共查询到20条相似文献,搜索用时 14 毫秒
1.
We examined the interactions of subthreshold membrane resonance and stochastic resonance using whole-cell patch clamp recordings in thalamocortical neurons of rat brain slices, as well as with a Hodgkin-Huxley-type mathematical model of thalamocortical neurons. The neurons exhibited the subthreshold resonance when stimulated with small amplitude sine wave currents of varying frequency, and stochastic resonance when noise was added to sine wave inputs. Stochastic resonance was manifest as a maximum in signal-to-noise ratio of output response to subthreshold periodic input combined with noise. Stochastic resonance in conjunction with subthreshold resonance resulted in action potential patterns that showed frequency selectivity for periodic inputs. Stochastic resonance was maximal near subthreshold resonance frequency and a high noise level was required for detection of high frequency signals. We speculate that combined membrane and stochastic resonances have physiological utility in coupling synaptic activity to preferred firing frequency and in network synchronization under noise. 相似文献
2.
为了深入研究麻醉药乌拉坦对大鼠海马CA1锥体神经元自发放电的作用及其机制,分析了10 mmol/L乌拉坦对自发放电、电压门控钠通道、电压门控钾通道的作用.从自发放电信号中计算了放电频率、提取了峰峰间隔序列(ISI)并利用样品熵和去趋势波动法对ISI进行了非线性分析.结果表明,乌拉坦不仅抑制了自发放电的频率,而且降低了自发放电ISI序列的复杂度并弱化了其长时程相关性.离子通道研究结果表明,乌拉坦显著地抑制了钠通道电流(INa),对延迟整流钾通道电流(IK)和瞬时外向钾通道电流(IA)虽然也有抑制作用但无统计学意义.由于乌拉坦不影响突触传递,因此它可能通过抑制INa使自发放电的阈值升高而降低放电频率,同时,由于参与的通道数量或活性降低而使得ISI的复杂度下降,长时程相关性弱化. 相似文献
3.
慢性应激对大鼠海马锥体细胞形态结构的效应 总被引:16,自引:0,他引:16
为研究慢性应激相关精神障碍的发病机制,采用尼氏(Nissl)染色法、高尔基(Golgi)镀染法和透射电镜技术,探讨慢性应激对大鼠海马CA1、CA3区锥体细胞形态结构的效应.结果显示应激组大鼠海马CA1区锥体细胞形态结构较对照组无明显变化.应激组海马CA3区锥体细胞数(35.14±3.85)较对照组(38.74±3.54)显著减少(P<0.05);顶树突的总长度(155.67 μm±33.32 μm)较对照组(195.63 μm±34.61 μm)显著缩短(P<0.05);应激组大鼠海马CA3区锥体细胞出现超微结构的改变,包括细胞固缩、体积缩小、核膜皱缩、线粒体变性和粗面内质网模糊不清.这提示海马CA3区锥体细胞形态结构的改变,可能是慢性应激相关精神障碍的病理生理基础. 相似文献
4.
Elderly patients are more likely to suffer from postoperative memory impairment for volatile anesthetics could induce aging neurons degeneration and apoptosis while the mechanism was still elusive. Therefore we hypothesized that ER stress mediated hippocampal neurons apoptosis might play an important role in the mechanism of sevoflurane-induced cognitive impairment in aged rats. Thirty 18-month-old male Sprague-Dawley rats were divided into two groups: the sham anesthesia group (exposure to simply humidified 30–50% O2 balanced by N2 in an acrylic anesthetizing chamber for 5 hours) and the sevoflurane anesthesia group (received 2% sevoflurane in the same humidified mixed air in an identical chamber for the same time). Spatial memory of rats was assayed by the Morris water maze test. The ultrastructure of the hippocampus was observed by transmission electron microscopy (TEM). The expressions of C/EBP homologous protein (CHOP) and caspase-12 in the hippocampus were observed by immunohistochemistry and real-time PCR analysis. The apoptosis neurons were also assessed by TUNEL assay. The Morris water maze test showed that sevoflurane anesthesia induced spatial memory impairment in aging rats (P<0.05). The apoptotic neurons were condensed and had clumped chromatin with fragmentation of the nuclear membrane, verifying apoptotic degeneration in the sevoflurane group rats by TEM observation. The expressions of CHOP and caspase-12 increased, and the number of TUNEL positive cells of the hippocampus also increased in the sevoflurane group rats (P<0.05). The present results suggested that the long time exposure of sevoflurane could induce neuronal degeneration and cognitive impairment in aging rats. The ER stress mediated neurons apoptosis may play a role in the sevoflurane-induced memory impairment in aging rats. 相似文献
5.
The response of the central nervous system to stress is often critical to the adaptation of an organism to its environment. However, in humans the response to stress also can be maladaptive, resulting in the expression or exacerbation of many neurological and psychiatric disorders. In this review, we examine the impact of stress on the synthesis and release of dopamine within mesocortical, mesoaccumbens, and nigrostriatal dopamine projections. We note that whereas stress increases the neurochemical activity of each of these populations of dopamine neurons, heterogeneities do exist. Specifically, acute stress evokes a greater increase in dopamine metabolism and release within the prefrontal cortex than the subcortical sites. Furthermore, whereas prior exposure to chronic stress enhances the response of mesocortical dopamine neurons to an acute novel stressor, this does not occur in the subcortical sites. In addition to these regional heterogeneities, we also note that even within a single dopamine projection there can be heterogeneous regulation of dopamine synthesis and release. Specifically, whereas stress-induced dopamine release in the neostriatum is mediated by an action of glutamate on the dopamine cell body, stress-induced dopamine synthesis in the neostriatum is mediated by an action of glutamate on the dopamine nerve terminal. Finally, we propose that regional heterogeneities in the responsiveness of central dopamine neurons to stress may ultimately play a role in the expression and exacerbation of symptoms associated with schizophrenia. 相似文献
6.
Danusa Mar Arcego Ana Paula Toniazzo Rachel Krolow Carine Lampert Carolina Berlitz Emily dos Santos Garcia Fabrício do Couto Nicola Juliana Bender Hoppe Mariana Maier Gaelzer Caroline Peres Klein Camilla Lazzaretti Carla Dalmaz 《Molecular neurobiology》2018,55(4):2740-2753
During development, the brain goes through fundamental processes, including organization of neural networks and plasticity. Environmental interventions may change initial brain programming, leading to long-lasting effects and altering the susceptibility to psychopathologies, including depression disorder. It is known that depression is a psychiatric disorder with a high prevalence worldwide, including high rates among adolescents. In this study, we evaluated whether social isolation in the prepubertal period and chronic use of high-fat diet (HFD) may induce depressive-like behavior in male adult rats. We also investigated hippocampal plasticity markers and neurotransmitter systems. We found both social isolation and HFD induced a depressive-like behavior in the forced swimming task. Moreover, chronic HFD reduced synaptic markers in hippocampus, demonstrated by reductions in βIII-tubulin (neuronal marker), PSD-95, SNAP-25, and neurotrophin-3. The HFD group also presented decreased glutamatergic and GABAergic receptors subunits. On the other hand, stress affected hippocampal brain-derived neurotrophic factor (BDNF) signaling pathways, and increased expression of subunit of the NMDA receptor (NR2A). Both factors (stress and diet) decreased GR in the hippocampus without affecting plasma corticosterone at basal levels. Interactions between early stress and HFD access were observed only in the BNDF receptor (tropomyosin receptor kinase B; TrkB) and synaptophysin. In summary, these findings showed that a brief social isolation and chronic HFD, during a sensitive developmental period, cause depressive-like behavior in adulthood. The mechanisms underlying these behavioral effects may involve changes in the levels of synaptic proteins in hippocampus: HFD consumption appears to affect synaptic markers, while social isolation affected BDNF signaling more significantly. 相似文献
7.
创伤性脑损伤(traumatic brain injury,TBI)是极为常见的外伤性疾病,致死率和致残率很高。存活者伴随的空间认知功能障碍,给患者家庭和社会造成了极大的负担。目前,对TBI造成的空间记忆障碍缺乏系统研究。脑损伤后海马组织与记忆有关的分子以及组成神经元骨架的分子如何变化研究甚少。本研究采用Wistar大鼠为研究对象,并随机将其分为假手术(sham)组和创伤性脑损伤(TBI)组。TBI组再按致伤后时间长短分为6 h、12 h、24 h、72 h、15 d五个亚组。TBI组应用PinPointTM颅脑撞击器撞击而致伤,sham组不撞击。采用Morris水迷宫评价实验动物空间记忆能力;干湿重法测定脑含水量,评估脑水肿与海马水通道蛋白4(aquaporin-4,AQP-4)的相关性;海马神经元特异性核蛋白(neuron specific nuclear protein,NeuN)标记和免疫荧光检测评估TBI致大鼠神经元丢失情况;通过Western印迹检测TBI致海马骨架相关蛋白质和记忆相关蛋白质含量变化。本研究证实,与sham组相比,TBI组大鼠潜伏期明显增加[(61.98±12.82) s vs.(28.32±8.52) s,n=5,P<0.01,day 15],探索时间明显缩短[(36.98±0.37) s vs. (73.68±5.09) s,n=5,P<0.01,day15],表明脑创伤损害了动物的空间参考记忆能力和空间工作记忆能力。与sham组相比,TBI组大鼠海马AQP-4在蛋白质水平上的表达和脑含水量持续升高,15 d恢复正常;在12 h[(3.78±0.74),(83.78±0.35)%]和72 h[(3.49±0.85),(82.28±0.63)%]均形成两个波峰,n=5,P均<0.01,表明继发性脑损伤与持续脑水肿和海马AQP-4在蛋白质上的高表达有关。与sham组相比,NeuN标记和免疫荧光检测发现,TBI后24 h 致大鼠海马神经元丢失严重[(198.2±8.002) vs.(297.2±6.866) cells/mm2, n=5,P<0.01],表明TBI动物的海马功能受损。与sham相比,TBI组海马神经元树突标志物微管结合蛋白2(microtubule associated proein 2,MAP2)和突触前终末特异性标记物突触素(synaptophysin,SYN)在蛋白质水平均伤后逐步降低(n=5,P均<0.01),72 h[(0.55±0.05) vs.(1.27±0.08), (0.52±0.14) vs.(1.06±0.16), n=5,P均<0.01]降低最明显;TBI组形成神经元纤维缠结主要成分的过度磷酸化tau(ser404),伤后逐步升高,72 h[(1.25±0.11)vs. (0.33±0.07), n=5,P<0.01]升高最明显。 MAP2、SYN和过度磷酸化的tau(ser404)检测指标的改变,表明脑损伤致神经元受损,神经元生长和损伤修复能力减弱,最终导致神经元骨架破环,TBI损害了动物的海马空间记忆能力。与sham组相比,TBI组大鼠海马环磷酸腺苷反应元件结合蛋白(cAMP response element binding protein,CREB)和磷酸化CREB ser133(phosphorylated CREB Ser133, pCREB Ser133)含量降低明显(n=5,P均<0.05),表明脑损伤动物海马的存储记忆能力减弱;TBI组大鼠海马一般调控阻遏蛋白激酶2(general control nonderepressible 2 kinase,GCN2)蛋白质升高明显(n=5,P均<0.05),表明脑损伤动物海马将新信息转化成长期记忆能力下降。本研究提示,创伤性脑损伤可使大鼠海马神经元骨架破坏,进而导致在学习记忆过程中起重要作用的分子蛋白质下调,抑制记忆储存的蛋白质(GCN2)上调,促使学习记忆功能障碍。 相似文献
8.
创伤性脑损伤(traumatic brain injury,TBI)是极为常见的外伤性疾病,致死率和致残率很高。存活者伴随的空间认知功能障碍,给患者家庭和社会造成了极大的负担。目前,对TBI造成的空间记忆障碍缺乏系统研究。脑损伤后海马组织与记忆有关的分子以及组成神经元骨架的分子如何变化研究甚少。本研究采用Wistar大鼠为研究对象,并随机将其分为假手术(sham)组和创伤性脑损伤(TBI)组。TBI组再按致伤后时间长短分为6 h、12 h、24 h、72 h、15 d五个亚组。TBI组应用PinPointTM颅脑撞击器撞击而致伤,sham组不撞击。采用Morris水迷宫评价实验动物空间记忆能力;干湿重法测定脑含水量,评估脑水肿与海马水通道蛋白4(aquaporin-4,AQP-4)的相关性;海马神经元特异性核蛋白(neuron specific nuclear protein,NeuN)标记和免疫荧光检测评估TBI致大鼠神经元丢失情况;通过Western印迹检测TBI致海马骨架相关蛋白质和记忆相关蛋白质含量变化。本研究证实,与sham组相比,TBI组大鼠潜伏期明显增加[(61.98±12.82) s vs.(28.32±8.52) s,n=5,P<0.01,day 15],探索时间明显缩短[(36.98±0.37) s vs. (73.68±5.09) s,n=5,P<0.01,day15],表明脑创伤损害了动物的空间参考记忆能力和空间工作记忆能力。与sham组相比,TBI组大鼠海马AQP-4在蛋白质水平上的表达和脑含水量持续升高,15 d恢复正常;在12 h[(3.78±0.74),(83.78±0.35)%]和72 h[(3.49±0.85),(82.28±0.63)%]均形成两个波峰,n=5,P均<0.01,表明继发性脑损伤与持续脑水肿和海马AQP-4在蛋白质上的高表达有关。与sham组相比,NeuN标记和免疫荧光检测发现,TBI后24 h 致大鼠海马神经元丢失严重[(198.2±8.002) vs.(297.2±6.866) cells/mm2, n=5,P<0.01],表明TBI动物的海马功能受损。与sham相比,TBI组海马神经元树突标志物微管结合蛋白2(microtubule associated proein 2,MAP2)和突触前终末特异性标记物突触素(synaptophysin,SYN)在蛋白质水平均伤后逐步降低(n=5,P均<0.01),72 h[(0.55±0.05) vs.(1.27±0.08), (0.52±0.14) vs.(1.06±0.16), n=5,P均<0.01]降低最明显;TBI组形成神经元纤维缠结主要成分的过度磷酸化tau(ser404),伤后逐步升高,72 h[(1.25±0.11)vs. (0.33±0.07), n=5,P<0.01]升高最明显。 MAP2、SYN和过度磷酸化的tau(ser404)检测指标的改变,表明脑损伤致神经元受损,神经元生长和损伤修复能力减弱,最终导致神经元骨架破环,TBI损害了动物的海马空间记忆能力。与sham组相比,TBI组大鼠海马环磷酸腺苷反应元件结合蛋白(cAMP response element binding protein,CREB)和磷酸化CREB ser133(phosphorylated CREB Ser133, pCREB Ser133)含量降低明显(n=5,P均<0.05),表明脑损伤动物海马的存储记忆能力减弱;TBI组大鼠海马一般调控阻遏蛋白激酶2(general control nonderepressible 2 kinase,GCN2)蛋白质升高明显(n=5,P均<0.05),表明脑损伤动物海马将新信息转化成长期记忆能力下降。本研究提示,创伤性脑损伤可使大鼠海马神经元骨架破坏,进而导致在学习记忆过程中起重要作用的分子蛋白质下调,抑制记忆储存的蛋白质(GCN2)上调,促使学习记忆功能障碍。 相似文献
9.
Jelena Mrdalj St?le Pallesen Anne Marita Milde Finn Konow Jellestad Robert Murison Reidun Ursin Bj?rn Bjorvatn Janne Gr?nli 《PloS one》2013,8(7)
Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way. 相似文献
10.
脂质过氧化中间产物丙二醛(Malondialdehyde,MDA)在生物体内表现了广泛的生物毒性,MDA也是机体过度训练和运动性疲劳的重要生理指标.采用光学显微镜和透射式电子显微镜观察不同浓度MDA作用后海马神经元形态和超微结构的变化,并采用荧光分光光度法测定原代培养的海马神经元中Ca2+-ATPase活性的变化和胞质游离钙离子水平的变化,探讨MDA对海马神经元形态和结构上的破坏及神经元钙离子稳态的影响.在光镜下可观察到MDA作用下神经元突触变短,胞体肿胀,出现细胞死亡或凋亡的形态特征;在电镜下可观察到线粒体结构的明显破坏,内膜上的嵴颗粒减少或消失;同时MDA还通过抑制质膜Ca2+-ATPase的活性和其它的途径,破坏神经元胞质游离Ca2+稳态.结果表明,MDA可通过破坏海马神经元的结构和影响胞质中钙离子稳态,破坏神经元的生理功能,在机体运动性中枢疲劳形成中可能发挥重要作用. 相似文献
11.
Optical Imaging of Hippocampal Neurons with a Chloride-Sensitive Dye: Early Effects of In Vitro Ischemia 总被引:3,自引:0,他引:3
Abstract: We determined if changes in intraneuronal Cl? occur early after ischemia in the hippocampal slice. Slices from juvenile rats (14–19 days old) were loaded with the cell-permeant form of 6-methoxy-N-ethylquinolinium chloride (MEQ), a Cl?-sensitive fluorescent dye. Real-time changes in intracellular chloride concentration ([Cl?]i) were measured with UV laser scanning confocal microscopy in multiple neurons within each slice. In vitro ischemia (26–28°C, 10 min) was confirmed by the loss of synaptic transmission (evoked field excitatory postsynaptic potentials) from pyramidal cells in area CA1. After ischemia and reoxygenation (10 min), MEQ fluorescence decreased significantly in CA1 pyramidal cells and interneurons. The decreased fluorescence corresponded to an ischemia-induced increase in [Cl?]i of ~10 mM. Pretreatment with the GABAA-gated Cl? channel antagonist picrotoxin (100 µM) blocked the ischemia-induced change in [Cl?]i. Analysis of the superfusates indicated that ischemia also caused a transient amino acid (GABA, glutamate, and aspartate) release that was maximal at ~10 min, returning to baseline shortly thereafter. Recovery from ischemia was confirmed by the return of synaptic transmission in area CA1, the return toward baseline of the ischemia-induced decrease in MEQ fluorescence, and exclusion of propidium iodide from MEQ fluorescent cells. Furthermore, pyramidal cells did not undergo cell swelling during this early phase of reoxygenation, as indicated by the volume-sensitive dye calcein. Thus, mild ischemia induces the accumulation of [Cl?]i secondary to GABAA receptor activation, in the absence of cellular swelling or death. In contrast, depolarization of the slice with K+ (50 mM) decreased MEQ fluorescence significantly but caused cell swelling. Picrotoxin did not prevent the K+-induced increase in [Cl?]i. It is possible that an increased [Cl?]i, following either an ischemic event or an episode of depolarization, would reduce the Cl? driving force and thereby limit synaptic transmission by GABA. To support this hypothesis, ischemia caused a reduction in the ability of the GABA agonist muscimol to increase [Cl?]i after 20-min reoxygenation. 相似文献
12.
目的:通过体外实验探讨艾芬地尔对异氟烷所致发育期海马神经元毒性的保护作用。方法:从出生一天的大鼠海马获取神经元并体外培养5天。这些神经元被随机分入4组,包括对照组(control组)、异氟醚组(Iso组)、艾芬地尔(Ifen组)和艾芬地尔+异氟烷组(Ifen+ISO组)。使用MTT法检测细胞活力及细胞损伤程度。使用TUNEL染色法检测细胞凋亡。使用Western blot法检测神经元中NMDA受体亚基NR2B和活化caspase-3的表达水平。结果:与对照组比较,在2.4%异氟烷暴露后1小时神经元的细胞活力显著下降(P0.05)。同时,在2.4%异氟烷暴露后神经元的凋亡指数也显著升高(P0.05)。Western blot结果显示,异氟烷暴露可显著升高神经元活化caspase-3和NR2B的表达水平(P0.05)。然而,使用NR2B拮抗剂艾芬地尔(20μM)不仅可显著减少异氟烷所致的NR2B表达水平增高,也可缓解异氟烷造成的神经元凋亡和细胞损伤(P0.01)。结论:异氟烷可导致发育期神经元NR2B表达水平增高,而使用NR2B受体拮抗剂艾芬地尔可有效抑制NR2B的表达水平从而减少异氟烷所致神经元毒性。 相似文献
13.
Jin Young Kim Jong-Ho Lee Doyun Kim Soung-Min Kim JaeHyung Koo Jeong Won Jahng 《International journal of biological sciences》2015,11(10):1150-1159
This study examined the effects of highly palatable food during adolescence on the psycho-emotional and neural disturbances caused by early life stress experience in female rats. Female Sprague-Dawley pups were separated from dam for 3 h daily during the first two weeks of birth (MS) or left undisturbed (NH). Half of MS females received free access to chocolate cookies in addition to ad libitum chow from postnatal day 28. Pups were subjected to the behavioral tests during young adulthood. The plasma corticosterone response to acute stress, ΔFosB and brain-derived neurotrophic factor (BDNF) levels in the brain regions were analyzed. Total caloric intake and body weight gain during the whole experimental period did not differ among the experimental groups. Cookie access during adolescence and youth improved anxiety-/depression-like behaviors by MS experience. ΔFosB expression was decreased, but BDNF was increased in the nucleus accumbens of MS females, and ΔFosB expression was normalized and BDNF was further increased following cookie access. Corticosterone response to acute stress was blunted by MS experience and cookie access did not improve it. Results suggest that cookie access during adolescence improves the psycho-emotional disturbances of MS females, and ΔFosB and/or BDNF expression in the nucleus accumbens may play a role in its underlying neural mechanisms. 相似文献
14.
本研究旨在解析仔猪脑海马甘丙肽2型受体(galanin receptors type 2,GALR2)参与氧化应激调节的分子机制.本研究基于成功构建的仔猪活体和大鼠海马神经元氧化应激模型,采用实时PCR技术考察仔猪脑海马和大鼠海马神经元GALR2的表达变化.并采用实时PCR、蛋白质印迹法及透射电镜技术进一步探索GALR... 相似文献
15.
目的:观察纳络酮预防性治疗血管性痴呆大鼠对海马锥体神经细胞内钙离子的影响。方法:将30只大鼠随机分为假手术组、模型组、防治组。利用钙离子敏感探针Fluo 3与钙离子络合后被激发产生荧光的特点,应用激光共聚焦显微镜观察海马锥体细胞内钙离子的荧光强度,应用图像分析技术记性处理。结果:荧光像素平均值假手术组为135.05±29.14;模型组为484.05±298.72较假手术组明显升高(P<0.01);防治组为139.39±30.74,较模型组明显降低(P<0.01)。结论:纳络酮防治血管性痴呆大鼠与其抑制钙离子内流保护海马神经元有关。 相似文献
16.
17.
Although the potent anti-parkinsonian action of the atypical D1-like receptor agonist has been attributed to the selective activation of phosphoinositol(PI)-linked D1 receptor, whereas the mechanism underlying its potent neuroprotective effect is not fully understood. In the present study, the actions of SKF83959 on neuronal membrane potential and neuronal excitability were investigated in CA1 pyramidal neurons of rat hippocampal slices. SKF83959 (10–100 µM) caused a concentration-dependent depolarization, associated with a reduction of input resistance in CA1 pyramidal neurons. The depolarization was blocked neither by antagonists for D1, D2, 5-HT2A/2C receptors and α1-adrenoceptor, nor by intracellular dialysis of GDP-β-S. However, the specific HCN channel blocker ZD7288 (10 µM) antagonized both the depolarization and reduction of input resistance caused by SKF83959. In voltage-clamp experiments, SKF83959 (10–100 µM) caused a concentration-dependent increase of Ih current in CA1 pyramidal neurons, which was independent of D1 receptor activation. Moreover, SKF83959 (50 µM) caused a 6 mV positive shift in the activation curve of Ih and significantly accelerated the activation of Ih current. In addition, SKF83959 also reduced the neuronal excitability of CA1 pyramidal neurons, which was manifested by the decrease in the number and amplitude of action potentials evoked by depolarizing currents, and by the increase of firing threshold and rhoebase current. The above results suggest that SKF83959 increased Ih current through a D1 receptor-independent mechanism, which led to the depolarization of hippocampal CA1 pyramidal neurons. These findings provide a novel mechanism for the drug''s neuroprotective effects, which may contributes to its therapeutic benefits in Parkinson''s disease. SKF83959相似文献
18.
Depression is a common mental disorder in adolescents, with a prevalence rate of 5.6%. Current anti-depressive options for adolescents are limited: psychological intervention and conventional antidepressants have low efficacy, a delayed onset of action and increased possibility of suicidal risk. Repetitive transcranial magnetic stimulation (rTMS) as an effective and noninvasive physical therapy for adult depression has been investigated in recent years. However, whether it also produces similar effects on juvenile depression and the underlying mechanism are not clearly understood. In this study, chronic unpredictable mild stress (CMS) was applied to 3-week-old male Sprague Dawley rats for 21 days. Then rTMS was performed for seven consecutive days, and the anti-depressive effects were evaluated by behavioral tests including the sucrose preference test (SPT), the forced swimming test (FST), and the novelty suppressed feeding test (NSF). Expression of hippocampal cannabinoid type I receptor (CB1R), 2-arachidonoylglycerol (2-AG) and relative synthetase and degradative enzymes-diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) were also investigated. The behavioral parameters were also observed after the administration of the selective CB1 receptor antagonist AM251. The results showed that CMS induced a significant decrease in sucrose preference, a significant increase of immobility time in the FST, and an increased latency to feed in the NSF. In addition, reduced hippocampal CB1 receptor, 2-AG level and increased MAGL protein expression level were also observed in CMS rats. Meanwhile, rTMS treatment upregulated 2-AG level in the hippocampus and ameliorated depressive-like behaviors. The anti-depressive effect of rTMS was attenuated by AM251, a specific CB1R antagonist that was administered 30 min before the onset of rTMS by either intraperitoneal administration or hippocampal microinjection. These results indicate that rTMS can be used as an antidepressive therapy for juvenile depression at least partly mediated by increasing hippocampal 2-AG and CB1 receptor expression levels. 相似文献
19.
Lu Zhuang Haihua Chen Sheng Zhang Jiahui Zhuang Qiuping Li Zhichun Feng 《基因组蛋白质组与生物信息学报(英文版)》2019,17(1):13-25
Trillions of microbes reside in the human body and participate in multiple physiological and pathophysiological processes that affect host health throughout the life cycle. The microbiome is hallmarked by distinctive compositional and functional features across different life periods.Accumulating evidence has shown that microbes residing in the human body may play fundamental roles in infant development and the maturation of the immune system. Gut microbes are thought to be essential for the facilitation of infantile and childhood development and immunity by assisting in breaking down food substances to liberate nutrients, protecting against pathogens, stimulating or modulating the immune system, and exerting control over the hypothalamic–pituitary–adrenal axis.This review aims to summarize the current understanding of the colonization and development of the gut microbiota in early life, highlighting the recent findings regarding the role of intestinal microbes in pediatric diseases. Furthermore, we also discuss the microbiota-mediated therapeutics that can reconfigure bacterial communities to treat dysbiosis. 相似文献
20.
Diehl LA Alvares LO Noschang C Engelke D Andreazza AC Gonçalves CA Quillfeldt JA Dalmaz C 《Neurochemical research》2012,37(4):700-707
Adverse early life events, such as periodic maternal separation, may alter the normal pattern of brain development and subsequently
the vulnerability to a variety of mental disorders in adulthood. Patients with a history of early adversities show higher
frequency of post-traumatic stress disorder (PTSD). This study was undertaken to verify if repeated long-term separation of
pups from dams would affect memory and oxidative stress parameters after exposure to an animal model of PTSD. Nests of Wistar
rats were divided into intact and subjected to maternal separation (incubator at 32°C, 3 h/day) during post-natal days 1–10.
When adults, the animals were subdivided into exposed or not to a PTSD model consisting of exposure to inescapable footshock,
followed by situational reminders. One month after exposure to the shock, the animals were exposed to a memory task (Morris
water maze) and another month later animals were sacrificed and DNA breaks and antioxidant enzymes activities were measured
in the hippocampus. Rats exposed to shock or maternal separation plus shock showed long-lasting effects on spatial memory,
spending more time in the opposite quadrant of the water maze. This effect was higher in animals subjected to both maternal
separation and shock. Both shock and maternal separation induced a higher score of DNA breaks in the hippocampus. No differences
were observed on antioxidant enzymes activities. In conclusion, periodic maternal separation may increase the susceptibility
to the effects of a stressor applied in adulthood on performance in the water maze. Increased DNA breaks in hippocampus was
induced by both, maternal separation and exposure to shock. 相似文献