首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histone deacetylase inhibitors (HDACi) are novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with multiple myeloma (MM). Although HDACi have demonstrable synergy when combined with proteasome inhibitors (PIs), recent evidence indicates that combination of HDACi and PI is beneficial only in a subset of patients with advanced MM, clearly indicating that other rational combinations should be explored. In this context we hypothesized that understanding the molecular signature associated with inherent resistance to HDACi would provide a basis for the identification of therapeutic combinations with improved clinical efficacy. Using human myeloma cell lines (HMCL) categorized as sensitive, intermediate or resistant to HDACi, gene expression profiling (GEP) and gene ontology enrichment analyses were performed to determine if a genetic signature associated with inherent resistance to HDACi-resistance could be identified. Correlation of GEP to increasing or decreasing sensitivity to HDACi indicated a unique 35-gene signature that was significantly enriched for two pathways – regulation of actin cytoskeleton and protein processing in endoplasmic reticulum. When HMCL and primary MM samples were treated with a combination of HDACi and agents targeting the signaling pathways integral to the actin cytoskeleton, synergistic cell death was observed in all instances, thus providing a rationale for combining these agents with HDACi for the treatment of MM to overcome resistance. This report validates a molecular approach for the identification of HDACi partner drugs and provides an experimental framework for the identification of novel therapeutic combinations for anti-MM treatment.  相似文献   

2.
3.
Autologous stem cell transplantation (ASCT) is the gold standard therapy for suitable multiple myeloma (MM) patients after induction with high dose therapy. To date, the evidence of a reliable marker of prognosis in these cases remains scarce. Our aim was to evaluate appearance of unrelated atypical serum immunofixation patterns (ASIPs) as a marker of prognosis in MM patients submitted to ASCT. We retrospectively analysed data from 65 patients. Interestingly, we observed that presence of ASIPs was associated with longer progression-free survival and longer overall survival. Our results suggested that presence of ASIPs could be a novel marker of good prognosis in MM patients submitted to ASCT.  相似文献   

4.
CD147 (basigin, BSG) is a membrane-bound glycoprotein involved in energy metabolism that plays a role in cancer cell survival. Its soluble form is a promising marker of some diseases, but it is otherwise poorly studied. CD147 is overexpressed in multiple myeloma (MM) and is known to affect MM progression, while its genetic variants are associated with MM survival. In the present study, we aimed to assess serum soluble CD147 (sCD147) expression as a potential marker in MM. We found that sCD147 level was higher in MM patients compared to healthy individuals. It was also higher in patients with more advanced disease (ISS III) compared to both patients with less advanced MM and healthy individuals, while its level was observed to drop after positive response to treatment. Patients with high sCD147 were characterized by worse progression-free survival. sCD147 level did not directly correlate with bone marrow CD147 mRNA expression. In conclusion, this study suggests that serum sCD147 may be a prognostic marker in MM.  相似文献   

5.
Recently, we and others have described a novel class of chromosome aberrations that involves constitutive heterochromatin on human chromosome 1 (cytogenetic band 1q12). These anomalies are particularly frequent in B cell non-Hodgkins lymphoma (NHL) and multiple myeloma (MM) and, remarkably, almost invariably involve partial or total gain of chromosome 1q (including 1q12 heterochromatin) and the formation of novel heterochromatin/euchromatin junctions. This review discusses the pathological significance of these anomalies in light of i) recent integrated gene expression and array comparative genomic hybridisation (aCGH) profiling in MM and ii) increasing evidence of a key role for heterochromatin in the control of normal and pathological gene silencing.  相似文献   

6.
Chromosomal instability (CIN) is thought to underlie the generation of chromosomal changes and genomic heterogeneity during prostatic tumorigenesis. The breakage-fusion-bridge (BFB) cycle is one of the CIN mechanisms responsible for characteristic mitotic abnormalities and the occurrence of specific classes of genomic rearrangements. However, there is little detailed information concerning the role of BFB and CIN in generating genomic diversity in prostate cancer. In this study we have used molecular cytogenetic methods and array comparative genomic hybridization analysis (aCGH) of DU145, PC3, LNCaP, 1532T and 1542T to investigate the in vitro role of BFB as a CIN mechanism in karyotype evolution. Analysis of mitotic structures in all five prostate cancer cell lines showed increased frequency of anaphase bridges and nuclear strings. Structurally rearranged dicentric chromosomes were observed in all of the investigated cell lines, and Spectral Karyotyping (SKY) analysis was used to identify the participating rearranged chromosomes. Multicolor banding (mBAND) and aCGH analysis of some of the more complex chromosomal rearrangements and associated amplicons identified inverted duplications, most frequently involving chromosome 8. Chromosomal breakpoint analysis showed there was a higher frequency of rearrangement at centromeric and pericentromeric genomic regions. The distribution of inverted duplications and ladder-like amplifications was mapped by mBAND and by aCGH. Adjacent spacing of focal amplifications and microdeletions were observed, and focal amplification of centromeric and end sequences was present, particularly in the most unstable line DU145. SKY analysis of this line identified chromosome segments fusing with multiple recipient chromosomes (jumping translocations) identifying potential dicentric sources. Telomere free end analysis indicated loss of DNA sequence. Moreover, the cell lines with the shortest telomeres had the most complex karyotypes, suggesting that despite the expression of telomerase, the reduced telomere length could be driving the observed BFB events and elevated levels of CIN in these lines.  相似文献   

7.
8.
9.
Interleukin-6 (IL-6) is a major survival factor for malignant plasma cells. In patients with multiple myeloma (MM), cell lines whose survival and proliferation are dependent upon addition of exogenous IL-6 have been obtained. We show here that tumor necrosis factor-alpha (TNF-alpha) is also a survival factor for myeloma cell lines, although less potent than IL-6. The survival activity of TNF-alpha is not affected by anti-IL-6 or anti-gp130 monoclonal antibodies (mAbs). TNF-alpha also induces myeloma cells in the cell cycle and promotes the long-term growth of malignant plasma cell lines. As TNF-alpha is produced in patients with MM and associated with a poor prognosis, these results suggest that anti-TNF-alpha therapies could be useful in this disease.  相似文献   

10.
Multiple myeloma(MM) is a common malignant hematological disease. Dysregulation of micro RNAs(mi RNAs) in MM cells and bone marrow microenviroment has important impacts on the initiation and progression of MM and drug resistance in MM cells. Recently, it was reported that MM patient serum and plasma contained sufficiently stable mi RNA signatures, and circulating mi RNAs could be identified and measured accurately from body fluid. Compared to conventional diagnostic parameters, the circulating mi RNA profile is appropriate for the diagnosis of MM and estimates patient progression and therapeutic outcome with higher specificity and sensitivity. In this review, we mainly focus on the potential of circulating mi RNAs as diagnostic, prognostic, and predictive biomarkers for MM and summarize the general strategies and methodologies for identification and measurement of circulating mi RNAs in various cancers. Furthermore, we discuss the correlation between circulating mi RNAs and the cytogenetic abnormalities and biochemical parameters assessed in multiple myeloma.  相似文献   

11.
Multiple myeloma (MM) is an incurable neoplasm characterized by devastating and progressive bone destruction. Standard chemotherapeutic agents have not been effective at significantly prolonging the survival of MM patients and these agents are typically associated with often severe, dose-limiting side effects. There is great need for methods to target the delivery of novel, effective cytotoxic agents specifically to bone, where myeloma cells reside. We have synthesized and evaluated the effects of the bone-targeted proteasome inhibitors PS-341-BP-1, PS-341-BP-2 and MG-262-BP on cell proliferation using the mouse 5TGM1 and human RPMI 8226 cell lines in vitro. The compounds exhibit strong cytotoxicity on MM cell lines and reduce the number of viable cells in a dose dependent manner.  相似文献   

12.
Multiple myeloma (MM), the second most common hematopoietic malignancy, remains an incurable plasma cell (PC) neoplasm. While the proteasome inhibitor, bortezomib (Bz) has increased patient survival, resistance represents a major treatment obstacle as most patients ultimately relapse becoming refractory to additional Bz therapy. Current tests fail to detect emerging resistance; by the time patients acquire resistance, their prognosis is often poor. To establish immunophenotypic signatures that predict Bz sensitivity, we utilized Bz-sensitive and -resistant cell lines derived from tumors of the Bcl-XL/Myc mouse model of PC malignancy. We identified significantly reduced expression of two markers (CD93, CD69) in “acquired” (Bz-selected) resistant cells. Using this phenotypic signature, we isolated a subpopulation of cells from a drug-naïve, Bz-sensitive culture that displayed “innate” resistance to Bz. Although these genes were identified as biomarkers, they may indicate a mechanism for Bz-resistance through the loss of PC maturation which may be induced and/or selected by Bz. Significantly, induction of PC maturation in both “acquired” and “innate” resistant cells restored Bz sensitivity suggesting a novel therapeutic approach for reversing Bz resistance in refractory MM.  相似文献   

13.
Although many multiple myeloma (MM) patients initially respond to cytotoxic therapy, most eventually relapse. Novel therapeutic strategies employing a combination of chemotherapy with targeted biologics may significantly enhance the response of tumor cells to treatment. We tested a fully human anti-IGF-IR antibody (A12) against MM, and showed specific inhibition of IGF-I or serum -induced IGF-IR signaling in MM cells in vitro. The A12 as a single agent was demonstrated to exert modest to significant inhibition of tumor growth in vivo in various subcutaneous xenograft MM models. The A12 was also evaluated in a disseminated xenograft MM.1S NOD/SCID model as monotherapy or in combination with other drugs (bortezomib, melphalan) currently in clinical use. The tumor burden, as determined by luciferase bioimaging, was sharply decreased, and overall survival significantly prolonged when the therapies were combined. Immunohistochemical analysis demonstrated that the A12 treated tumors had significantly decreased vascularization compared to control tumors. Furthermore, most MM lines constitutively secreted significant quantities of VEGF, and this was enhanced following IGF-I treatment. Inhibition of IGF-IR by the A12 in vitro suppressed both constitutive and IGF-I-induced secretion of VEGF, indicating that a putative anti-angiogenic mechanism associated with the A12 treatment may contribute to its anti-tumor effect.  相似文献   

14.
Multiple myeloma (MM) is a B-cell malignancy characterized by an accumulation of abnormal clonal plasma cells in the bone marrow. Introduction of the proteasome-inhibitor bortezomib has improved MM prognosis and survival; however hypoxia-induced or acquired bortezomib resistance remains a clinical problem. This study highlighted the role of thioredoxin reductase 1 (TrxR1) in the hypoxia-induced and acquired bortezomib resistance in MM. Higher TrxR1 gene expression correlated with high-risk disease, adverse overall survival, and poor prognosis in myeloma patients. We demonstrated that hypoxia induced bortezomib resistance in myeloma cells and increased TrxR1 protein levels. Inhibition of TrxR1 using auranofin overcame hypoxia-induced bortezomib resistance and restored the sensitivity of hypoxic-myeloma cells to bortezomib. Hypoxia increased NF-кβ subunit p65 nuclear protein levels and TrxR1 inhibition decreased hypoxia-induced NF-кβ p65 protein levels in the nucleus and reduced the expression of NF-кβ-regulated genes. In addition, higher TrxR1 protein levels were observed in bortezomib-resistant myeloma cells compared to the naïve cells, and its inhibition using either auranofin or TrxR1-specific siRNAs reversed bortezomib resistance. TrxR1 inhibition reduced p65 mRNA and protein expression in bortezomib-resistant myeloma cells, and also decreased the expression of NF-кβ-regulated anti-apoptotic and proliferative genes. Thus, TrxR1 inhibition overcomes both hypoxia-induced and acquired bortezomib resistance by inhibiting the NF-кβ signaling pathway. Our findings demonstrate that elevated TrxR1 levels correlate with the acquisition of bortezomib resistance in MM. We propose considering TrxR1-inhibiting drugs, such as auranofin, either for single agent or combination therapy to circumvent bortezomib-resistance and improve survival outcomes of MM patients.  相似文献   

15.

Background

Recent reports indicate that in vitro drug screens combined with gene expression profiles (GEP) of cancer cell lines may generate informative signatures predicting the clinical outcome of chemotherapy. In multiple myeloma (MM) a range of new drugs have been introduced and now challenge conventional therapy including high dose melphalan. Consequently, the generation of predictive signatures for response to melphalan may have a clinical impact. The hypothesis is that melphalan screens and GEPs of B-cell cancer cell lines combined with multivariate statistics may provide predictive clinical information.

Materials and Methods

Microarray based GEPs and a melphalan growth inhibition screen of 59 cancer cell lines were downloaded from the National Cancer Institute database. Equivalent data were generated for 18 B-cell cancer cell lines. Linear discriminant analyses (LDA), sparse partial least squares (SPLS) and pairwise comparisons of cell line data were used to build resistance signatures from both cell line panels. A melphalan resistance index was defined and estimated for each MM patient in a publicly available clinical data set and evaluated retrospectively by Cox proportional hazards and Kaplan-Meier survival analysis.

Principal Findings

Both cell line panels performed well with respect to internal validation of the SPLS approach but only the B-cell panel was able to predict a significantly higher risk of relapse and death with increasing resistance index in the clinical data sets. The most sensitive and resistant cell lines, MOLP-2 and RPMI-8226 LR5, respectively, had high leverage, which suggests their differentially expressed genes to possess important predictive value.

Conclusion

The present study presents a melphalan resistance index generated by analysis of a B-cell panel of cancer cell lines. However, the resistance index needs to be functionally validated and correlated to known MM biomarkers in independent data sets in order to better understand the mechanism underlying the preparedness to melphalan resistance.  相似文献   

16.
17.
Multiple myeloma (MM) is a common hematologic malignancy for which the underlying molecular mechanisms remain largely unclear. This study aimed to elucidate key candidate genes and pathways in MM by integrated bioinformatics analysis. Expression profiles GSE6477 and GSE47552 were obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) with p < .05 and [logFC] > 1 were identified. Functional enrichment, protein–protein interaction network construction and survival analyses were then performed. First, 51 upregulated and 78 downregulated DEGs shared between the two GSE datasets were identified. Second, functional enrichment analysis showed that these DEGs are mainly involved in the B cell receptor signaling pathway, hematopoietic cell lineage, and NF-kappa B pathway. Moreover, interrelation analysis of immune system processes showed enrichment of the downregulated DEGs mainly in B cell differentiation, positive regulation of monocyte chemotaxis and positive regulation of T cell proliferation. Finally, the correlation between DEG expression and survival in MM was evaluated using the PrognoScan database. In conclusion, we identified key candidate genes that affect the outcomes of patients with MM, and these genes might serve as potential therapeutic targets.  相似文献   

18.

Background

Traditionally top-down method was used to identify prognostic features in cancer research. That is to say, differentially expressed genes usually in cancer versus normal were identified to see if they possess survival prediction power. The problem is that prognostic features identified from one set of patient samples can rarely be transferred to other datasets. We apply bottom-up approach in this study: survival correlated or clinical stage correlated genes were selected first and prioritized by their network topology additionally, then a small set of features can be used as a prognostic signature.

Methods

Gene expression profiles of a cohort of 221 hepatocellular carcinoma (HCC) patients were used as a training set, ‘bottom-up’ approach was applied to discover gene-expression signatures associated with survival in both tumor and adjacent non-tumor tissues, and compared with ‘top-down’ approach. The results were validated in a second cohort of 82 patients which was used as a testing set.

Results

Two sets of gene signatures separately identified in tumor and adjacent non-tumor tissues by bottom-up approach were developed in the training cohort. These two signatures were associated with overall survival times of HCC patients and the robustness of each was validated in the testing set, and each predictive performance was better than gene expression signatures reported previously. Moreover, genes in these two prognosis signature gave some indications for drug-repositioning on HCC. Some approved drugs targeting these markers have the alternative indications on hepatocellular carcinoma.

Conclusion

Using the bottom-up approach, we have developed two prognostic gene signatures with a limited number of genes that associated with overall survival times of patients with HCC. Furthermore, prognostic markers in these two signatures have the potential to be therapeutic targets.  相似文献   

19.
Multiple myeloma (MM) is an incurable plasma B cell malignancy. Despite recent advancements in anti-MM therapies, development of drug resistance remains a major clinical hurdle. DJ-1, a Parkinson’s disease-associated protein, is upregulated in many cancers and its knockdown suppresses tumor growth and overcomes chemoresistance. However, the role of DJ-1 in MM remains unknown. Using gene expression databases we found increased DJ-1 expression in MM patient cells, which correlated with shorter overall survival and poor prognosis in MM patients. Targeted DJ-1 knockdown using siRNAs induced necroptosis in myeloma cells. We found that Krüppel-like factor 6 (KLF6) is expressed at lower levels in myeloma cells compared to PBMCs, and DJ-1 knockdown increased KLF6 expression in myeloma cells. Targeted knockdown of KLF6 expression in DJ-1 knockdown myeloma cells rescued these cells from undergoing cell death. Higher DJ-1 levels were observed in bortezomib-resistant myeloma cells compared to parent cells, and siRNA-mediated DJ-1 knockdown reversed bortezomib resistance. DJ-1 knockdown increased KLF6 expression in bortezomib-resistant myeloma cells, and subsequent siRNA-mediated KLF6 knockdown rescued bortezomib-resistant myeloma cells from undergoing cell death. We also demonstrated that specific siRNA-mediated DJ-1 knockdown reduced myeloma cell growth under a hypoxic microenvironment. DJ-1 knockdown reduced the expression of HIF-1α and its target genes in hypoxic-myeloma cells, and overcame hypoxia-induced bortezomib resistance. Our findings demonstrate that elevated DJ-1 levels correlate with myeloma cell survival and acquisition of bortezomib resistance. Thus, we propose that inhibiting DJ-1 may be an effective therapeutic strategy to treat newly diagnosed as well as relapsed/refractory MM patients.  相似文献   

20.
Multiple myeloma (MM) is a cancer of antibody-making plasma cells. It frequently harbors alterations in DNA and chromosome copy numbers, and can be divided into two major subtypes, hyperdiploid (HMM) and non-hyperdiploid multiple myeloma (NHMM). The two subtypes have different survival prognosis, possibly due to different but converging paths to oncogenesis. Existing methods for identifying the two subtypes are fluorescence in situ hybridization (FISH) and copy number microarrays, with increased cost and sample requirements. We hypothesize that chromosome alterations have their imprint in gene expression through dosage effect. Using five MM expression datasets that have HMM status measured by FISH and copy number microarrays, we have developed and validated a K-nearest-neighbor method to classify MM into HMM and NHMM based on gene expression profiles. Classification accuracy for test datasets ranges from 0.83 to 0.88. This classification will enable researchers to study differences and commonalities of the two MM subtypes in disease biology and prognosis using expression datasets without need for additional subtype measurements. Our study also supports the advantages of using cancer specific characteristics in feature design and pooling multiple rounds of classification results to improve accuracy. We provide R source code and processed datasets at www.ChengLiLab.org/software.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号