首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1. The denitrifying capacity of epiphyton was used to evaluate differences in the function of epiphytic microbial communities on submersed macrophytes in nutrient-rich freshwater ecosystems. The denitrifying capacity of epiphyton on Potamogeton perfoliatus shoots of different age and with different epiphytic abundances from a eutrophic lake was investigated in laboratory microcosms in the light and dark. Additionally, differences between epiphyton on shoots of Potamogeton pectinatus grown under different in situ nutrient and hydraulic conditions were investigated by examining their denitrifying capacity.
2. Denitrification was registered in well-developed epiphytic layers on both mature and senescent shoots in the dark, with activities 3- to 10-fold higher in the epiphytic communities of senescent shoots. No activity was detected on young shoots with sparse epiphyton or on shoots from which loosely attached epiphyton had been removed. Denitrification never occurred during illumination.
3. Even though the epiphytic abundance was similar in magnitude, the denitrifying capacity of epiphyton adapted to high nutrient loadings was about a hundred times higher than that of epiphyton adapted to lower nutrient levels. Additionally, epiphytic abundance and denitrifying capacity were higher at sites less exposed to wave turbulence or water currents, than at sites with more water turbulence.
4. The results illustrate how the hydraulic and nutrient conditions of the surrounding water affect both the quantity and function of epiphytic microbial communities in nutrient-rich freshwater ecosystems.  相似文献   

2.
1. The denitrifying capacity of epiphyton was used to evaluate differences in the function of epiphytic microbial communities on submersed macrophytes in nutrient-rich freshwater ecosystems. The denitrifying capacity of epiphyton on Potamogeton perfoliatus shoots of different age and with different epiphytic abundances from a eutrophic lake was investigated in laboratory microcosms in the light and dark. Additionally, differences between epiphyton on shoots of Potamogeton pectinatus grown under different in situ nutrient and hydraulic conditions were investigated by examining their denitrifying capacity.
2. Denitrification was registered in well-developed epiphytic layers on both mature and senescent shoots in the dark, with activities 3- to 10-fold higher in the epiphytic communities of senescent shoots. No activity was detected on young shoots with sparse epiphyton or on shoots from which loosely attached epiphyton had been removed. Denitrification never occurred during illumination.
3. Even though the epiphytic abundance was similar in magnitude, the denitrifying capacity of epiphyton adapted to high nutrient loadings was about a hundred times higher than that of epiphyton adapted to lower nutrient levels. Additionally, epiphytic abundance and denitrifying capacity were higher at sites less exposed to wave turbulence or water currents, than at sites with more water turbulence.
4. The results illustrate how the hydraulic and nutrient conditions of the surrounding water affect both the quantity and function of epiphytic microbial communities in nutrient-rich freshwater ecosystems.  相似文献   

3.
Growth of aquatic vegetation is often controlled by light supply, which is potentially decreased by bank vegetation, water turbidity and epiphytic biofilm. To understand the relative importance of these shading factors and the interactions between them we analysed the seasonal course of macrophyte biomass, shading by bank vegetation, turbidity of the water column and epiphytic light absorption in shaded and sunny sections of a temperate eutrophic lowland river. At a shaded site, bank vegetation decreased the light supply by 79%, 0.5 m water column by 45% and 2-week-old epiphyton by 28% during the vegetation period. Growth of submersed macrophytes, but not of epiphyton, was light-limited in the shaded sections. We found a saturation-type correlation between light supply and macrophyte biomass. Therefore, the additional light absorption of the water column or epiphyton only shortened the period of optimum light supply at the sunny site, but was crucial for macrophyte development at the shaded site. Light absorption of phytoplankton was most important in spring and that of epiphyton in late summer. Submersed macrophytes effectively retained particles and thus improved light supply of downstream stands, but this positive feedback effect was only relevant for shaded sections in summer.  相似文献   

4.
Tropical floodplains are one of the most productive ecosystems on earth. Studies on floodplain productivity have primarily focused on trees and macrophytes, rather than algae, due to their greater biomass. However, epiphyton—algae and bacteria attached to the submerged portion of aquatic macrophytes—is a major source of energy in many tropical floodplains. Epiphyton productivity rates are unknown for most tropical floodplain wetlands, and spatial variability is not well understood. In this study, we measured primary productivity of epiphyton in Kakadu National Park in northern Australia. We estimated the relative contribution of epiphyton to aquatic production (epiphyton, + phytoplankton + macrophytes). We sampled sites dominated by different macrophyte structural types: vertical emerging grasses, horizontal emerging grasses, submerged macrophytes, and macrophytes with floating leaves. Epiphyton productivity was highly influenced by the structural type of the macrophyte. Highest potential productivity per weight was measured from epiphyton growing on macrophytes with floating leaves and horizontal grasses (1.52 ± 0.53 and 1.82 ± 0.61 mgC/dw g epiphyton/h, respectively) and lowest in submerged macrophytes and vertical grasses (0.57 ± 0.26 and 0.66 ± 0.47 mgC/dw g epiphyton/h, respectively). When considering the areal biomass of the macrophyte and the amount of epiphyton attached, epiphyton on horizontal grasses and submerged macrophytes had productivity values approximately ten times higher (45–219 mgC/m2/d) compared to those on vertical grasses and macrophytes with floating leaves (2–18 mgC/m2/d). Epiphyton contributed between 2 to 13 percent to the aquatic production of these tropical floodplain wetlands.  相似文献   

5.
Biomass assessments of algae in wetlands usually include only the phytoplankton community without considering the contribution of other algal associations to total algal biomass. This omission prevents an accurate evaluation of the phytoplankton community as an integral part of the total ecosystem. In the present work, the biomass contributions (expressed as chlorophyll-a content per m2 of lake) of phytoplankton, epiphyton on both submerged and emergent macrophytes, and epipelon were measured in Lacombe Lake, Argentina, for the purpose of (1) establishing the relative importance of the phytoplankton and (2) evaluating the entire contribution of algal biomass within the context of the Goldsborough & Robinson conceptual model. Our sampling was carried out monthly for a year in sites representative of different conditions with respect to water depth and type of macrophytes. Physicochemical analyses of water were performed following standard methods. Plankton was collected in a five-level profile at deeper stations and in subsurface samples at the shallow one. Samples of sediment obtained with corers were collected for epipelon sampling and segments of plants were cut at different levels, so as to obtain the epiphytes by scraping. Pigment was extracted with aqueous acetone and calculations were made by means of the Lorenzen equation. According to the Goldsborough & Robinson model, a Lake State developed here during the winter (phytoplankton maxima: 150 mg chlorophyll-a per m2). Then, through the subsequent growth of the submerged macrophytes, an Open State was observed, characterized by a maximum epiphyton biomass (at 3,502 mg chlorophyll-a per m2) along with lower levels of phytoplankton biomass. The epiphytic algae on the emergent macrophytes were always present but attained only relatively low biomass values (maximum: 120 mg of chlorophyll-a per m2 in February). The epipelon biomass varied between 50 and 252 mg chlorophyll-a per m2, registering a considerable contribution of settled algae from the water column (phytoplankton). This study contributes to our knowledge of wetland dynamics through its assessment of the rapid changes in the relative contributions of both planktonic and attached algae to the total algal biomass within the context of specific environmental factors. Guest editors: U. M. Azeiteiro, I. Jenkinson & M. J. Pereira Plankton Studies  相似文献   

6.
The distribution of submerged macrophytes in eutrophic lakes has been found to be skewed towards sites with intermediate exposure to waves. Low submerged macrophyte biomass at exposed sites has been explained by, for instance, physical damage from waves. The aim of this study was to investigate if lower biomass at sheltered sites compared to sites with intermediate exposure to waves can be caused by competition from epiphyton.Investigations were performed in eutrophic lakes in southern Sweden. Samples of submerged macrophytes and epiphytic algae on the macrophytes were taken along a wave exposure gradient. The amount of epiphyton (AFDW) per macrophyte biomass decreased with increased exposure. Biomass of submerged macrophytes, on the other hand, increased with increased exposure until a relatively abrupt disappearance of submerged vegetation occurred at high exposures. Production of epiphytic algae was monitored on artificial substrates from June to September at a sheltered and an exposed site in three lakes. It was higher at sheltered sites compared with exposed sites.We suggest that epiphytic algae may be an important factor in limiting the distribution of submerged macrophytes at sheltered sites in eutrophic lakes.  相似文献   

7.
The seasonal succession of epiphytic communities on Equisetum fluviatile was controlled both directly and indirectly by the macrophyte. Decaying macrophytic material supported rich algal growth and biomass accumulation in spring and early summer. Emergence of the macrophytes severely reduced underwater light availability, and the epiphytic algal biomass declined rapidly as a result of both lower photosynthetic activity of the epiphytic algae, and more intensive grazing by invertebrate herbivores. Epiphytic N: P ratios were lower than those in the water around suggesting that either the water was not the only source of phosphorus for the epiphytic algae or the algae took phosphorus up selectively from the water. Low epiphytic C: N ratios suggested a high potential nutritional value for herbivores.  相似文献   

8.
SUMMARY. 1. We examined the abundance and oxygen metabolism of epiphytic organisms on the dominant macrophyte, Potamogeton pectinatus , in headwaters of the eutrophic River Suså. Microbenthic algae were abundant in the stream during spring and macrophytes during summer.
2. The low macrophyte biomass in spring supported a dense epiphyte cover whereas the high macrophyte biomass during summer had a thin epiphyte cover of 10–100-fold lower abundance per unit area of macrophyte surface. The epiphyte community was dominated by microalgae in spring and by heterotrophs, probably bacteria, during summer. This seasonal shift was shown by pronounced reductions of the chlorophyll a content (from 2–3% to 0.1–0.7% of organic DW), the gross photosynthetic rate (from 20–85 to 3–15 mg O2, g-1 organic DW h−1) and the ratio of gross photosynthesis to dark respiration in the epiphyte community (from 5–18 to 1). The reduced contributions of epiphytic microalgae correlated with reduced light availability during summer.
3. Both the density and the photosynthetic activity of epiphytic algae were low on a stream area basis relative to those of microbenthic algae and macrophytes. Rapid variations in water velocity and extensive light attenuation in water and macrophyte stands probably constrained the development of epiphytic algae. The epiphyte community was more important in overall stream respiration, contributing c. 10% to total summer respiration and c. 20% to summer respiration within the predominantly heterotrophic microbial communities on sediments and macrophyte surfaces.  相似文献   

9.
The variables affecting epiphyton biomass were examined in a sheltered, multispecies macrophyte bed in the St. Lawrence River. Alteration of light penetration, resulting from the presence of dense macrophytes forming a thick subsurface canopy, primarily determined epiphyton biomass. Seasonal decrease of water levels also coincided with major increases in biomass. Plant morphology was the next important variable influencing epiphytic biomass, whereas the contribution of other variables (sampling depth, macrophyte species, relative abundance of macrophytes, and temperature) was low. Groups of lowest epiphyte biomass (0.1–0.6 mg Chla g–1 DW) were defined by the combination of a low percentage of incident light (<13% surface light) and simple macrophyte stem types found below the macrophyte canopy. Highest epiphyte biomass (0.7–1.8 mg Chla g–1 DW) corresponded to samples collected in mid-July and August, under high irradiance (>20% surface light) and supported by ramified stems. Our results suggest that epiphyton sampling should be stratified according to the fraction of surface light intensity, macrophyte architecture, and seasonal water level variations, in decreasing order of influence.  相似文献   

10.
INTERACTIONS BETWEEN EPIPHYTES, MACROPHYTES AND FRESHWATER SNAILS: A REVIEW   总被引:7,自引:0,他引:7  
Epiphyton-feeding snails are often a conspicuous feature ofthe invertebrate fauna associated with submerged freshwatermacrophytes. In this paper I review the different interactionstaking place between snails, epiphyton and macrophytes. Studies on grazing by freshwater snails show that snails havea great impact on the biomass, productivity and species compositionof epiphytic communities. Direct effects of grazing on livingmacrophytes are probably of minor importance, but snails havea significant indirect effect on macrophytes by reducing thedetrimental impact of epiphyton (e.g. shading and competitionfor nutrients). Predators of snails can have a mediating effecton snail-epiphyton-macrophyte interactions, both through a directpredatorprey relationship (reducing the density of snails) andby inducing a habitat displacement of the snails. In a studyon the effects of predation by the pumpkinseed sunfish (a specializedsnail predator) it was found that predation indirectly affectsthe biomass and species composition of epiphytic algae by regulatingthe density of snails.  相似文献   

11.
螺类与着生藻类的相互作用及其对沉水植物的影响   总被引:10,自引:1,他引:9  
由文辉 《生态学杂志》1999,18(3):54-58,74
浅水湖泊的富营养化常导致水生植被的退化与浮游藻类的爆发[10,18,29]。可利用光通常是决定沉水植物分布、生物量和生产力的最重要因子,因此,伴随高营养负荷的浮游藻类繁殖,极大地削弱了沉水植物的光合能力[20]。然而,Philips等人[28]认为,...  相似文献   

12.
Epiphyton and epipelon were quantitatively collected, respectively, from the submerged macrophytes and the sandy lake bottom of Lake Vechten (The Netherlands). On a weight basis, epiphyton was maximal in autumn and epipelon in summer. In winter the chemical composition of epiphyton and epipelon was similar. In summer the epiphyton had on a unit weight basis more organic matter and carbonate, and had per unit organic matter a higher algal number, nitrogen and energy content than the epipelon. Algae predominating the epiphyton were filamentous greens and pennate diatoms; those in the epipelon were pennate diatoms and blue-green algae. In both cases, species known to frequent the phytoplankton were abundant. The diatoms were quantified using paper chromatographic pigment analyses. Both the epiphyton and the epipelon exhibited maximal photosynthesis in mid summer. That light was generally the limiting factor was evident from periphyton developed on artificial substrates. This periphyton differed widely in its composition from that on the natural substrates, mainly because the latter collected much more sedimenting matter.In dense Ceratophyllum stands light was severely attenuated and the significant gradients in oxygen and pH were caused by the differences with depth in the proportions of photosynthesis and respiration. The oxygen content and pH at the bottom decreased owing to epipelic respiration. The epiphytic composition depended greatly on the degree of light attenuation. The epiphytic and epipelic respiration, except during part of the early summer, exceeded photosynthesis on a 24 h basis; this included the macrophytic photosynthesis during the time the vegetation was maximally developed. During the growing season import of organic matter, i.e. deposited seston, greatly exceeded that due to the photosynthetic production. After the summer maximum, the epipelon decreased faster than predicted from its oxygen exchange. It was concluded that sedimentation and resuspension determined mainly the changes in epiphyton and epipelon. Especially when covered with vegetation, the lower littoral of Lake Vechten plays a large part in the aerobic decomposition of sestonic organic matter.  相似文献   

13.
Fresh specimens of the small floating aquatic macrophytes Lemna minor L. and Spirodela oligorhiza (Kurz) Hegelm., collected in Texas and Florida, were examined by scanning and transmission electron as well as light microscopy. Observations revealed that surfaces of the plants, including fronds and roots, were well colonized by bacteria and cyanobacteria as well as other microorganisms. Microorganisms were firmly attached and roots were shown to posses the mucilaginous layer commonly observed on other aquatic and terrestrial macrophytes. The rhizoplane of most plants was extensively colonized although some variability existed. Bacteria were also observed in the intercellular spaces of apparently healthy roots. The observations demonstrated some ultrastructural aspects of the association between some members of the Lemnaceae and attached epiphytic microorganisms.  相似文献   

14.
1. The presence of contiguous beds of submerged (Myriophyllum spicatum, Ceratophyllum demersum and Najas marina) and floating-leaved (Trapa natans) vegetation in a north Italian lake allowed us to test the effect of the different host architecture on epiphytic algae and invertebrates and to predict the consequences for the lake of changes in the predominant vegetation. 2. Epiphyton development, measured as carbon, nitrogen, phosphorus, chlorophyll a (Chl a), phaeophytin and as algal and macroinvertebrate density, was significantly higher on submerged plants than on T. natans. The C : Chl a ratio, a proxy of the ratio of heterotrophs to autotrophs, was higher on the floating-leaved plants. The elemental (C : N : P) and pigment (Chl a : phaeophytin) ratios were not significantly different between the two vegetation types. 3. The taxonomic composition of epiphytic algae and invertebrates was similar on the different plants. The more varied morphology of the floating-leaved T. natans resulted in a higher diversity of epiphytic algae, however, but not of macroinvertebrates. 4. There was a significant inverse relationship between epiphyton biomass and the standing crop of the host plant, suggesting a key role for light and water exchange in epiphyton development. 5. Replacement of floating-leaved by submerged plants would increase the total biomass of epiphytic algae and invertebrates.  相似文献   

15.
Human activities and climate change have greatly altered flooding regimes in many of the world's river deltas, but the impact of such changes remains poorly quantified on decadal to multidecadal timescales. This study identified the response of delta lake primary production (measured as the concentration of sedimentary pigments) to variations in flood frequency using spatial surveys and paleolimnological analyses of lakes in the Peace‐Athabasca Delta (PAD), Canada. Surveys of 61 lakes spanning a range of hydrological conditions showed that those lakes that received flood waters less frequently were associated with elevated algal production (surface sedimentary pigments) and, in some lakes, increased growth of emergent macrophytes and epiphytic diatoms. Paleolimnological analyses of five lakes corroborated the contemporary spatial survey results by showing that production of pigments from most algal groups increased during recent periods of lower flood frequency in the 20th century as determined from increases in cellulose‐inferred lake‐water oxygen isotope composition and plant macrofossils, but remained stable in a ‘reference’ basin. In general, past periods of elevated algal production coincided with the increased abundance of submerged macrophytes or emergent vegetation that provide habitat for attached algae. These results suggest that interdecadal declines in river discharge arising from increased aridity, hydrologic regulation or consumptive water use will cause long‐term increases in primary production and alter ecosystem processes (carbon sequestration, biological diversity) in aquatic delta ecosystems similar to the PAD where lakes become nutrient‐rich in the absence of flooding.  相似文献   

16.
The apparatus allows the sampling of both algal and animal components of the epiphyton. It consists of a perspex tube, 100 cm long with an internal diameter of 4 cm, and of an epiphytic sieve. The latter is made of two 2.5 cm cross-sections of perspex tubing with a piece of circular mesh glued between them. While sampling, a randomly chosen shoot is isolated from the ambient water by means of the tube, cut at the bottom sediment and removed together with epiphyton. The water, taken together with the shoot is then removed using the epiphytic sieve, joined with the tube under the water surface. The detached organisms, associated with the stem and those scraped from the stem with a stiff brush afterwards, concentrate on the mesh.  相似文献   

17.
Relative contributions by macrophytes, epiphyton and phytoplankton to total primary production was estimated in a large (∼300 km2) widening of the St. Lawrence River (Canada), over a 2-year period with contrasting flows and water levels. Spatially-explicit estimates of whole-system production were obtained by combining field measurements with remotely sensed data and empirical models using GIS. Primary production and relative contributions of each producer type differed markedly between open-water and wetland habitats. Spatial differences within each habitat arose from interactions between physical factors including light, water depth, water transit times and wind stress. At the whole-system level, annual primary production represented 105 gC m−2 y−1, divided roughly equally among phytoplankton (34%), submerged macrophytes (27%), emergent macrophytes (23%) and epiphyton (16%). A 10% decrease in annual flows and 1-m decline in water levels between 2000 and 2001 resulted in a 50% loss of marsh habitat, a 60% increase in phytoplankton production in the open-water zone, and in the appearance of conspicuous filamentous algal mats. Low water levels induced substantial shifts in the spatial configuration and relative importance of primary producers although total river primary production remained stable between years.  相似文献   

18.
The epiphyton is a community of periphyton on the aquatic plants. The seasonal dynamics of biomass, production and community structure of epiphytic algae on Potamogeton perfoliatus was studied at the Moscow River reach with low flow velocity from May to October 2000. The relative importance of physical-chemical environmental variables and herbivorous pressure in structuring the epiphyton community was accessed using multivariate redundancy analysis. Algal composition was mainly determined by the macrophyte cover, suggestion the overriding importance of the underwater light availability in seasonal development of epiphyton. There was a significant positive relationship between biomass of attached diatom Cocconeis placentula and abundance of chironomid larvae (r = 0.57; p < 0.01). This indicates that increase in herbivorous pressure caused the shift in epiphyton community structure. However, the intensity of herbivorous impact on epiphyton was ultimately determined by light availability in macrophyte stands. At low irradiance level and consequent slow growth of algae the upper layer of epiphyton was seriously destroyed by chironomids that resulted in dominance of C. placentula. As irradiance level and epiphyton productivity increased chironomids were unable to prevent biomass accumulation of the upper layer thus inhibiting the growth of C. placentula. The high concentrations of nutrients and relatively stable discharge determined the crucial role of light regime in the regulation of trophic interactions between epiphyton and chironomid larvae.  相似文献   

19.
1. The microbial metabolism of organic matter in rivers has received little study compared with that of small streams. Therefore, we investigated the rate and location of bacterial production in a sixth‐order lowland river (Spree, Germany). To estimate the contribution of various habitats (sediments, epiphyton, and the pelagic zone) to total bacterial production, we quantified the contribution of these habitats to areal production by bacteria. 2. Large areas of the river bottom were characterized by loose and shifting sands of relatively homogenous particle size distribution. Aquatic macrophytes grew on 40% of the river bottom. Leaf areas of 2.8 m2 m?2 river bottom were found in a 6.6 km river stretch. 3. The epiphyton supported a bacterial production of 5–58 ng C cm?2 h?1. Bacterial production in the pelagic zone was 0.9–3.9 μg C L?1 h?1, and abundance was 4.0–7.8 × 109 cells L?1. Bacterial production in the uppermost 2 cm of sediments ranged from 1 to 8 μg C cm?3 h?1, and abundance from 0.84 to 6.7 × 109 cells cm?3. Bacteria were larger and more active in sediments than in the pelagic zone. 4. In spite of relatively low macrophyte abundance, areal production by bacteria in the pelagic zone was only slightly higher than in the epiphyton. Bacterial biomass in the uppermost 2 cm of sediments exceeded pelagic biomass by factors of 6–22, and sedimentary bacterial production was 17–35 times higher than in the overlying water column. 5. On a square meter basis, total bacterial production in the Spree was clearly higher than primary productivity. Thus, the lowland river Spree is a heterotrophic system with benthic processes dominating. Therefore, sedimentary and epiphytic bacterial productivity form important components of ecosystem carbon metabolism in rivers and shallow lakes. 6. The sediments are focal sites of microbial degradation of organic carbon in a sand‐bottomed lowland river. The presence of a lowland river section within a river continuum probably greatly changes the geochemical fluxes within the river network. This implies that current concepts of longitudinal biogeochemical relationships within river systems have to be revised.  相似文献   

20.
Growth of macrophytes and ecosystem consequences in a lowland Danish stream   总被引:13,自引:0,他引:13  
SUMMARY. 1. The River Suså is a small, nutrient-rich stream situated in an open landscape with clayish subsoil under intensive cultivation. Discharge was variable daily and seasonally due to low groundwater input. Above-ground development of submerged macrophytes was restricted to late May to November, when water velocity and depth were low. Dominant macrophytes were rooted Potamogeton pectinatus and Sparganium emersum and unrooted Cladophora . Biomass development was closet) related to light availability.
2. Growth rates of macrophytes were linearly related to light availability when self-shading was accounted for. Potamogeton pectinatus grew rapidly m May-June, concentrated the biomass at the water-surface during July-August, and then declined exponentially when the shoots became basally senescent. Sparganium emersum had linear, flexible leaves that were continuously replaced from a basal meristem. Sparganium emersum was less susceptible to high water velocities than Potamogeton pectinatus and the biomass declined later and at lower rates during autumn. Sparganium emersum also regrew after culling that left its meristem intact in the sediment. Unrooted Cladophora developed a high biomass during sunny periods and subsequently disappeared at high discharges. The summer biomass of rooted macrophytes was greater in years with high summer discharge, whereas the biomass of Cladophora and of the epiphytic microbial community was lower due to scouring.
3. Submerged macrophytes played a key role in structure and functioning of the ecosystem. They reduced water velocities two to four fold during summer and promoted extensive organic sedimentation. The biomass of benthic diatoms declined parallel to increased macrophyte shading and sedimentation. In addition, submerged macrophytes formed a large substratum for macroinvertebrates and for a microbial community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号