首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
D Green  G Guy  J B Moore 《Life sciences》1977,20(7):1157-1162
Human lung tissue contains phosphodiesterase enzymes capable of hydrolyzing both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP). The cyclic AMP enzyme exhibits three distinct binding affinities for its substrate (apparent Km = 0.4μM, 3μM, and 40μM) while the cyclic GMP enzyme reveals only two affinities (Km = 5μM and 40μM). The pH optima for the cyclic AMP and cyclic GMP phosphodiesterase are similar (pH 7.6–7.8). Both are inhibited by known inhibitors of phosphodiesterase activity (aminophylline, caffeine, and 3-isobutyl-1-methylxanthine). The divalent cations Mg2+ and Mn2+ stimulate cyclic AMP phosphodiesterase activity (in the absence of Mg2+) while Ca2+, Ni2+, and Cu2+ inhibit the enzyme. Histamine and imidazole slightly stimulate cyclic AMP hydrolytic activity. Thus, human lung tissue does contain multiple forms of both the cyclic AMP and cyclic GMP phosphodiesterase which are influenced by a variety of effectors.  相似文献   

2.
Adenosine 3′:5′-monophosphate (cyclic AMP) and guanosine 3′:5′-monophosphate (cyclic GMP) have been determined simultaneously by combining individual protein binding assays using different isotopically labeled cyclic nucleotides. Preparations of cyclic AMP-binding protein from beef adrenal cortex and cyclic GMP-binding protein from the fat body of silkworm pupae (Bombyx mori) have been used for the assay. The method allows the analysis of cyclic AMP and cyclic GMP levels in crude extracts without any purification. The assay has been applied to hormone-stimulated Mouse liver and phorbol ester-treated Rat embryo cells.  相似文献   

3.
Changes in the levels of adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) during development were studied in the Dipterous Ceratitis capitata. The developmental patterns were different to each other. Cyclic AMP showed a sharp maximum in the larval stage to decrease afterwards during adult development. Changes of cyclic GMP exhibited an opposite pattern, although its levels were always higher than those of cyclic AMP.  相似文献   

4.
A Ca2+-dependent cyclic nucleotide phosphodiesterase has been partially purified from extracts of porcine brain by column chromatography on Sepharose 6 B containing covalently linked protamine residues, ammonium sulfate salt fractionation, and ECTEOLA-cellulose column chromatography. The resultant preparation contained a single form of cyclic nucleotide phosphodiesterase activity by the criteria of isoelectric focusing, gel filtration chromatography on Sephadex G-200, and electrophoretic migration on polyacrylamide gels. When fully activated by the addition of Ca2+ and microgram quantities of a purified Ca2+-binding protein (CDR), the phosphodiesterase hydrolyzed both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP), with apparent Km values of 180 and 8 μm, respectively. Approximately 15% of the total enzymic activity was present in the absence of added CDR and Ca2+. This activity exhibited apparent Km values for the two nucleotides identical to those observed for the maximally activated enzyme. Competitive substrate kinetics and heat destabilization studies demonstrated that both cyclic nucleotides were hydrolyzed by the same phosphodiesterase. The purified enzyme was identical to a Ca2+-dependent phosphodiesterase present in crude extract by the criteria of gel filtration chromatography, polyacrylamide-gel electrophoresis, and kinetic behavior.Apparent Km values of the Ca2+-dependent phosphodiesterase for cyclic AMP and cyclic GMP were lowered more than 20-fold as CDR quantities in the assay were increased to microgram amounts, whereas the respective maximal velocities remained constant. The apparent Km for Mg2+ was lowered more than 50-fold as CDR was increased to microgram amounts. Half-maximal activation of the phosphodiesterase occurred with lower amounts of CDR as a function of either increasing degrees of substrate saturation or increasing concentrations of Mg2+. At low cyclic nucleotide substrate concentrations i.e., 2.5 μm, cyclic GMP was hydrolyzed at a fourfold greater velocity than cyclic AMP. At high substrate concentrations (millimolar range) cyclic AMP was hydrolyzed at a threefold greater rate than cyclic GMP.  相似文献   

5.
Circadian variations in plasma cyclic AMP and cyclic GMP were studied in thirteen male subjects (20–22 years old) under controlled invironmental condition. Plasma collections were made every six hours. Cyclic AMP and cyclic GMP were determined by radioimmunoassay. Individual values of plasma cyclic AMP at 0800 are between 13.0 and 25.8 pmole/ml, and cyclic GMP between 2.5 and 7.0 pmole/ml. Cyclic AMP demonstrated the circadian variation with the maximum level at 1400 and the minimum at 0200, and cyclic GMP with the highest level at 1400 and the lowest level at 0800.  相似文献   

6.
Particulate cell fractions of mycelium of Mucor rouxii contain adenylate cyclase activity which can be partially solubilized by 2% Lubrol PX. The enzyme requires Mn2+ and its activity is not modified by NaF or guanosine nucleotides. Mycelial extracts also contain cyclic adenosine 3′:5′-monophosphate phosphodiesterase activity, 60% of which is soluble. This activity shows characteristic low Km (1 μm) for cyclic AMP and does not hydrolyze cyclic guanosine 3′:5′-monophosphate. It requires Mn2+ ions for maximal activity and is not inhibited by methylxanthines or activated by imidazole. Both enzymatic activities vary during the aerobic life cycle of the fungus. The spores have the highest levels of adenylate cyclase and cAMP phosphodiesterase, which decrease during the aerobic development. At the round cell stage, phosphodiesterase activity reaches 40% of the activity of the spores and varies only slightly thereafter. At this stage the specific activity of adenylate cyclase is 25% of the activity of ungerminated spores, and from this stage on, the activity increases up to the end of the logarithmic phase. Intracellular levels of cyclic AMP have been measured during aerobic germination. The variations of the intracellular level are tentatively explained by unequal variations in the activities of adenylate cyclase and cyclic AMP phosphodiesterase. A continuous increase of the extracellular cyclic AMP level during aerobic development has also been found, which cannot be accounted for solely by variations in the cyclase and diesterase activities.  相似文献   

7.
The cyclic adenosine 3′,5′-monophosphate (cyclic AMP) phosphodiesterase from human leukemic lymphocytes differes from the normal cell enzyme in having a much higher activity and a loss of inhibition by cyclic guanosine 3′,5′-monophosphate (cyclic GMP). In an effort to determine the mechanism of these alterations, we have studied this enzyme in a model system, lectin-stimulated normal human lymphocytes. Following stimulation of cells with concanavalin A (con A) the enzyme activity gradually becomes altered, until it fully resembles the phosphodiesterase found in leukemic lymphocytes. The changes in the enzyme parallel cell proliferation as measured by increases in thymidine incorporation into DNA. The addition of a guanylate cyclase inhibitor preparation from the bitter melon prevents both the changes in the phosphodiesterase and the thymidine incorporation into DNA. This blockage can be partially reversed by addition of 8-bromo cyclic guanosine 3′,5′-monophosphate (8-bromo cyclic GMP) to the con A-stimulated normal lymphocytes. These results indicate a possible role of cyclic GMP in a growth related alteration of cyclic AMP phosphodiesterase.  相似文献   

8.
Cyclic adenosine 3′,5′-monophosphate (cyclic AMP) is present in saprophytic fast growing as well as pathogenic and non-pathogenic slow growing mycobacteria. Apparently there does not seem to be any direct relationship between either intra- or extra-cellular cyclic AMP content with the growth rate of the bacteria. Intracellular cyclic AMP content is much higher than that of E. coli grown on a similar carbon source. Glucose when added to the cells suspended in phosphate buffer lowers the intracellular cyclic AMP content by 6–8 fold.  相似文献   

9.
The effects of adenosine 3' : 5'-monophosphate (cyclic AMP), guanosine 3' : 5'-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P). While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10(-5) M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP. Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10(-8) M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10(-8) M, while with cyclic AMP a concentration of 10(-5) M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P. These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

10.
The germination of spores of Mucor rouxii into hyphae was inhibited by 2 mm dibutyryl cyclic adenosine 3′,5′-monophosphate or 7 mm cyclic adenosine 3′,5′-monophosphate; under these conditions spores developed into budding spherical cells instead of filaments, provided that glucose was present in the culture medium. Removal of the cyclic nucleotides resulted in the conversion of yeast cells into hyphae. Dibutyryl cyclic adenosine 3′,5′-monophosphate (2 mm) also inhibited the transformation of yeast to mycelia after exposure of yeast culture to air.Since in all living systems so far studied adenylate cyclase and cyclic adenosine 3′,5′-monophosphate phosphodiesterase are involved in maintaining the intracellular cyclic adenosine monophosphate level, the activity of both enzymes and the intracellular concentration of cyclic adenosine monophosphate were investigated in yeast and mycelium extracts. Cyclic adenosine monophosphate phosphodiesterase and adenylate cyclase activities could be demonstrated in extracts of M. rouxii. The specific activity of adenylate cyclase did not vary appreciably with the fungus morphology. On the contrary, cyclic adenosine monophosphate phosphodiesterase activity was four- to sixfold higher in mycelial extracts than in yeast extracts and reflected quite accurately the observed changes in intracellular cyclic adenosine monophosphate levels; these were three to four times higher in yeast cells than in mycelium.  相似文献   

11.
Phosphodiesterase activities of horse (and dog) thyroid soluble fraction were compared with either cyclic AMP (adenosine 3':3'-monophosphate) or cyclic GMP (guanosine 3':5'-monophosphate) as substrate. Optimal activity for cyclic AMP hydrolysis was observed at pH 8, and at pH 7.6 for cyclic GMP. Increasing concentrations of ethyleneglycol bis(2-aminoethyl)-N,N'-tetraacetic acid inhibited both phosphodiesterase activities; in the presence of exogenous Ca2+, this effect was shifted to higher concentrations of the chelator. In a dialysed supernatant preparation, Ca2+ had no significant stimulatory effect, but both Mg2+ and Mn2+ increased cyclic nucleotides breakdown. Mn2+ promoted the hydrolysis of cyclic AMP more effectively than that of cyclic GMP. For both substrates, substrate velocity curves exhibited a two-slope pattern in a Hofstee plot. Cyclic GMP stimulated cyclic AMP hydrolysis, both nucleotides being at micromolar concentrations. Conversely, at no concentration had cyclic AMP any stimulatory effect on cyclic GMP hydrolysis. 1-Methyl-3-isobutylxanthine and theophylline blocked the activation by cyclic GMP of cyclic GMP of cyclic AMP hydrolysis, whereas Ro 20-1724 (4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone), a non-methylxanthine inhibitor of phosphodiesterases, did not alter this effect. In dog thyroid slices, carbamoylcholine, which promotes an accumulation of cyclic GMP, inhibits the thyrotropin-induced increase in cyclic AMP. This inhibitory effect of carbamoylcholine was blocked by theophylline and 1-methyl-3-isobutylxanthine, but not by Ro 20-1724. It is suggested that the cholinergic inhibitory effect on cyclic AMP accumulation is mediated by cyclic GMP, through a direct activation of phosphodiesterase activity.  相似文献   

12.
In this paper, cyclic adenosine-3′:5′-monophosphate-dependent protein kinase from yeast-like cells of Mucor rouxii is characterized. A scheme of partial purification is described together with Km for ATP (15 μm), histone (0.2 mg/ml), half-maximal activation constant for cyclic AMP (30 nm), and dissociation constant for the binding of cyclic AMP (40 nm). This enzyme is similar to type II protein kinases in two main aspects: the elution position in DEAE-cellulose chromatography and the readiness of its reassociation. But it has a singular characteristic: it does not dissociate completely with cyclic AMP alone (even at concentrations as high as 0.3 mm) unless histone or NaCl is present. NaCl displays several roles: helps dissociation, prevents inactivation of the catalytic subunit, inhibits enzyme activity, and does not prevent reassociation as occurs with type II protein kinases. Once the holoenzyme is dissociated, cyclic AMP is essential to maintain the enzyme in the dissociated state.  相似文献   

13.
In an exponentially growing culture of E. coli, the concentration of cyclic guanosine 3′:5′-monophosphate (cyclic GMP) was found to increase in parallel with the bacterial growth. As the cells approach the stationary phase of growth, the increment of cyclic GMP also ceases progressively to reach to a plateau. When cells are separated from the medium by centrifugation, almost all of the cyclic GMP is recovered in the culture supernatant. The amount of cyclic GMP accumulated is proportional to the number of cells present in the culture. These results suggest that a constant number of cyclic GMP molecules is synthesized each generation of E. coli, and is excreted from the cells to accumulate into the medium.  相似文献   

14.
Guanosine 3',5'-monophosphate-dependent protein kinase (cyclic GMP-dependent protein kinase) and adenosine 3',5'-monophosphate-dependent protein kinase (cyclic AMP-dependent protein kinase) exhibited a high degree of cyclic nucleotide specificity when hormone-sensitive triacylglycerol lipase, phosphorylase kinase, and cardiac troponin were used as substrates. The concentration of cyclic GMP required to activate half-maximally cyclic dependent protein kinase was 1000- to 100-fold less than that of cyclic AMP with these substrates. The opposite was true with cyclic AMP-dependent protein kinase where 1000- to 100-fold less cyclic AMP than cyclic GMP was required for half-maximal enzyme activation. This contrasts with the lower degree of cyclic nucleotide specificity of cyclic GMP-dependent protein kinase of 25-fold when histone H2b was used as a substrate for phosphorylation. Cyclic IMP resembled cyclic AMP in effectiveness in stimulating cyclic GMP-dependent protein kinase but was intermediate between cyclic AMP and cyclic GMP in stimulating cyclic AMP-dependent protein kinase. The effect of cyclic IMP on cyclic GMP-dependent protein kinase was confirmed in studies of autophosphorylation of cyclic GMP-dependent protein kinase where both cyclic AMP and cyclic IMP enhanced autophosphorylation. The high degree of cyclic nucleotide specificity observed suggests that cyclic AMP and cyclic GMP activate only their specific kinase and that crossover to the opposite kinase is unlikely to occur at reported cellular concentrations of cyclic nucleotides.  相似文献   

15.
(i) Three forms of cyclic AMP phosphodiesterases (3′,5′-cyclic AMP 5′-nucleotidohydrolase, EC 3.1.4.17), F1, F2-I and F2-II, were partially purified from the soluble fraction of rat pancreas in the presence of excess protease inhibitors by DEAE-cellulose column chromatography and gel filtration and were characterized. (ii) F2-II, which was purified 31-fold, exhibited a single peak of activity on both polyacrylamide-gel electrophoresis and isoelectric focusing. The enzyme had a molecular weight of about 70,000, an isoelectric point of 3.9, and an optimal pH around 8.5 and required Mg2+ or Mn2+ but not Ca2+ for activity. The Km values of this enzyme for cyclic AMP and cyclic GMP were 1 and 50 μm, respectively, while V values of this enzyme for cyclic AMP and cyclic GMP were 36.1 and 12.6 nmol min?1 (mg of protein)?1, respectively. Cyclic GMP competitively inhibited hydrolysis of cyclic AMP by this enzyme. Ro20-1724 [4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone] also inhibited hydrolysis of cyclic AMP competitively, with a Ki value of 1 μm. (iii) Fraction F1, which was purified 10-fold, had a molecular weight of more than 500,000 and required Mg2+ for activity. Its Km values for cyclic AMP were 1 and 5 μm. Its Km value for cyclic GMP was 45 μm. Fraction F2-I, which was purified 26-fold, had a molecular weight of about 70,000. The ratio of the initial velocity of hydrolysis of cyclic GMP to that of cyclic AMP was 0.5 at a substrate concentration of 1 μm.  相似文献   

16.
Cyclic guanosine 3′,5′-monophosphate (cyclic GMP) stimulates nucleic acid synthesis in lymphocytes, and has been implicated as the intracellular effector of the actions of mitogenic agents on these cells. In the present study, we examined the specificity of the mitogenic activity of cyclic GMP and of its 8-bromo (Br) derivatives, and the effects of the T cell mitogens, concanavalin A, phytohemagglutinin, and staphylococcal entertoxin B (SEB) on the cyclic GMP content and guanylate cyclase activity of mouse splenic lymphocytes. Cyclic GMP and guanosine modestly increased the incorporation of [3H]thymidine into DNA by cultured lymphocytes, but were far less effective than their 8-Br-derivatives. However, on a molar basis the mitogenic activity of both 8-Br-guanosine and 8-Br-5′-GMP exceeded that of 8-Br-cyclic GMP, when tested in the presence and absence of serum in the culture media. Combined addition of maximal doses of these nucleotides did not give additive stimulatory effects, suggesting an action on a common subpopulation of cells, and possibly a common mechanism. By contrast, cyclic AMP, 8-Br-cyclic AMP, 8-Br-adenosine, cholera toxin and prostaglandin E1 suppressed both basal [3]thymidine incorporation and stimulation of this parameter by T-cell line mitogens and the guanosine nucleotides. Rapid effects of concanavalin A, phytohemagglutinin, SEB, guanosine, 5′-GMP, 8-Br-guanosine, and 8-Br-5′-GMP on the cyclic GMP content of murine lymphocytes could not be demonstrated. Similarly, concanalin A, phytohemagglutinin and SEB failed to alter guanylate cyclase activity when added directly to cellular homogenates or pre-incubated with intact cels. Conversely, carbamylcholine rapidly increased lymphocyte cyclic GMP but was not mitogenic.These results are consistent with the hypothesis that cyclic GMP and cyclic AMP are antagonistic in their influence on lymphocyte mitogenesis. However, they also demonstrate that related nucleotides are more potent mitogens than cyclic GMP and suggest that activation of murine lymphocytes by concanavalin A, phytohemagglutinin and SEB may not be mediated by rapid increases in cellular cyclic GMP content. Since high concentrations of exogenous cyclic GMP and related nucleotides must be used to influence DNA synthesis, the biologic significance of this effect remains uncertain.  相似文献   

17.
Guanosine 3′,5′-monophosphate-dependent protein kinase (cyclic GMP-dependent protein kinase) and adenosine 3′,5′-monophosphate-dependent protein kinase (cyclic AMP-dependent protein kinase) exhibited a high degree of cyclic nucleotide specificity when hormone-sensitive triacylglycerol lipase, phosphorylase kinase, and cardiac troponin were used as substrates. The concentration of cyclic GMP required to activate half-maximally cyclic dependent protein kinase was 1000- to 100-folds less than that of cylic AMP with these substrates. The opposite was true with cyclic AMP-dependent protein kinase where 1000- to 100-fold less cyclic GMP was required for half-maximal enzyme activation. This contrasts with the lower degree of cyclic nucleotide specificity of cyclic GMP-dependent protein kinase of 25-fold when histone H2b was used as a substrate for phosphorylation. Cyclic IMP resembled cyclic AMP in effectiveness in stimulating cyclic GMP-dependent protein kinase but was intermediate between cyclic AMP and cyclic GMP in stimulating cyclic. AMP-dependent protein kinase. The effect of cyclic IMP on cyclic GMP-dependent protein kinase was confirmed in studies of autophosphorylation of cyclic GMP-dependent protein kinase where both cyclic AMP and cyclic IMP enhanced autophophorylation. The high degree of cyclic nucleotide specificity observed suggests that cyclic AMP and cyclic GMP activate only their specific kinase and that crossover to the opposite kinase is unlikely to occur at reported cellular concentrations of cyclic nucleotides.  相似文献   

18.
Crude preparations of cyclic adenosine 3′, 5′-monophosphate phosphodiesterase were activated 1.5 to 2 fold by incubation with ATP, Mg2+ and cyclic AMP in a reaction which was both, time and temperature dependent. Cyclic AMP phosphodiesterase remained in an activated state upon filtration of the enzymatic preparation through Sephadex G-25 and ion-exchange chromatography. Activation of the enzyme in the presence of [γ 32P]ATP resulted in a significant amount of [32P] protein-bound radioactivity. Reversible deactivation of cyclic AMP phosphodiesterase was enhanced by Mg2+ and was accompanied by the release of [32P] protein bound radioactivity. The evidence is consistent with a mechanism for controlling cyclic AMP phosphodiesterase through phosphorylation-dephosphorylation sequence.  相似文献   

19.
Using the principle of affinity elution chromatography, a microassay has been developed for the determination of picomolar and even smaller quantities of adenosine 3'.5' -monophosphate (cyclic AMP) in biological samples. In principle, cyclic AMP along with the other anions is adsorbed onto an anion exchange cellulose and subsequently, the cyclic nucleotide is specifically eluted with cyclic-AMP -dependent protein kinase. In the actual assay cyclic AMP is determined by competitive displacement of radiolabelled cyclic AMP by non-labelled cyclic nucleotide. The described procedure results in a linear dependence for the displacement of the radioactive nucleotide on cyclic AMP concentration and obviates the usual procedure of sample enrichment by lyophilization. The degree of interference of different nucleotides including cyclic GMP was found to be minimal and in this respect the use affinity elution chromatography was comparable to radioimmunoassay.  相似文献   

20.
Adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) metabolism in rat renal cortex was examined. Athough the cyclic AMP and cyclic GMP phosphodiesterases are similarly distributed between the soluble and particulate fractions following differential centrifugation, their susceptibility to inhibition by theophylline, dl-4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724), and 1-methyl-3-isobutylxanthine (MIX) are quite different. Ro 20-1724 selectively inhibited both renal cortical-soluble and particulate cyclic AMP degradation, but had little effect on cyclic GMP hydrolysis. Theophylline and MIX effectively inhibited degradation of both cyclic nucleotides, with MIX the more potent inhibitor. Effects of these agents on the cyclic AMP and cyclic GMP content of cortical slices corresponded to their relative potency in broken cell preparations. Thus, in cortical slices, Ro 20-1724 (2 mm) had the least effect on basal (without agonist), carbamylcholine, and NaN3-stimulated cyclic GMP accumulation, but markedly increased basal and (parathyroid hormone) PTH-mediated cyclic AMP accumulation, MIX (2 mm) which was as effective as Ro 20-1724 in potentiating basal and PTH-stimulated increases in cyclic AMP also mediated the greatest augmentation of basal, carbamylcholine, and NaN3-stimulated accumulation of cyclic GMP. By contrast, theophylline (10 mm) which was only 12% as effective as Ro 20-1724 in increasing the total slice cyclic AMP content in the presence of PTH was much more effective than Ro 20-1724 in potentiating carbamylcholine and NaN3-mediated increases in cyclic GMP. These results demonstrate selective inhibition of cyclic nucleotide phosphodiesterase activities in the rat renal cortex and support the possibility of multiple cyclic nucleotide phosphodiesterases in this tissue. Furthermore, both cyclic nucleotides appear to be rapidly degraded in the renal cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号