the hamster. Simultaneous infusion of equimolar [1,2-3H]lithocholic acid and 3 beta-hydroxy-5-[14C]cholenoic acid indicated that the 14C enrichment of chenodeoxycholic acid was much greater than that of lithocholic acid. Thus, in all these species, a novel 7 alpha-hydroxylation pathway exists that prevents the deleterious biologic effects of 3 beta-hydroxy-5-cholenoic acid.  相似文献   

14.
George J. P. Murphy 《Planta》1980,149(5):417-426
Naphthalene-1-acetic acid (NAA) binding by membrane fractions derived from maize has been re-evaluated. Using a computer curve-fitting procedure only one major type of NAA binding, in terms of binding affinity, could be identified. Auxins, antiauxins and structurally related compounds have been tested for their competitive effect on NAA binding and the inhibitor constants for a number of these have been determined. Extracts from various plant species have been examined for their NAA binding ability, but all showed much less binding than maize leaf or coleoptile preparations. The possibility of the NAA binding by maize extracts being due to a true hormone receptor is discussed.Abbreviations BA benzoic acid - CPIB p-chlorophenoxyisobutyric acid - 2,4-D 2,4-dichlorophenoxyacetic acid - DCB 2,4-dichlorobenzoic acid - IAA indolyl-3-acetic acid - NAA napthalene-1-acetic acid - 2-NAA napthalene-2-acetic acid - NAOA napthalene-2-oxyacetic acid - PA phenylacetic acid - PU phenylurea - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

15.
Polyglyceric acid was synthesized by thermal condensation of glyceric acid at 80° in the presence and absence of two mole percent of sulfuric acid catalyst. The acid catalyst accelerated the polymerization over 100-fold and made possible the synthesis of insoluble polymers of both L- and DL-glyceric acid by heating for less than 1 day. Racemization of L-glyceric acid yielded less than 1% D-glyceric acid in condensations carried out at 80°C with catalyst for 1 day and without catalyst for 12 days. The condensation of L-glyceric acid yielded an insoluble polymer much more readily than condensation of DL-glyceric acid. Studies of the hydrolysis of poly-DL-glyceric acid revealed that it was considerably more stable under mild acidic conditions compared to neutral pH. The relationship of this study to the origin of life is discussed.  相似文献   

16.
Müller A  Düchting P  Weiler EW 《Planta》2002,216(1):44-56
A highly sensitive and accurate multiplex gas chromatography-tandem mass spectrometry (GC-MS/MS) technique is reported for indole-3-acetic acid, abscisic acid, jasmonic acid, 12-oxo-phytodienoic acid and salicylic acid. The optimized setup allows the routine processing and analysis of up to 60 plant samples of between 20 and 200 mg of fresh weight per day. The protocol was designed and the equipment used was chosen to facilitate implementation of the method into other laboratories and to provide access to state-of-the-art analytical tools for the acidic phytohormones and related signalling molecules. Whole-plant organ-distribution maps for indole-3-acetic acid, abscisic acid, jasmonic acid, 12-oxo-phytodienoic acid and salicylic acid were generated for Arabidopsis thaliana (L.) Heynh. For leaves of A. thaliana, a spatial resolution of hormone quantitation down to approximately 2 mm(2) was achieved.  相似文献   

17.
建立了HPLC-DAD法测定血满草中熊果酸和齐墩果酸含量,并进行方法学考察。采用HPLC-DAD进行分析,fusion-RP C18柱(4.6 mm×250 mm,4μm),甲醇-0.2%磷酸水溶液(90∶10)为流动相,检测波长210 nm,体积流量1.0 mL/min。同时采用微波辅助提取、回流提取、索氏提取、冷浸提取、超声提取五种方法对血满草中熊果酸和齐墩果酸含量进行测定并比较不同方法所得结果的差异,还比较了血满草不同部位中熊果酸和齐墩果酸的含量差异。测定结果表明熊果酸进样量在3.6~8.4μg范围内,齐墩果酸进样量在3.2~16μg范围内,呈良好线性关系。血满草中熊果酸和齐墩果酸平均回收率分别为98.3%和101.4%(n=5),相对标准偏差分别为1.13%和0.72%(n=5)。五种方法比较得出索氏提取得熊果酸和齐墩果酸含量最高;血满草花中熊果酸和齐墩果酸含量最高,而根中含量最低。该方法使血满草中熊果酸和齐墩果酸达到基线分离,操作简便,结果稳定可靠。  相似文献   

18.
The membrane changes which occur during cellular maturation of erythroid cells have been investigated. The transport of alpha-aminoisobutyric acid, alanine, and N-methylated-alpha-aminoisobutyric acid have been studied in the erythroblastic leukemic cell, the reticulocyte, and the erythrocyte of the Long-Evans rat. The dependence of amino acid transport on extracellular sodium concentration was investigated. Erythrocytes were found to transport these amino acids only by Na-independent systems. The steady state distribution ratio was less than 1. Reticulocytes were found to transport alpha-aminoisobutyric acid and alanine by Na-dependent systems, but only small amounts of N-methylated-alpha-aminoisobutyric acid. Small amounts of these amino acids were transported by Na-independent systems. The steady state distribution ratio was greater than one for Na-dependent transport. The erythroblastic leukemia cell, a model immature erythroid cell, showed marked Na-dependence (greater than 90%) for alpha-aminoisobutyric acid and alanine transport, and greater than 80% for the Na-dependent transport of N-methyl-alpha-aminoisobutyric acid. The steady state distribution ratio for the Na-dependent transport was greater than 4. In the erythroblastic leukemic cell, at least three Na-dependent systems are present: one includes alanine and alpha-aminoisobutyric acid, but excludes N-methyl-alpha-aminoisobutyric acid; one is for alpha-aminoisobutyric acid, alanine and also N-methyl-alpha-aminoisobutyric acid; and one is for N-methyl-alpha-aminoisobutyric acid alone. In the reticulocyte, the number of Na-dependent systems are reduced to two: one for alpha-aminoisobutyric acid and alanine; one for N-methyl-alpha-aminoisobutyric acid. In the erythrocytes, no Na-dependent transport was found. Therefore, maturation of the blast cell to the mature erythrocyte is characterized by a systematic loss in the specificity and number of transport system for amino acids.  相似文献   

19.
Methods for quantitative analysis of the carboxylated amino acids, aminomalonic acid, β-carboxyaspartic acid, and γ-carboxyglutamic acid, are presented. These substances are acid labile and thus can be measured only after alkaline hydrolysis of proteins and peptides. Half-times for decarboxylation in 1 m HCl at 100°C are: aminomalonic acid (1.2 min); β-carboxyaspartic acid (1.7 min); and γ-carboxyglutamic acid (8.6 min). This property is useful for unequivocal identification in complex hydrolysates.  相似文献   

20.
An isomer of bongkrekic acid, designated as isobongkrekic acid, has been isolated from ethereal extracts of Pseudomonas cocovenenans grown on defatted coconut. Isobongkrekic acid was also obtained by alkaline treatment of bongkrekic acid. Isobongkrekic acid possesses the same ultraviolet spectrum and the same molecular weight as bongkrekic acid; it has a similar infrared spectrum but not the same nuclear magnetic resonance (NMR) spectrum. The differences in NMR data were interpreted to mean that isobongkrekic acid differs from bongkrekic acid by the configuration of the dicarboxylic end; whereas the two carboxylic groups of the dicarboxylic end have the trans configuration in bongkrekic acid, they have the cis configuration in isobongkrekic acid. Differences between bongkrekic and isobongkrekic acids are lost after catalytic hydrogenation of the molecules. Isobongkrekic acid, like bongkrekic acid, is an uncompetitive inhibitor of ADP transport in mitochondria, provided the mitochondria are preincubated in the presence of the inhibitor and a minute concentration of ADP. The inhibitory and binding efficiency of isobongkrekic acid is considerably increased below pH 7. The number of high affinity sites for [3H] isobongkrekic acid is 0.13 to 0.20 nmol/mg protein in rat liver mitochondria and about 1 nmol/mg protein in rat heart mitochondria, i.e., similar to the number of high affinity sites for [3H] bongkrekic acid. Isobongkrekic and bongkrekic acids compete for the same site, but the affinity of isobongkrekic acid for mitochondria is one-half to one-fourth that of bongkrekic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号