首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
伪狂犬病毒gI基因的克隆表达及其对病毒增殖的影响   总被引:3,自引:0,他引:3  
从伪狂犬病毒(PRV)国内地方分离Ea株基因组DNA片段中克隆了完整的gI基因,序列分析结果表明,gI基因编码区全长1101bp,可编码366个氨基酸残基,二级结构预测具有典型I型膜蛋白特征。与GenBank中收录的国外Rice株的同源比较发现,Ea株gI在核苷酸和氨基酸水平上均存在多处突变,尤其是潜在胞浆区中连续两个碱基的缺失导致移码突变,致使gI基因的读码框架后移,从而导致Ea株gI较rice株长16个氨基酸残基。将gI基因克隆到真核表达载体pcDNA31+中的人巨细胞病毒早期启动子下游,构建的真核表达质粒转染PK15细胞,间接免疫荧光检测证实gI获得正确表达。进一步测定天然缺失gI的PRV弱毒Bartha株在表达gI细胞系和空白载体转染的对照细胞系中的蚀斑形成单位(pfu)和组织细胞培养半数感染量(TCID50),结果显示:Bartha株在表达gI细胞系中的pfu和TCID\-\{50\}分别为对照细胞系的164%和200%。说明gI具有促进病毒增殖的功能。  相似文献   

2.
3.
Viral RNA-dependent RNA polymerases exhibit great sequence diversity. Only six core amino acids are conserved across all polymerases of positive-strand RNA viruses of eukaryotes. While exploring the function of one of these completely conserved residues, asparagine 297 in the prototypic poliovirus polymerase 3D(pol), we identified three viable mutants with noncanonical amino acids at this conserved position. Although asparagine 297 could be replaced by glycine or alanine in these mutants, the viruses exhibited Mn(2+)-dependent RNA replication and viral growth. All known RNA polymerases and replicative polymerases of bacterial, eukaryotic, and viral organisms are thought to be magnesium dependent in vivo, and therefore these mutant polioviruses may represent the first viruses with a requirement for an alternative polymerase cation. These results demonstrate the extreme functional flexibility of viral RNA-dependent RNA polymerases. Furthermore, the finding that strictly conserved residues in the nucleotide binding pocket of the polymerase can be altered in a manner that supports virus production suggests that drugs targeting this region of the enzyme will still be susceptible to the problem of drug-resistant escape mutants.  相似文献   

4.
Dengue virus multifunctional proteins NS3 protease/helicase and NS5 methyltransferase/RNA-dependent RNA polymerase form part of the viral replication complex and are involved in viral RNA genome synthesis, methylation of the 5′-cap of viral genome, and polyprotein processing among other activities. Previous studies have shown that NS5 residue Lys-330 is required for interaction between NS3 and NS5. Here, we show by competitive NS3-NS5 interaction ELISA that the NS3 peptide spanning residues 566–585 disrupts NS3-NS5 interaction but not the null-peptide bearing the N570A mutation. Small angle x-ray scattering study on NS3(172–618) helicase and covalently linked NS3(172–618)-NS5(320–341) reveals a rigid and compact formation of the latter, indicating that peptide NS5(320–341) engages in specific and discrete interaction with NS3. Significantly, NS3:Asn-570 to alanine mutation introduced into an infectious DENV2 cDNA clone did not yield detectable virus by plaque assay even though intracellular double-stranded RNA was detected by immunofluorescence. Detection of increased negative-strand RNA synthesis by real time RT-PCR for the NS3:N570A mutant suggests that NS3-NS5 interaction plays an important role in the balanced synthesis of positive- and negative-strand RNA for robust viral replication. Dengue virus infection has become a global concern, and the lack of safe vaccines or antiviral treatments urgently needs to be addressed. NS3 and NS5 are highly conserved among the four serotypes, and the protein sequence around the pinpointed amino acids from the NS3 and NS5 regions are also conserved. The identification of the functionally essential interaction between the two proteins by biochemical and reverse genetics methods paves the way for rational drug design efforts to inhibit viral RNA synthesis.  相似文献   

5.
All influenza viral neuraminidases (NA) of both type A and B viruses have only one universally conserved sequence located between amino acids 222–230. A monoclonal antibody against this region has been previously reported to provide broad inhibition against all nine subtypes of influenza A NA; yet its inhibitory effect against influenza B viral NA remained unknown. Here, we report that the monoclonal antibody provides a broad inhibition against various strains of influenza B viruses of both Victoria and Yamagata genetic lineage. Moreover, the growth and NA enzymatic activity of two drug resistant influenza B strains (E117D and D197E) are also inhibited by the antibody even though these two mutations are conformationally proximal to the universal epitope. Collectively, these data suggest that this unique, highly-conserved linear sequence in viral NA is exposed sufficiently to allow access by inhibitory antibody during the course of infection; it could represent a potential target for antiviral agents and vaccine-induced immune responses against diverse strains of type B influenza virus.  相似文献   

6.
Flavivirus NS5 protein encodes methyltransferase and RNA-dependent RNA polymerase (RdRp) activities. Structural analysis of flavivirus RdRp domains uncovered two conserved cavities (A and B). Both cavities are located in the thumb subdomains and represent potential targets for development of allosteric inhibitors. In this study, we used dengue virus as a model to analyze the function of the two RdRp cavities. Amino acids from both cavities were subjected to mutagenesis analysis in the context of genome-length RNA and recombinant NS5 protein; residues critical for viral replication were subjected to revertant analysis. For cavity A, we found that only one (Lys-756) of the seven selected amino acids is critical for viral replication. Alanine substitution of Lys-756 did not affect the RdRp activity, suggesting that this residue functions through a nonenzymatic mechanism. For cavity B, all four selected amino acids (Leu-328, Lys-330, Trp-859, and Ile-863) are critical for viral replication. Biochemical and revertant analyses showed that three of the four mutated residues (Leu-328, Trp-859, and Ile-863) function at the step of initiation of RNA synthesis, whereas the fourth residue (Lys-330) functions by interacting with the viral NS3 helicase domain. Collectively, our results have provided direct evidence for the hypothesis that cavity B, but not cavity A, from dengue virus NS5 polymerase could be a target for rational drug design.  相似文献   

7.
HIV-1 integrase (IN) is an important target for contemporary antiretroviral drug design research. Historically, efforts at inactivating the enzyme have focused upon blocking its active site. However, it has become apparent that new classes of allosteric inhibitors will be necessary to advance the antiretroviral field in light of the emergence of viral strains resistant to contemporary clinically used IN drugs. In this study we have characterized the importance of a close network of IN residues, distant from the active site, as important for the obligatory multimerization of the enzyme and viral replication as a whole. Specifically, we have determined that the configuration of six residues within a highly symmetrical region at the IN dimerization interface, composed of a four-tiered aromatic interaction flanked by two salt bridges, significantly contributes to proper HIV-1 replication. Additionally, we have utilized a quantitative luminescence assay to examine IN oligomerization and have determined that there is a very low tolerance for amino acid substitutions along this region. Even conservative residue substitutions negatively impacted IN multimerization, resulting in an inactive viral enzyme and a non-replicative virus. We have shown that there is a very low tolerance for amino acid variation at the symmetrical dimeric interface region characterized in this study, and therefore drugs designed to target the amino acid network detailed here could be expected to yield a significantly reduced number of drug-resistant escape mutations compared to contemporary clinically-evaluated antiretrovirals.  相似文献   

8.
Chen C  Montelaro RC 《Journal of virology》2003,77(19):10280-10287
Synthesis of Gag-Pol polyproteins of retroviruses requires ribosomes to shift translational reading frame once or twice in a -1 direction to read through the stop codon in the gag reading frame. It is generally believed that a slippery sequence and a downstream RNA structure are required for the programmed -1 ribosomal frameshifting. However, the mechanism regulating the Gag-Pol frameshifting remains poorly understood. In this report, we have defined specific mRNA elements required for sufficient ribosomal frameshifting in equine anemia infectious virus (EIAV) by using full-length provirus replication and Gag/Gag-Pol expression systems. The results of these studies revealed that frameshifting efficiency and viral replication were dependent on a characteristic slippery sequence, a five-base-paired GC stretch, and a pseudoknot structure. Heterologous slippery sequences from human immunodeficiency virus type 1 and visna virus were able to substitute for the EIAV slippery sequence in supporting EIAV replication. Disruption of the GC-paired stretch abolished the frameshifting required for viral replication, and disruption of the pseudoknot reduced the frameshifting efficiency by 60%. Our data indicated that maintenance of the essential RNA signals (slippery sequences and structural elements) in this region of the genomic mRNA was critical for sufficient ribosomal frameshifting and EIAV replication, while concomitant alterations in the amino acids translated from the same region of the mRNA could be tolerated during replication. The data further indicated that proviral mutations that reduced frameshifting efficiency by as much as 50% continued to sustain viral replication and that greater reductions in frameshifting efficiency lead to replication defects. These studies define for the first time the RNA sequence and structural determinants of Gag-Pol frameshifting necessary for EIAV replication, reveal novel aspects relative to frameshifting elements described for other retroviruses, and provide new genetic determinants that can be evaluated as potential antiviral targets.  相似文献   

9.
对野生型烟草花叶病毒(TMV-U1)的外壳蛋白羧端序列进行系列缺失突变,观察到TMV-U1株系的外壳蛋白羧端序列缺失6个氨基酸(保留152个氨基酸),仍能较强系统侵染烟草并高水平表达外壳蛋白,且能在新生叶里复制大量完整的病毒粒子。该研究结果表明:外壳蛋白羧端6个氨基酸序列并非烟草花叶病毒感染和复制所必需,并对利用外壳蛋白羧端缺失型病毒载体表达外源多肽具有一定的启示性。  相似文献   

10.
Dengue virus is responsible for the highest rates of disease and mortality among the members of the Flavivirus genus. Dengue epidemics are still occurring around the world, indicating an urgent need of prophylactic vaccines and antivirals. In recent years, a great deal has been learned about the mechanisms of dengue virus genome amplification. However, little is known about the process by which the capsid protein recruits the viral genome during encapsidation. Here, we found that the mature capsid protein in the cytoplasm of dengue virus infected cells accumulates on the surface of ER-derived organelles named lipid droplets. Mutagenesis analysis using infectious dengue virus clones has identified specific hydrophobic amino acids, located in the center of the capsid protein, as key elements for lipid droplet association. Substitutions of amino acid L50 or L54 in the capsid protein disrupted lipid droplet targeting and impaired viral particle formation. We also report that dengue virus infection increases the number of lipid droplets per cell, suggesting a link between lipid droplet metabolism and viral replication. In this regard, we found that pharmacological manipulation of the amount of lipid droplets in the cell can be a means to control dengue virus replication. In addition, we developed a novel genetic system to dissociate cis-acting RNA replication elements from the capsid coding sequence. Using this system, we found that mislocalization of a mutated capsid protein decreased viral RNA amplification. We propose that lipid droplets play multiple roles during the viral life cycle; they could sequester the viral capsid protein early during infection and provide a scaffold for genome encapsidation.  相似文献   

11.
12.
Paramyxovirus genomes are ribonucleoprotein (RNP) complexes consisting of nucleoprotein (N)-encapsidated viral RNA. Measles virus (MeV) N features an amino-terminal RNA-binding core and a 125-residue tail domain, of which only the last 75 residues are considered fully mobile on the nucleocapsid surface. A molecular recognition element (MoRE) domain mediates binding of the viral phosphoprotein (P). This P N-tail interaction is considered instrumental for recruiting the polymerase complex to the template. We have engineered MeV N variants with tail truncations progressively eliminating the MoRE domain and upstream tail sections. Confirming previous reports, RNPs with N truncations lacking the carboxyl-terminal 43-residues harboring the MoRE domain cannot serve as polymerase template. Remarkably, further removal of all tail residues predicted to be surface-exposed significantly restores RNP bioactivity. Insertion of structurally dominant tags into the central N-tail section reduces bioactivity, but the negative regulatory effect of exposed N-tail stems is sequence-independent. Bioactive nucleocapsids lacking exposed N-tail sections are unable to sustain virus replication, because of weakened interaction of the advancing polymerase complex with the template. Deletion of the N-MoRE-binding domain in P abrogates polymerase recruitment to standard nucleocapsids, but polymerase activity is partially restored when N-tail truncated RNPs serve as template. Revising central elements of the current replication model, these data reveal that MeV polymerase is capable of productively docking directly to the nucleocapsid core. Dispensable for polymerase recruitment, N-MoRE binding to P-tail stabilizes the advancing polymerase-RNP complex and may rearrange unstructured central tail sections to facilitate polymerase access to the template.  相似文献   

13.
14.
Hepatitis C virus (HCV) is the main agent of acute and chronic liver diseases leading to cirrhosis and hepatocellular carcinoma. The current standard therapy has limited efficacy and serious side effects. Thus, the development of alternate therapies is of tremendous importance. HCV NS5A (nonstructural 5A protein) is a pleiotropic protein with key roles in HCV replication and cellular signaling pathways. Here we demonstrate that NS5A dimerization occurs through Domain I (amino acids 1-240). This interaction is not mediated by nucleic acids because benzonase, RNase, and DNase treatments do not prevent NS5A-NS5A interactions. Importantly, DTT abrogates NS5A-NS5A interactions but does not affect NS5A-cyclophilin A interactions. Other reducing agents such as tris(2-carboxyethyl)phosphine and 2-mercaptoethanol also abrogate NS5A-NS5A interactions, implying that disulfide bridges may play a role in this interaction. Cyclophilin inhibitors, cyclosporine A, and alisporivir and NS5A inhibitor BMS-790052 do not block NS5A dimerization, suggesting that their antiviral effects do not involve the disruption of NS5A-NS5A interactions. Four cysteines, Cys-39, Cys-57, Cys-59, and Cys-80, are critical for dimerization. Interestingly, the four cysteines have been proposed to form a zinc-binding motif. Supporting this notion, NS5A dimerization is greatly facilitated by Zn(2+) but not by Mg(2+) or Mn(2+). Importantly, the four cysteines are vital not only for viral replication but also critical for NS5A binding to RNA, revealing a correlation between NS5A dimerization, RNA binding, and HCV replication. Altogether our data suggest that NS5A-NS5A dimerization and/or multimerization could represent a novel target for the development of HCV therapies.  相似文献   

15.
近年来H5N1亚型禽流感病毒(AIV)神经氨酸酶(NA)茎部15~20个氨基酸的自发缺失时有报道,突变对于AIV生物学特性的影响还没有得到系统研究。应用反向遗传操作技术,拯救获得5株具有不同NA茎部长度的H5N1/PR8重组AIV。重组病毒的内部基因和血凝素(HA)基因来源相同,NA基因来源不同,并在NA茎部进行20个氨基酸的删除或添加突变。通过研究其生物学特性发现,5株重组病毒在SPF鸡胚中繁殖良好,其EID50、MDT和平均病毒滴度相似;NA茎部长短影响病毒的解凝能力,长茎病毒红细胞解脱能力比短茎病毒强;NA茎部15或20个氨基酸删除突变提高了重组病毒在MDCK细胞上的繁殖能力,短茎病毒释放出的病毒粒子数量是长茎病毒的10~100倍,释放时间提前6~10h,短茎病毒在MDCK细胞上形成的空斑也明显比长茎病毒的空斑大。实验结果揭示了AIV NA茎部氨基酸缺失突变的生物学意义,NA茎部15或20个氨基酸删除突变增强了AIV的细胞适应性,可能与现阶段H5N1亚型AIV宿主范围进一步扩大有关。利用反向遗传技术成功拯救了5株H5N1/PR8重组流感病毒,为流感病毒基因功能研究和重组疫苗研究建立了技术平台。通过对AIV NA茎部氨基酸的删除突变提高了病毒在MDCK细胞上的繁殖产量,为流感病毒细胞苗的生产提供了新的思路。  相似文献   

16.
17.
In hepatitis C virus, non-structural proteins are cleaved from the viral polyprotein by viral encoded proteases. Although proteolytic processing goes to completion, the rate of cleavage differs between different boundaries, primarily due to the sequence at these positions. However, it is not known whether slow cleavage is important for viral replication or a consequence of restrictions on sequences that can be tolerated at the cleaved ends of non-structural proteins. To address this question, mutations were introduced into the NS4B side of the NS4B5A boundary, and their effect on replication and polyprotein processing was examined in the context of a subgenomic replicon. Single mutations that modestly increased the rate of boundary processing were phenotypically silent, but a double mutation, which further increased the rate of boundary cleavage, was lethal. Rescue experiments relying on viral RNA polymerase-induced error failed to identify second site compensatory mutations. Use of a replicon library with codon degeneracy did allow identification of second site compensatory mutations, some of which fell exclusively within the NS5A side of the boundary. These mutations slowed boundary cleavage and only enhanced replication in the context of the original lethal NS4B double mutation. Overall, the data indicate that slow cleavage of the NS4B5A boundary is important and identify a previously unrecognized role for NS4B5A-containing precursors requiring them to exist for a minimum finite period of time.  相似文献   

18.
The linear antigenic epitopes of the Epstein-Barr virus replication activator protein (ZEBRA), recognised by specific serum IgG in nasopharyngeal carcinoma (NPC), were determined. This was achieved by synthesizing the entire amino acid sequence of ZEBRA as a set of 29, 22-residue peptides with an overlap of 14 amino acids. The ZEBRA peptides were tested in enzyme-linked immunosorbent assay (ELISA) for IgG binding in sera from 37 selected NPC patients who had IgG antibodies to the native ZEBRA protein. The most immunogenic epitope was peptide 1 at the amino-terminal end with 36 of the sera reactive against it. Further analysis of peptide 1, using the multipin peptide-scanning technique, defined a 10-amino-acid sequence FTPDPYQVPF, which was strongly bound by IgG. Two other regions of ZEBRA were also identified as immunodominant IgG epitopes, namely peptide 11 (amino acids 82–103) and peptide 19/20 (amino acids 146–175) with 8–13 of the NPC sera reactive against the peptides. The number of peptides reactive with individual NPC serum varies from 1 to 6 or more and there is some correlation between a greater number of peptide (at least 4) bound and a higher (at least 1:40) titre of serum IgA to viral capsid antigen. The immunodominant ZEBRA peptide 1 could be utilised in IgG ELISA for the detection of NPC.  相似文献   

19.
HIV-1 Rev is an accessory protein that plays a key role in nuclear exportation, stabilization, and translation of the viral mRNAs. Rev of HIV-1 clade BC often shows a truncation of 16 AAs due to a premature stop codon at residue 101. This stop codon presents the highest frequency in clade BC and the lowest frequency in clade B. In order to discover the potential biological effect of this truncation on Rev activity and virus replication of clade BC, we constructed Rev expression vectors of clade BC with or without 16 AAs within C-terminal separately, and replaced the stop codon by Q in a CRF07_BC infectious clone. We found that 16 AAs truncation had no effect on expression and activity of Rev in clade BC.Also, the mutation from the stop codon to Q had no effect on virus replication of clade BC. Next, to investigate the effect of this truncation on Rev activity and replication capacity of clade B, Rev expression vectors of clade B carrying or lacking 16 AAs in C-terminal were constructed respectively, and residue Q at position 101 within Rev was substituted by the stop codon in a clade B infectious clone. It was found that 16 AAs truncation significantly down-regulated Rev expression and impaired clade B Rev activity. Furthermore, a Q-to-stop codon substitution within Rev significantly reduced viral replication fitness of clade B. These results indicate that the premature stop codon at residue 101 within Rev exerts diverse impact on viral replication among different HIV-1 clades.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号