首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
ObjectiveAdvances made in the past ten years highlight the notion that peroxisome proliferator-activated receptors gamma (PPARγ) has protective properties in the pathophysiology of osteoarthritis (OA). The aim of this study was to define the roles of PPARγ in AGEs-induced inflammatory response in human chondrocytes.MethodsPrimary human chondrocytes were stimulated with AGEs in the presence or absence of neutralizing antibody against RAGE (anti-RAGE), MAPK specific inhibitors and PPARγ agonist pioglitazone. The expression of IL-1, MMP-13, TNF-α, PPARγ, nuclear NF-κB p65 and cytosol IκBα was determined by western blotting and real-time PCR.ResultsAGEs could enhance the expression of IL-1, TNF-α, and MMP-13, but the level of PPARγ was decreased in a time- and dose-dependent manner, which was inhibited by anti-RAGE, SB203580 (P38 MAPK specific inhibitor) and SP600125 (a selective inhibitor of JNK). PPARγ agonist pioglitazone could inhibit the effects of AGEs-induced inflammatory response and PPARγ down-regulation. In human chondrocytes, AGEs could induce cytosol IκBα degradation and increase the level of nuclear NF-κB p65, which was inhibited by PPARγ agonist pioglitazone.ConclusionsIn primary human chondrocytes, AGEs could down-regulate PPARγ expression and increase the inflammatory mediators, which could be reversed by PPARγ agonist pioglitazone. Activation of RAGE by AGEs triggers a cascade of downstream signaling, including MAPK JNK/ p38, PPARγ and NF-κB. Taken together, PPARγ could be a potential target for pharmacologic intervention in the treatment of OA.  相似文献   

2.
3.
We examined changes in nuclear peroxisome proliferator-activated receptor γ (PPARγ) in the striatum in methamphetamine (METH)-induced dopaminergic neurotoxicity, and also examined effects of treatment with drugs possessing PPARγ agonistic properties. The marked reduction of nuclear PPARγ-expressed cells was seen in the striatum 3 days after METH injections (4 mg/kg × 4, i.p. with 2-h interval). The reduction of dopamine transporter (DAT)-positive signals and PPARγ expression, and accumulation of activated microglial cells were significantly and dose-dependently attenuated by four injections of a nonsteroidal anti-inflammatory drug and a PPARγ ligand, ibuprofen (10 or 20 mg/kg × 4, s.c.) given 30 min prior to each METH injection, but not by either a low or high dose of aspirin. Either treatment of ibuprofen or aspirin, that showed no effects on METH-induced hyperthermia, significantly blocked the METH-induced striatal cyclooxygenase (COX) expression. Furthermore, the treatment of an intrinsic PPARγ ligand 15d-PG J2 also attenuated METH injections-induced reduction of striatal DAT. Therefore, the present study suggests the involvement of reduction of PPARγ expression in METH-induced neurotoxicity. Taken together with the previous report showing protective effects of other PPARγ ligand, these results imply that the protective effects of ibuprofen against METH-induced neurotoxicity may be based, in part, on its anti-inflammatory PPARγ agonistic properties, but not on its COX-inhibiting property or hypothermic effect. Special issue article in honor of Dr. Akitane Mori.  相似文献   

4.
5.
We report a novel PPARG germline mutation in a patient affected by colorectal cancer that replaces serine 289 with cysteine in the mature protein (S289C). The mutant has impaired transactivation potential and acts as dominant negative to the wild type receptor. In addition, it no longer restrains cell proliferation both in vitro and in vivo. Interestingly, the S289C mutant poorly activates target genes and interferes with the inflammatory pathway in tumor tissues and proximal normal mucosa. Consistently, only mutation carriers exhibit colonic lesions that can evolve to dysplastic polyps. The proband presented also dyslipidemia, hypertension and overweight, not associated to type 2 diabetes; of note, family members tested positive for the mutation and display only a dyslipidemic profile at variable penetrance with other biochemical parameters in the normal range. Finally, superimposing the mutation to the crystal structure of the ligand binding domain, the new Cys289 becomes so closely positioned to Cys285 to form an S–S bridge. This would reduce the depth of the ligand binding pocket and impede agonist positioning, explaining the biological effects and subcellular distribution of the mutant protein. This is the first PPARG germline mutation associated with dyslipidemia and colonic polyp formation that can progress to full-blown adenocarcinoma.  相似文献   

6.
In human coronary artery vascular smooth muscle (hcaVSM) cells, the mechanisms that mediate the antiproliferative effects of ligands for the peroxisome proliferator-activated receptor-γ (PPARγ) and the retinoid X receptor-α (RXRα) are unclear. Dimerization of PPARγ with RXRα and occupancy by both ligands is required for maximal activation. Accordingly, we determined whether the antiproliferative activity of the PPARγ ligands, troglitazone or 15-deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2), was enhanced with the RXRα ligand, 9-cis-retinoic acid (9-cis-RA). Incubation of actively proliferating hcaVSM cells with either troglitazone or 15d-PGJ2 resulted in a dose-dependent inhibition of proliferation with half-maximal inhibitory concentrations (IC50s) of 13 and 2 μM, respectively. Quiescent cells incubated with troglitazone or 15d-PGJ2 and subsequently stimulated with PDGF-BB showed a concentration-dependent decrease in the active form of MAP kinase, suggesting that inhibition of cell growth by troglitazone may involve the MAP kinase pathway, an important growth activation pathway in VSM cells. Incubation of cells with either 0.1 or 1.0 μM 9-cis-RA inhibited cell growth to a similar degree. Addition of troglitazone or 15d-PGJ2 to cells in combination with either concentration of 9-cis-RA resulted in a striking increase in growth inhibition, and was accompanied by an approximately 4-fold reduction in the IC50s for both PPARγ ligands. These findings imply that RXRα activation by 9-cis-RA synergistically enhanced inhibition of hcaVSM cell growth. The precise nature of this cooperative interaction between PPARγ and RXRα remains to be determined.  相似文献   

7.
8.

Background

Infection is a common cause of acute lung injury (ALI). This study was aimed to explore whether Toll-like receptors 4 (TLR4) of airway smooth muscle cells (ASMCs) play a role in lipopolysaccharide (LPS)-induced airway hyperresponsiveness and potential mechanisms.

Methods

In vivo: A sensitizing dose of LPS (50 µg) was administered i.p. to female mice before anesthesia with either 3% sevoflurane or phenobarbital i.p. After stabilization, the mice were challenged with 5 µg of intratracheal LPS to mimic inflammatory attack. The effects of sevoflurane were assessed by measurement of airway responsiveness to methacholine, histological examination, and IL-1, IL-6, TNF-α levels in bronchoalveolar lavage fluid (BALF). Protein and gene expression of TLR4 and NF-κB were also assessed. In vitro: After pre-sensitization of ASMCs and ASM segments for 24h, levels of TLR4 and NF-κB proteins in cultured ASMCs were measured after continuous LPS exposure for 1, 3, 5, 12 and 24h in presence or absence of sevoflurane. Constrictor and relaxant responsiveness of ASM was measured 24 h afterwards.

Results

The mRNA and protein levels of NF-κB and TLR4 in ASM were increased and maintained at high level after LPS challenge throughout 24h observation period, both in vivo and in vitro. Sevoflurane reduced LPS-induced airway hyperresponsiveness, lung inflammatory cell infiltration and proinflammatory cytokines release in BALF as well as maximal isometric contractile force of ASM segments to acetylcholine, but it increased maximal relaxation response to isoproterenol. Treatment with specific NF-κB inhibitor produced similar protections as sevoflurane, including decreased expressions of TLR4 and NF-κB in cultured ASMCs and improved pharmacodynamic responsiveness of ASM to ACh and isoproterenol.

Conclusions

This study demonstrates the crucial role of TLR4 activation in ASMCs during ALI in response to LPS. Sevoflurane exerts direct relaxant and anti-inflammatory effects in vivo and in vitro via inhibition of TLR4/NF-κB pathway.  相似文献   

9.
Russian Journal of Bioorganic Chemistry - The membrane receptor for advanced glycation endproducts (RAGE) is involved in the development of a number of pathological conditions, including...  相似文献   

10.
Clostridium difficile is an anaerobic bacterium that has re-emerged as a facultative pathogen and can cause nosocomial diarrhea, colitis or even death. Peroxisome proliferator-activated receptor (PPAR) γ has been implicated in the prevention of inflammation in autoimmune and infectious diseases; however, its role in the immunoregulatory mechanisms modulating host responses to C. difficile and its toxins remains largely unknown. To characterize the role of PPARγ in C. difficile-associated disease (CDAD), immunity and gut pathology, we used a mouse model of C. difficile infection in wild-type and T cell-specific PPARγ null mice. The loss of PPARγ in T cells increased disease activity and colonic inflammatory lesions following C. difficile infection. Colonic expression of IL-17 was upregulated and IL-10 downregulated in colons of T cell-specific PPARγ null mice. Also, both the loss of PPARγ in T cells and C. difficile infection favored Th17 responses in spleen and colonic lamina propria of mice with CDAD. MicroRNA (miRNA)-sequencing analysis and RT-PCR validation indicated that miR-146b was significantly overexpressed and nuclear receptor co-activator 4 (NCOA4) suppressed in colons of C. difficile-infected mice. We next developed a computational model that predicts the upregulation of miR-146b, downregulation of the PPARγ co-activator NCOA4, and PPARγ, leading to upregulation of IL-17. Oral treatment of C. difficile-infected mice with the PPARγ agonist pioglitazone ameliorated colitis and suppressed pro-inflammatory gene expression. In conclusion, our data indicates that miRNA-146b and PPARγ activation may be implicated in the regulation of Th17 responses and colitis in C. difficile-infected mice.  相似文献   

11.
12.
13.

Background

Type 2 diabetes is characterized by pancreatic β-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that the signalling cascade activated by lipopolysaccharides (LPS) binding to Toll-Like Receptor 4 (TLR4) exerts deleterious effects on pancreatic β-cell function; however, the molecular mechanisms of these effects are incompletely understood. In this study, we tested the hypothesis that LPS alters insulin gene expression via TLR4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in islets.

Methodology/Principal Findings

A 24-h exposure of isolated human, rat and mouse islets of Langerhans to LPS dose-dependently reduced insulin gene expression. This was associated in mouse and rat islets with decreased mRNA expression of pancreas-duodenum homebox-1 (PDX-1) and mammalian homologue of avian MafA/l-Maf (MafA). Accordingly, LPS exposure also decreased glucose-induced insulin secretion. LPS repression of insulin, PDX-1 and MafA expression, as well as its inhibition of insulin secretion, were not observed in islets from TLR4-deficient mice. LPS inhibition of β-cell gene expression in rat islets was prevented by inhibition of the NF-κB pathway, but not the p38 mitogen-activated protein kinase (p38 MAPK) pathway.

Conclusions/Significance

Our findings demonstrate that LPS inhibit β-cell gene expression in a TLR4-dependent manner and via NF-κB signaling in pancreatic islets, suggesting a novel mechanism by which the gut microbiota might affect pancreatic β-cell function.  相似文献   

14.
Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipocyte differentiation and function. We and others have previously mapped PPARγ binding at a genome-wide level in murine and human adipocyte cell lines and in primary human adipocytes. However, little is known about how binding patterns of PPARγ differ between brown and white adipocytes and among different types of white adipocytes. Here we have employed chromatin immunoprecipitation combined with deep sequencing to map and compare PPARγ binding in in vitro differentiated primary mouse adipocytes isolated from epididymal, inguinal, and brown adipose tissues. While these PPARγ binding profiles are overall similar, there are clear depot-selective binding sites. Most PPARγ binding sites previously mapped in 3T3-L1 adipocytes can also be detected in primary adipocytes, but there are a large number of PPARγ binding sites that are specific to the primary cells, and these tend to be located in closed chromatin regions in 3T3-L1 adipocytes. The depot-selective binding of PPARγ is associated with highly depot-specific gene expression. This indicates that PPARγ plays a role in the induction of genes characteristic of different adipocyte lineages and that preadipocytes from different depots are differentially preprogrammed to permit PPARγ lineage-specific recruitment even when differentiated in vitro.  相似文献   

15.
Endothelial cells participate in inflammatory events leading to atherogenesis by regulating endothelial cell permeability via the expression of VE-Cadherin and β-catenin and leukocyte recruitment via the expression of E-Selectins and other adhesion molecules. The protein p66Shc acts as a sensor/inducer of oxidative stress and may promote vascular dysfunction. The objective of this study was to investigate the role of p66Shc in tumor necrosis factor TNFα-induced E-Selectin expression and function in human umbilical vein endothelial cells (HUVEC). Exposure of HUVEC to 50 ng/ml TNFα resulted in increased leukocyte transmigration through the endothelial monolayer and E-Selectin expression, in association with augmented phosphorylation of both p66Shc on Ser36 and the stress kinase c-Jun NH2-terminal protein kinase (JNK)-1/2, and higher intracellular reactive oxygen species (ROS) levels. Overexpression of p66Shc in HUVEC resulted in enhanced p66Shc phosphorylation on Ser36, increased ROS and E-Selectin levels, and amplified endothelial cell permeability and leukocyte transmigration through the HUVEC monolayer. Conversely, overexpression of a phosphorylation-defective p66Shc protein, in which Ser36 was replaced by Ala, did not augment ROS and E-Selectin levels, nor modify cell permeability or leukocyte transmigration beyond those found in wild-type cells. Moreover, siRNA-mediated silencing of p66Shc resulted in marked reduction of E-Selectin expression and leukocyte transmigration. In conclusion, p66Shc acts as a novel intermediate in the TNFα pathway mediating endothelial dysfunction, and its action requires JNK-dependent phosphorylation of p66Shc on Ser36.  相似文献   

16.
Tumor cell mitochondria are key biosynthetic hubs that provide macromolecules for cancer progression and angiogenesis. Soluble decorin protein core, hereafter referred to as decorin, potently attenuated mitochondrial respiratory complexes and mitochondrial DNA (mtDNA) in MDA-MB-231 breast carcinoma cells. We found a rapid and dynamic interplay between peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and the decorin-induced tumor suppressor gene, mitostatin. This interaction stabilized mitostatin mRNA with concurrent accumulation of mitostatin protein. In contrast, siRNA-mediated abrogation of PGC-1α-blocked decorin-evoked stabilization of mitostatin. Mechanistically, PGC-1α bound MITOSTATIN mRNA to achieve rapid stabilization. These processes were orchestrated by the decorin/Met axis, as blocking the Met-tyrosine kinase or knockdown of Met abrogated these responses. Furthermore, depletion of mitostatin blocked decorin- or rapamycin-evoked mitophagy, increased vascular endothelial growth factor A (VEGFA) production, and compromised decorin-evoked VEGFA suppression. Collectively, our findings underscore the complexity of PGC-1α-mediated mitochondrial homeostasis and establish mitostatin as a key regulator of tumor cell mitophagy and angiostasis.  相似文献   

17.
The pathological hallmarks of Alzheimer’s disease (AD) include formation of extracellular amyloid-β peptide (Aβ) and inflammatory responses. Numerous studies have reported that cerebral microvascular Aβ deposition promotes neuroinflammation in AD. Matrix metalloproteinases (MMPs) are involved in the cleavage of extracellular matrix proteins and regulation of growth factors, receptors, and adhesion molecules. Relatively little is known about the involvement of MMPs as inflammatory mediators in the pathological processes of AD. In this study, we explored the signaling pathway of MMP-2 up-regulation by Aβ in brain endothelial cells (BECs) of mice. Using Western blots, we found that inhibitors of extracellular-signal-regulated kinases (ERK) and c-Jun N-terminal kinase (JNK) significantly decreased Aβ-induced MMP-2 expression in BECs. Furthermore, antibody neutralization of the receptor for advanced glycation endproducts effectively blocked Aβ-induced activation of ERK and JNK and their contribution to elevated MMP-2 expression in BECs. Our results suggest that increased MMP-2 expression induced by the interaction of Aβ with RAGE in BECs may contribute to enhanced vascular inflammatory stress in Aβ-related vascular disorders, such as cerebral amyloid angiopathy and AD. This study offers new insights into neuroinflammation in the progression of AD.  相似文献   

18.
Wnt signaling are recognized key factors in neuronal development, cell proliferation and axonal guidance. However, RAGE effect on wnt signaling after spinal cord injury (SCI) are poorly understood. Our study aims to explore RAGE blockade effect on wnt signaling after SCI. We constructed Allen SCI model and micro-injected with RAGE neutralizing antibody or IgG after injury. We determined β-catenin, wnt3a and its receptor frizzled-5 via Western blot. We determined β-catenin/NeuN expression at 2 weeks after SCI via immunofluorescence (IF). We found that β-catenin, wnt3a and wnt receptor frizzled5 expression were activated after SCI at 3 days after injury. However, RAGE blockade inhibit β-catenin, wnt3a and frizzled5 expression. We found that β-catenin accumulation in NeuN cells were activated after SCI via IF, however, RAGE blockade reduced β-catenin and NeuN positive cells. RAGE blockade attenuated number of survived neurons and decreased area of spared white matter around the epicenter. RAGE signaling may involved in disrupting wnt signaling to aids neuronal recovery after SCI.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号