首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Prediction of protein interdomain linker regions by a hidden Markov model   总被引:1,自引:0,他引:1  
MOTIVATION: Our aim was to predict protein interdomain linker regions using sequence alone, without requiring known homology. Identifying linker regions will delineate domain boundaries, and can be used to computationally dissect proteins into domains prior to clustering them into families. We developed a hidden Markov model of linker/non-linker sequence regions using a linker index derived from amino acid propensity. We employed an efficient Bayesian estimation of the model using Markov Chain Monte Carlo, Gibbs sampling in particular, to simulate parameters from the posteriors. Our model recognizes sequence data to be continuous rather than categorical, and generates a probabilistic output. RESULTS: We applied our method to a dataset of protein sequences in which domains and interdomain linkers had been delineated using the Pfam-A database. The prediction results are superior to a simpler method that also uses linker index.  相似文献   

4.
5.
6.
7.
8.
Linker histones such as variants H1, H5, and other similar proteins play an important role in regulation of chromatin structure and dynamics. However, interactions of linker histones with DNA and proteins, as well as specific functions of their different variants, are poorly studied. This is because they acquire tertiary structure only when interacting with a nucleosome, and because of limitations of currently available methods. However, deeper investigation of linker histones and their interactions with other proteins will address a number of important questions — from structure of compacted chromatin to regulation of early embryogenesis. In this review, structures of histone H1 variants and its interaction with chromatin DNA are considered. A possible functional significance of different H1 variants, a role of these proteins in maintaining interphase chromatin structure, and interactions of linker histones with other cellular proteins are also discussed.  相似文献   

9.
10.
11.
Chromatin structure promotes important epigenetic mechanisms that regulate cellular fate by organizing, preserving and controlling the way by which the genetic information works. Our understanding of chromatin and its functions is sparse and not yet well defined. The uncertainty comes from the complexity of chromatin and is induced by the existence of a large number of nuclear proteins that influence it. The intricate interaction among all these structural and functional nuclear proteins has been under extensive study in the recent years. Here, we show that Saccharomyces cerevisiae linker histone physically interacts with Arp4p (actin-related protein 4) which is a key subunit of three chromatin modifying complexes – INO80, SWR1 and NuA4. A single – point mutation in the actin – fold domain of Arp4p together with the knock-out of the gene for the linker histone in S. cerevisiae severely abrogates cellular and nuclear morphology and leads to complete disorganizing of the higher levels of chromatin organization.  相似文献   

12.
Pancreatic cancer is a devastating disease with the worst prognosis among all the major human malignancies. The propensity to rapidly metastasize contributes significantly to the highly aggressive feature of pancreatic cancer. The molecular mechanisms underlying this remain elusive, and proteins involved in the control of pancreatic cancer cell motility are not fully characterized. In this study, we find that histone deacetylase 6 (HDAC6), a member of the class II HDAC family, is highly expressed at both protein and mRNA levels in human pancreatic cancer tissues. HDAC6 does not obviously affect pancreatic cancer cell proliferation or cell cycle progression. Instead, it significantly promotes the motility of pancreatic cancer cells. Further studies reveal that HDAC6 interacts with cytoplasmic linker protein 170 (CLIP-170) and that these two proteins function together to stimulate the migration of pancreatic cancer cells. These findings provide mechanistic insight into the progression of pancreatic cancer and suggest HDAC6 as a potential target for the management of this malignancy.  相似文献   

13.
14.
15.
16.
The linker region of AraC protein.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

17.
18.
19.
Cytoskeletal proteins are associated with actin in the microfilaments and have a major role in microfilament assembly and function. The expression of some of these proteins has been implicated in cell growth and transformation. Specifically, the 3′-untranslated regions (3′-UTRs) of tropomyosin, troponin and cardiac actin can induce muscle cell differentiation and appear to function as tumor suppressors. These RNA sequences are predicted to fold to form secondary structures with extended stretches of duplex. We show that the 3′-UTRs of the cytoskeletal mRNAs interact with the RNA-binding domain of the RNA-activated protein kinase PKR. Correspondingly, these RNAs activate PKR in vitro and inhibit globin translation in the rabbit reticulocyte lysate translation system. These data are consistent with a mechanism whereby PKR mediates the differentiation- and tumor-related actions of the cytoskeletal 3′-UTR sequences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号