首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Yeast artificial chromosomes (YACs) provide a powerful tool for the isolation and mapping of large regions of mammalian chromosomes. We developed a rapid and efficient method for the isolation of DNA fragments representing the extreme ends of YAC clones by the insertion of a rescue plasmid into the YAC vector by homologous recombination. Two rescue vectors were constructed containing a yeast LYS2 selectable gene, a bacterial origin of replication, an antibiotic resistance gene, a polylinker containing multiple restriction sites, and a fragment homologous to one arm of the pYAC4 vector. The 'end-cloning' procedure involves transformation of the rescue vector into yeast cells carrying a YAC clone, followed by preparation of yeast DNA and transformation into bacterial cells. The resulting plasmids carry end-specific DNA fragments up to 20 kb in length, which are suitable for use as hybridization probes, as templates for direct DNA sequencing, and as probes for mapping by fluorescence in situ hybridization. These vectors are suitable for the rescue of end-clones from any YAC constructed using a pYAC-derived vector. We demonstrate the utility of these plasmids by rescuing YAC-end fragments from a human YAC library.  相似文献   

3.
A method for linking yeast artificial chromosomes.   总被引:1,自引:0,他引:1       下载免费PDF全文
A method for linking any standard yeast artificial chromosomes (YAC) is described. YACs are introduced into the same cell and joined by mitotic recombination between the vector arms and the homologous sequence in a linking vector; several YACs can be recombined sequentially. The linking vectors also contain the beta-galactosidase gene as an expression reporter in mammalian cells.  相似文献   

4.
We examined unequal homologous DNA recombination between human repetitive DNA elements located on a yeast artificial chromosome (YAC) and transforming plasmid molecules. A plasmid vector containing an Alu element, as well as a sequence identical to a unique site on a YAC, was introduced into yeast and double recombinant clones analyzed. Recombination occurs between vector and YAC Alu elements sharing as little as 74% identity. The physical proximity of an Alu element to the unique DNA segment appears to play a significant role in determining the frequency with which that element serves as a recombination substrate. In addition, cross-over points of the recombination reaction are largely confined to the ends of the repetitive element. Since a similar distribution of crossover sites occurs during unequal homologous recombination in human germ and somatic tissue, we propose that similar enzymatic processes may be responsible for the events observed in our system and in human cells. This suggests that further examination of the enzymology of unequal homologous recombination of human DNA within yeast may yield a greater understanding of the molecular events which control this process in higher eukaryotes.  相似文献   

5.
Retrofitting YACs for direct DNA transfer into plant cells   总被引:3,自引:0,他引:3  
The utility of plant YAC libraries prepared in conventional YAC vectors would be dramatically increased if these YACs could be used directly for plant transformation. A pair of vectors that allow clones from YAC libraries to be modified (retrofitted) for plant transformation by direct DNA transfer methods, such as particle bombardment or electroporation, has been developed. Modification of the YAC is achieved in two sequential yeast transformation steps by taking advantage of the homologous recombination system in yeast. Using this approach, two plant-selectable marker genes and DNA sequence elements required for copy number amplification in yeast can be introduced into YACs present in yeast strain AB1380. The utility of these vectors is demonstrated by retrofitting YACs that contain inserts ranging in size from 80 to 700 kb. The 6- to 12-fold increase in copy number of these modified YACs facilitates the isolation of YAC DNA for direct DNA transformation methods. Retrofitted YACs were used for particle bombardment to examine the efficiency with which their large DNA inserts are transferred into plant cells. The availability of these retrofitting vectors should facilitate the transfer of YAC DNA inserts into plant cells and thus help bridge the gap between existing mapping techniques and plant transformation procedures.  相似文献   

6.
Mammalian DNAs cloned as artificial chromosomes in yeast (YACs) frequently are chimeras formed between noncontiguous DNAs. Using pairs of human and mouse YACs we examined the contribution of recombination during transformation or subsequent mitotic growth to chimeric YAC formation. The DNA from pairs of yeast strains containing homologous or heterologous YACs was transformed into a third strain under conditions typical for the development of YAC libraries. One YAC was selected and the presence of the second was then determined. Co-penetration of large molecules, as deduced from co-transformation of markers identifying the different YACs, was > 50%. In approximately half the cells receiving two homologous YACs, the YACs had undergone recombination. Co-transformation depends on recombination since it was reduced nearly 10-fold when the YACs were heterologous. While mitotic recombination between homologous YACs is nearly 100-fold higher than for yeast chromosomes, the level is still much lower than observed during transformation. To investigate the role of commonly occurring Alu repeats in chimera formation, spheroplasts were transformed with various human YACs and an unselected DNA fragment containing an Alu at one end and a telomere at the other. When unbroken YACs were used, between 1 and 6% of the selected YACs could incorporate the fragment as compared to 49% when the YACs were broken. We propose that Alu's or other commonly occurring repeats could be an important source of chimeric YACs. Since the frequency of chimeras formed between YACs or a YAC and an Alu-containing fragment was reduced when a rad52 mutant was the recipient and since intra-YAC deletions are reduced, rad52 and possibly other recombination-deficient mutants are expected to be useful for YAC library development.  相似文献   

7.
We have developed a pair of vectors for exchanging yeast artificial chromosome (YAC) arms by targeted homologous recombination. These conversion vectors allow the introduction of copy-number control elements into YACs constructed with pYAC4 or related vectors. YACs modified in this way provide an enriched source of DNA for genetic or biochemical studies. A LYS2 gene on the conversion vector provides a genetic selection for the modified YACs after transformation with appropriately prepared vector. A background of Lys+ clones that do not contain modified YACs is also present. However, clones with converted YACs can be distinguished from this background by counter-screening for loss of the original p YAC4 TRP1 arm (Trp- phenotype). The elimination of yeast replication origins (ARS elements) from the conversion vectors increased the frequency of Lys+ Trp- clones, but resulted in weaker amplification. Several YACs have been converted with these vectors, and the fate of the transformed DNA and of the resident YAC DNA has been systematically investigated.  相似文献   

8.
High-efficiency yeast artificial chromosome fragmentation vectors   总被引:10,自引:0,他引:10  
W J Pavan  P Hieter  D Sears  A Burkhoff  R H Reeves 《Gene》1991,106(1):125-127
Chromosome fragmentation vectors (CFVs) are used to create deletion derivatives of large fragments of human DNA cloned as yeast artificial chromosomes (YACs). CFVs target insertion of a telomere sequence into the YAC via homologous recombination with Alu repetitive elements. This event results in the loss of all YAC sequences distal to the site of integration. A new series of CFVs has been developed. These vectors target fragmentation to both Alu and LINE human repetitive DNA elements. Recovery of deletion derivatives is ten- to 20-fold more efficient with the new vectors than with those described previously.  相似文献   

9.
The development of yeast artificial chromosome (YAC) cloning vectors capable of carrying several hundred kilobase-pairs of DNA insert has greatly facilitated the study of complex genomes, and the cloning of large genes as single fragments. In addition, the ability to manipulate YAC sequences by homologous recombination makes this system extremely useful for the generation of disease models.  相似文献   

10.
J H Riley  J E Morten    R Anand 《Nucleic acids research》1992,20(12):2971-2976
Vectors have been constructed for the introduction of the neomycin resistance gene (neo) into the left arm, right arm or human insert DNA of yeast artificial chromosomes (YACs) by homologous recombination. These vectors contain a yeast selectable marker Lys-2, i.e. the alpha-aminoadipidate reductase gene, and a mammalian selection marker, neo, which confers G418 resistance. The vectors can be used to modify YACs in the most commonly used yeast strain for YAC library construction, AB1380. Specific targeting can be carried out by transfection of restriction endonuclease treated linear plasmids, with highly specific recombinogenic ends, into the YAC containing yeast cells. Analysis of targeted YACs confirmed that all three vectors can target correctly in yeast. Introduction of one of the targeted YACs into V79 (Chinese hamster fibroblast) cells showed complete and intact transfer of the YAC.  相似文献   

11.
构建携带哺乳动物细胞筛选基因和酵母人工染色体(YAC)同源序列的载体,利用酵母中能够发生高频率同源重组的特点对YAC分别进行左、右臂修饰,依次将NEO、EGFP及PURO基因定点整合到YAC左右臂上。用营养缺陷筛选的方法排除酵母发生突变或随机整合等情况后,用PCR及Southern杂交方法证实各筛选基因定点整合于YAC两臂上,从而获得携带3个哺乳动物细胞筛选基因的YAC克隆。并且由此建立了通过同源重组将哺乳动物标记基因定点引入YAC左右臂的多基因修饰平台。  相似文献   

12.
The transformation-associated recombination (TAR) cloning technique allows selective and accurate isolation of chromosomal regions and genes from complex genomes. The technique is based on in vivo recombination between genomic DNA and a linearized vector containing homologous sequences, or hooks, to the gene of interest. The recombination occurs during transformation of yeast spheroplasts that results in the generation of a yeast artificial chromosome (YAC) containing the gene of interest. To further enhance and refine the TAR cloning technology, we determined the minimal size of a specific hook required for gene isolation utilizing the Tg.AC mouse transgene as a targeted region. For this purpose a set of vectors containing a B1 repeat hook and a Tg.AC-specific hook of variable sizes (from 20 to 800 bp) was constructed and checked for efficiency of transgene isolation by a radial TAR cloning. When vectors with a specific hook that was ≥60 bp were utilized, ~2% of transformants contained circular YACs with the Tg.AC transgene sequences. Efficiency of cloning dramatically decreased when the TAR vector contained a hook of 40 bp or less. Thus, the minimal length of a unique sequence required for gene isolation by TAR is ~60 bp. No transgene-positive YAC clones were detected when an ARS element was incorporated into a vector, demonstrating that the absence of a yeast origin of replication in a vector is a prerequisite for efficient gene isolation by TAR cloning.  相似文献   

13.
We constructed new LYS2 fragmentation vectors that allow direct acentric and centric fragmentation of yeast artificial chromosomes (YACs) and selection of fragmented YACs in yeast strain AB1380. The fragmentation vectors were used efficiently with repetitive (e.g., Alu), low-copy (e.g., CA-repeats) and single-copy (e.g., exons) sequences. High recombination efficiencies were obtained in fragmenting two different CEPH YACs with the Alu consensus sequence as target sequences for homologous recombination. Analysis of the acentric Alu fragmentation panel of 788H12, containing the presenilin 1 (PSEN1) gene for familial Alzheimer's disease (AD), indicated that high-resolution YAC fragmentation panels covering the entire parent YAC are obtained. Also, marker content analysis of the fragmentation panel indicated that fragmented YACs were propagated stably without rearrangements. The same fragmentation vectors were used efficiently for fragmentation of 788H12 with unique sequences, i.e., exons 3 and 12 of PSEN1 and D14S77, a polymorphic CA repeat, as target sequences. Together, our YAC fragmentation data of 788H12 provided a size estimate for the coding region of PSEN1 of 60kb and a more precise localization of D14S77 at 25kb upstream of PSEN1.  相似文献   

14.
The yeast artificial chromosome (YAC) system (Burke et al., 1987, Science 236: 806-812) allows the direct cloning of large regions of the genome. A YAC contig map of approximately 700 kb encompassing the region surrounding the type 1 neurofibromatosis (NF1) locus on 17q11.2 has been constructed. A single YAC containing the entire NF1 locus has been constructed by homologous recombination in yeast. In the process of contig construction a novel method of YAC end rescue has been developed by YAC circularization in yeast and plasmid rescue in bacteria. YACs containing homology to the NF1 region but mapping to another chromosome have also been discovered. Sequences of portions of the homologous locus indicate that this other locus is a nonprocessed pseudogene.  相似文献   

15.
Here, we describe a protocol for the selective isolation of any genomic fragment or gene of interest up to 250 kb in size from complex genomes as a circular yeast artificial chromosome (YAC). The method is based on transformation-associated recombination (TAR) in the yeast Saccharomyces cerevisiae between genomic DNA and a linearized TAR cloning vector containing targeting sequences homologous to a region of interest. Recombination between the vector and homologous sequences in the co-transformed mammalian DNA results in the establishment of a YAC that is able to propagate, segregate and be selected for in yeast. Yield of gene-positive clones varies from 1% to 5%. The entire procedure takes 2 weeks to complete once the TAR vector is constructed and genomic DNA is prepared. The TAR cloning method has a broad application in functional and comparative genomics, long-range haplotyping and characterization of chromosomal rearrangements, including copy number variations.  相似文献   

16.
Summary Protoplasts of auxotrophic strains of Saccharomyces cerevisiae of opposite and identical mating types carrying different mitochondrial drug-resistance markers, with both homosexual and heterosexual mitochondrial backgrounds, were induced to fuse by polyethylene glycol. After selective regeneration of prototrophic fusion products, the transmission and recombination frequencies of mitochondrial genes in populations of cells were determined and compared with those obtained in mating processes. The frequencies obtained in the fusion experiments proved very similar to those found in the zygote clones. The behavior of mitochondrial genes was apparently affected neither by nuclear mating type background nor by the method of transfer of mitochondrial genomes (i.e., protoplast fusion or mating), making possible mitochondrial genetic studies by protoplast fusion irrespective of the mating type barrier of yeast strains.  相似文献   

17.
The position effect is one major problem in the production of transgenic animals as mammary gland bioreactors. In the present study, we introduced the human growth hormone (hGH) gene into 210-kb human alpha-lactalbumin position-independent YAC vectors using homologous recombination and produced transgenic rats via microinjection of YAC DNA into rat embryos. The efficiency of producing transgenic rats with the YAC vector DNA was the same as that using plasmid constructs. All analyzed transgenic rats had one copy of the transgene and produced milk containing a high level of hGH (0.25-8.9 mg/ml). In transgenic rats with the YAC vector in which the human alpha-lactalbumin gene was replaced with the hGH gene, tissue specificity of hGH mRNA was the same as that of the endogenous rat alpha-lactalbumin gene. Thus, the 210-kb human alpha-lactalbumin YAC is a useful vector for high-level expression of foreign genes in the milk of transgenic animals.  相似文献   

18.
Gene targeting refers to the precise modification of a genetic locus using homologous recombination. The generation of novel cell lines and transgenic mouse models using this method necessitates the construction of a ‘targeting’ vector, which contains homologous DNA sequences to the target gene, and has for many years been a limiting step in the process. Vector construction can be performed in vivo in Escherichia coli cells using homologous recombination mediated by phage recombinases using a technique termed recombineering. Recombineering is the preferred technique to subclone the long homology sequences (>4kb) and various targeting elements including selection markers that are required to mediate efficient allelic exchange between a targeting vector and its cognate genomic locus. Typical recombineering protocols follow an iterative scheme of step-wise integration of the targeting elements and require intermediate purification and transformation steps. Here, we present a novel recombineering methodology of vector assembly using a multiplex approach. Plasmid gap repair is performed by the simultaneous capture of genomic sequence from mouse Bacterial Artificial Chromosome libraries and the insertion of dual bacterial and mammalian selection markers. This subcloning plus insertion method is highly efficient and yields a majority of correct recombinants. We present data for the construction of different types of conditional gene knockout, or knock-in, vectors and BAC reporter vectors that have been constructed using this method. SPI vector construction greatly extends the repertoire of the recombineering toolbox and provides a simple, rapid and cost-effective method of constructing these highly complex vectors.  相似文献   

19.
Several isogenic strains with defects in recombination/repair genes (RAD1, RAD50, RAD51, RAD52, RAD54, and RAD55) were examined for their ability to propagate accurately a variety of linear and circular yeast artificial chromosomes (YACs) containing human DNA inserts. To assess YAC stability, the human DNA inserts were internally marked by an ADE2-pBR-URA3 cassette. Following selection for Ura- clones on 5-fluoroorotic acid containing medium, the following types of YAC deletions were identified: (i) those caused by homologous recombination with a telomeric pBR sequence; (ii) internal deletions, presumed to occur by recombination between commonly occurring DNA repeats such as Alu and LINE sequences; and (iii) deletions leading to loss of part of a YAC arm. rad52 host strains, but not other recombination-deficient strains, decreased the rate of all types of YAC deletions 25- to 400-fold. We have also developed and tested kar1 strains with a conditional RAD52 gene that allow transfer of a YAC from any host into a recombination-deficient background. These strains provide an efficient tool for stabilization of YACs and are useful for allowing additional recombinational modification of YACs.  相似文献   

20.
Genomic sequencing has enabled the prediction of thousands of genes, most of which either cannot be assigned a function or can be only broadly categorized on the basis of sequence alone. High-throughput strategies for elucidating protein function are of high priority, and numerous approaches are being developed. Many of these approaches require the cloning of open reading frames (ORFs) into expression vectors that enable the encoded proteins to be tested for biological and biochemical activities. Typically, more than one type of vector must be employed, as different experiments require different conditions of protein production. Here we show that it is possible to simultaneously transfer a single ORF from a source vector to four target vectors using a commercially available in vitro recombination system. To test the approach, we constructed new vectors for expression of fusion proteins in yeast, including vectors for the LexA two-hybrid system. We show that individual ORFs can be efficiently transferred to four different vectors in a single in vitro reaction. The resulting expression plasmids can be separated using prototrophic markers specific to each vector. Using this system to produce multiple expression constructs simultaneously could greatly facilitate high-throughput subcloning and proteomic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号