首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ErbB3 binding protein 1 (Ebp1) represents a downstream effector of the ErbB signaling network and has been demonstrated to be a potent tumor suppressor in various human malignancies, however, its involvement in human bladder cancer is still unclear.To investigate the clinical significance and potential role of ErbB3 binding protein 1 (Ebp1) in bladder cancer. Ebp1 expression at protein and gene levels in 52 surgically removed bladder cancer specimens as well as 21 adjacent normal bladder specimens were respectively detected by immunohistochemistry and qRT-PCR. The association of Ebp1 protein expression with the clinicopathological features of bladder cancer was also statistically analyzed. Its roles in bladder cancer cell line were further evaluated. The expression level of Ebp1 protein and gene in bladder cancer tissues was significantly lower than that in adjacent normal bladder tissues (P < 0.01). When categorized into low vs. high expression, the down-regulation of Ebp1 protein was associated with the advanced pathologic stage (P = 0.036) and the high histologic grade (P = 0.001) of patients with bladder cancer. Moreover, following the transfection of Ebp1 in bladder cancer cells, not only cell proliferation and cell invasion decreased significantly, but also the cell cycle was blocked at G0/G1 stage. Our data suggest for the first time that the down-regulation of Ebp1 closely correlates with advanced clinicopathological characteristics of human bladder cancer. Furthermore, Ebp1 plays an important role in the bladder cancer cells’ proliferation by regulating the cancer cell cycle from G0/G1 to S.  相似文献   

3.
4.
5.
6.
RhoE, a novel member of the Rho protein family, is a key regulator of the cytoskeleton and cell migration. Our group has previously shown that RhoE as a direct target for HIF-1α and mediates hypoxia-induced epithelial to mesenchymal transition in gastric cancer cells. Therefore, we assumed that RhoE might play an important role in gastric cancer metastasis. In the present study, we have explored the role of RhoE expression in gastric cancer, cell invasion and metastasis, and the influence of RhoE on regulating the potential expression of down-stream genes. RhoE expression was elevated in gastric cancer tissues as compared with normal gastric tissues. We also found a close correlation between the histological grade and the diagnosis of the patient. Up-regulation of RhoE significantly enhanced the migratory and invasive abilities of gastric cancer cells both in vitro and in vivo. Moreover, down-regulation of RhoE diminished the metastatic potential of cancer cells. PCR array and subsequent transwell assay showed that the regulation of gastric cancer metastasis by RhoE was partially mediated by CXCR4. This observation suggested that CXCR4 might be a downstream effector for RhoE. In summary, our study identified RhoE as a novel prognostic biomarker and metastatic-promoting gene of gastric cancer.  相似文献   

7.
Aberrant expression of special AT-rich binding protein 1 (SATB1), a global genomic organizer, has been associated with various cancers, which raises the question of how higher-order chromatin structure contributes to carcinogenesis. Disruption of apoptosis is one of the hallmarks of cancer. We previously demonstrated that SATB1 mediated specific long-range chromosomal interactions between the mbr enhancer located within 3’-UTR of the BCL2 gene and the promoter to regulate BCL2 expression during early apoptosis. In the present study, we used chromosome conformation capture (3C) assays and molecular analyses to further investigate the function of the SATB1-mediated higher-order chromatin structure in co-regulation of the anti-apoptotic BCL2 gene and the pro-apoptotic NOXA gene located 3.4Mb downstream on Chromosome 18. We demonstrated that the mbr enhancer spatially juxtaposed the promoters of BCL2 and NOXA genes through SATB1-mediated chromatin-loop in Jurkat cells. Decreased SATB1 levels switched the mbr-BCL2 loop to mbr-NOXA loop, and thus changed expression of these two genes. The SATB1-mediated dynamic switch of the chromatin loop structures was essential for the cooperative expression of the BCL2 and NOXA genes in apoptosis. Notably, the role of SATB1 was specific, since inhibition of SATB1 degradation by caspase-6 inhibitor or caspase-6-resistant SATB1 mutant reversed expression of BCL-2 and NOXA in response to apoptotic stimulation. This study reveals the critical role of SATB1-organized higher-order chromatin structure in regulating the dynamic equilibrium of apoptosis-controlling genes with antagonistic functions and suggests that aberrant SATB1 expression might contribute to cancer development by disrupting the co-regulated genes in apoptosis pathways.  相似文献   

8.
TPX2, a protein involved in mitosis, is considered a good marker for actively proliferating tissues, highly expressed in a number of cancer cells. We show the presence of high-affinity binding site for STAT3 in the 5′-flanking region of the Tpx2 gene, which is in vivo bound by activated STAT3. A specific STAT3 peptide inhibitor represses the expression of the Tpx2 gene and inhibits the binding of STAT3 to its consensus sequence in human cell lines where STAT3 is activated. These results indicate that activated STAT3 contributes to the over-expression of Tpx2 through the binding to an enhancer site.  相似文献   

9.
10.
11.
12.
13.
HO-1 (heme oxygenase-1) is an inducible microsomal enzyme that catalyzes the degradation of pro-oxidant heme. The goal of this study was to characterize a minimal enhancer region within the human HO-1 gene and delineate its role in modulating HO-1 expression by participation with its promoter elements in renal epithelial cells. Deletion analysis and site-directed mutagenesis identified a 220-bp minimal enhancer in intron 1 of the HO-1 gene, which regulates hemin-mediated HO-1 gene expression. Small interfering RNA, decoy oligonucleotides, site-directed mutagenesis, and chromatin immunoprecipitation assays confirmed the functional interaction of Sp1 with a consensus binding sequence within the 220-bp region. Mutations of regulatory elements within the −4.5 kb promoter region (a cyclic AMP response and a downstream NF-E2/AP-1 element, both located at −4.0 kb, and/or an E-box sequence located at −44 bp) resulted in the loss of enhancer activity. A chromosome conformation capture assay performed in human renal epithelial (HK-2) cells demonstrated hemin-inducible chromatin looping between the intronic enhancer and the −4.0 kb promoter region in a time-dependent manner. Restriction digestion with ApaLI (which cleaves the 220-bp enhancer) led to a loss of stimulus-dependent chromatin looping. Sp1 small interfering RNA and mithramycin A, a Sp1 binding site inhibitor, resulted in loss of the loop formation between the intronic enhancer and the distal HO-1 promoter by the chromosome conformation capture assay. These results provide novel insight into the complex molecular interactions that underlie human HO-1 regulation in renal epithelial cells.  相似文献   

14.
15.
16.
17.
Expression of lymphoid enhancer factor 1 (LEF1) is frequently altered in different human cancers. This study aimed to assess LEF1 expression in colon cancer tissues and to explore changed phenotypes, gene expressions, and the possible mechanism after knocked down LEF1 expression in colon cancer cell lines. A total of 106 colon cancer and matched paratumorous normal tissues were used to assess LEF1 expression using immunohistochemistry and qRT-PCR. LEF1 lentivirus was used to knockdown LEF1 expression for the assessment of cell viability, cell cycle distribution, apoptosis, and gene expressions. The nude mouse xenograft assay was performed to detect the effects of LEF1 knockdown in vivo. The data showed that the levels of LEF1 mRNA and protein were significantly increased in human colon cancer tissues compared to the matched paratumorous normal tissues and were associated with infiltration depth, lymph node and distant metastases, advanced TNM (tumor-node-metastasis) stages, and shorter overall survival. Furthermore, LEF1 knockdown reduced tumor cell viability, invasion capacity, MMP2 and MMP-9 expression, but induced apoptosis. Nude mouse xenograft assay showed that LEF1 knockdown suppressed tumor formation and growth in vivo. In addition, the expression of Notch pathway-related proteins RBP-jκ and Hes1 was reduced in LEF1 knockdown cells. Taken together, LEF1 protein was overexpressed in colon cancer tissues and knockdown of LEF1 expression inhibited colon cancer growth in vitro and in vivo. These data suggest that targeting of LEF1 expression should be further evaluated for colon cancer prevention and therapy.  相似文献   

18.
Micro (mi) RNAs are important regulators involved in various physical and pathological processes, including cancer. The miRNA-302 family has been documented as playing a critical role in carcinogenesis. In this study, we investigated the role of miRNA-302a in prostate cancer (PCa). MiRNA-302a expression was detected in 44 PCa tissues and 10 normal prostate tissues, and their clinicopathological significance was analyzed. Cell proliferation and cell cycle analysis were performed on PCa cells that stably expressed miRNA-302a. The target gene of miRNA-302a and the downstream pathway were further investigated. Compared with normal prostate tissues, miRNA-302a expression was downregulated in PCa tissues, and was even lower in PCa tissues with a Gleason score ≥8. Overexpression of miRNA-302a induced G1/S cell cycle arrest in PCa cells, and suppressed PCa cell proliferation both in vitro and in vivo. Furthermore, miRNA-302a inhibits AKT expression by directly binding to its 3΄ untranslated region, resulting in subsequent alterations of the AKT-GSK3β-cyclin D1 and AKT-p27Kip1 pathway. These results reveal miRNA-302a as a tumor suppressor in PCa, suggesting that miRNA-302a may be used as a potential target for therapeutic intervention in PCa.  相似文献   

19.
P element-mediated transformation has been usedto investigate the regulation of expression of thesn-glycerol-3-phosphate dehydrogenase gene ofDrosophila melanogaster. A 13-kb constructcontaining the eight exons and associated introns, 5 kb of the5′ region, and 3 kb downstream from the structuralgene produced normal levels of enzyme activity andrescued the poor viability of flies lacking the enzyme. All the regulatory elements essential fornormal enzyme expression were located in a fragment thatincluded the exons and introns and 1-kb upstreamnoncoding sequence. Deletions of the 1.6-kb secondintron reduced activity to 25%. Transformants withfusion constructs between the sn-glycerol-3-phosphatedehydrogenase gene and the beta-galactosidase gene fromE. coli revealed three elements that affectedexpression. A (CT)9 repeat element at the5′ end of the second intron increased expressionin both larvae and adults, particularly at emergence. Asecond regulatory element, which includes a(CT)7 repeat, was located 5′ to the TATA box and had similareffects on the gene's expression. A third, undefined,enhancer was located in the second intron, between 0.5and 1.8 kb downstream of the translation initiationcodon. This element increases enzyme activity to asimilar extent in larvae and adults but has littleeffect when the enhancer at the 5′ end of theintron is present.  相似文献   

20.
N-3 fatty acids (FAs) are essential FAs necessary for human health and are known to possess anticancer properties. However, the relationship between n-3 FAs and β-catenin, one of the key components of the Wnt signaling pathway, in mouse breast cancer remains poorly characterized. In this study, 4T1 mouse breast cancer cells were exposed to a representative n-3 FA, docosahexaenoic acid (DHA), to investigate the relationship between n-3 FAs and the Wnt/β-catenin signaling pathway in vivo and in vitro. In vitro studies showed that DHA strongly inhibited cell growth, and induced G1 cell cycle arrest both in 4T1 mouse breast cells and MCF-7 human breast cells. DHA reduced β-catenin expression and T cell factor/lymphoid-enhancing factor reporter activity in 4T1 mouse breast cells. In addition, DHA down-regulated the expression of downstream target genes such as c-myc and cyclinD1. In vivo, therapy experiments were conducted on Babl/c mice bearing breast cancer. We found that feeding mouse the 5% fish oil-supplemented diet for 30 days significantly reduced the growth of 4T1 mouse breast cancer in vivo through inhibition of cancer cell proliferation as well as induction of apoptosis. Feeding animals a 5% fish oil diet significantly induced down-regulation of β-catenin in tumor tissues with a notable increase in apoptosis. In addition, fish oil-supplemented diet decreased lung metastases of breast cancer. These observations suggested that DHA exerted its anticancer activity through down-regulation of Wnt/β-catenin signaling. Thus, our data call for further studies to assess the effectiveness of fish oil as a dietary supplement in the prevention and treatment of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号