首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Angiogenin (Ang) is known to induce cell proliferation and inhibit apoptosis by cellular signaling pathways and its direct nuclear functions, but the mechanism of action for Ang in astrocytoma is not yet clear. Astrocytoma is the most frequent one among various neurogliomas, of which a subtype known as glioblastoma multiforme (GBM) is the most malignant brain glioma and seriously influences the life quality of the patients. The expression of Ang and Bcl-xL were detected in 28 cases of various grades of astrocytoma and 6 cases of normal human tissues by quantitative real-time PCR. The results showed that the expression of Ang and Bcl-xL positively correlated with the malignant grades. Cytological experiments indicated that Ang facilitated human glioblastoma U87MG cell proliferation and knock-down of endogenous Ang promoted cell apoptosis. Furthermore, Ang activated NF-κB pathway and entered the U87MG cell nuclei, and blocking NF-κB pathway or inhibiting Ang nuclear translocation partially suppressed Ang-induced cell proliferation. The results suggested that Ang participated in the regulation of evolution process of astrocytoma by interfering NF-κB pathway and its nucleus function. In addition, four and a half LIM domains 3 (FHL3), a novel Ang binding partner, was required for Ang-mediated HeLa cell proliferation in our previous study. We also found that knockdown of FHL3 enhanced IκBα phosphorylation and overexpression of Ang inhibited FHL3 expression in U87MG cells. Together our findings suggested that Ang could activate NF-κB pathway by regulating the expression of FHL3. In conclusion, the present study established a link between Ang and FHL3 proteins and identifies a new pathway for regulating astrocytoma progression.  相似文献   

2.
Angiogenesis in glioma is associated with the poor prognosis of the disease and closely correlates with the highly invasive phenotype of glioma cells, which represents the most challenging impediment against the currently glioma treatments. Bmi-1, an onco-protein, has been implicated in the progression of various human cancers, including gliomas, whereas its role in glioma angiogenesis remains unclear. Our current study examined the effects of Bmi-1 on glioma angiogenesis in vitro as well as in vivo. We found that overexpression of Bmi-1 enhanced, whereas knockdown of Bmi-1 diminished, the capability of glioma cells to induce tubule formation and migration of endothelial cells and neovascularization in chicken chorioallantoic membrane. In vivo, Bmi-1 overexpression and knockdown, respectively, promoted and inhibited angiogenesis in orthotopically transplanted human gliomas. Furthermore, NF-κB activity and VEGF-C expression was induced by Bmi-1 overexpression, whereas Bmi-1 knockdown attenuated NF-κB signaling and decreased VEGF-C expression. Additionally suppression of NF-κB activity using a specific chemical inhibitor abrogated the NF-κB activation and the pro-angiogenic activities of glioma cells. Together, our data suggest that Bmi-1 plays an important role in glioma angiogenesis and therefore could represent a potential target for anti-angiogenic therapy against the disease.  相似文献   

3.

Background

Platinum-based chemotherapy is a standard strategy for non-small cell lung cancer (NSCLC), while chemoresistance remains a major therapeutic challenge in current clinical practice. Our present study was aimed to determine whether inhibition of the NF-κB/miR-21/PTEN pathway could increase the sensitivity of NSCLC to cisplatin.

Methods

The expression of miR-21 in NSCLC tissues was determined using in situ hybridization. Next, the effect of miR-21 on the sensitivity of A549 cells to cisplatin was determined in vitro. Whether miR-21 regulated PTEN expression was assessed by luciferase assay. Furthermore, whether NF-κB targeted its binding elements in the miR-21 gene promoter was determined by luciferase and ChIP assay. Finally, we measured the cell viability and apoptosis under cisplatin treatment when NF-κB was inhibited.

Results

An elevated level of miR-21 was observed in NSCLC lung tissues and was related to a short survival time. Exogenous miR-21 promoted cell survival when exposed to cisplatin, while miR-21 inhibition could reverse this process. The RNA and protein levels of PTEN were significantly decreased by exogenous miR-21, and the 3′-untranslated region of PTEN was shown to be a target of miR-21. The expression of miR-21 was regulated by NF-κB binding to its element in the promoter, a finding that was verified by luciferase and ChIP assay. Hence, inhibition of NF-κB by RNA silencing protects cells against cisplatin via decreasing miR-21 expression.

Conclusion

Modulation of the NF-κB/miR-21/PTEN pathway in NSCLC showed that inhibition of this pathway may increase cisplatin sensitivity.  相似文献   

4.
5.
The Notch2 is a critical membrane receptor for B-cell functions, and also displays various biological roles in lymphoma pathogenesis. In this article, we reported that 3 of 69 (4.3%) diffuse large B-cell lymphomas (DLBCLs) exhibited a truncate NOTCH2 mutation at the nucleotide 7605 (G/A) in the cDNA sequence, which led to partial deletion of the C-terminal of PEST (proline-, glutamic acid-, serine- and threonine-rich) domain. The truncate Notch2 activated both the Notch2 and the NF-κB signals and promoted the proliferation of B-cell lymphoma cell lines, including DLBCL and Burkitt''s lymphoma cell lines. Moreover, the ectopic proliferation was completely inhibited by ammonium pyrrolidinedithiocarbamate (PDTC), an NF-κB inhibitor. Simultaneously, PDTC also reduced the expression level of Notch2. Based on these results, we conclude that the Notch2 receptor with PEST domain truncation enhances cell proliferation which may be associated with the activation of the Notch2 and the NF-κB signaling. Our results are expected to provide a possible target for new DLBCL therapies by suppressing the Notch2 and the NF-κB signaling.  相似文献   

6.

Objective

IL-17A plays an important role in many inflammatory diseases and cancers. We aimed to examine the effect of IL-17A on the invasion of cervical cancer cells and study its related mechanisms.

Methods

Wound healing and matrigel transwell assays were used to examine the effect of IL-17A on cervical cancer cell migration and invasion by a panel of cervical cancer cell lines. The levels of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) were investigated using western blotting. The activity of p38 and nuclear factor-kappa B (NF-κB) signal pathway was detected too.

Results

Here, we showed that IL-17A could promote the migration and invasion of cervical cancer cells. Further molecular analysis showed that IL-17A could up-regulate the expressions and activities of MMP2 and MMP9, and down-regulate the expressions of TIMP-1 and TIMP-2. Furthermore, IL-17A also activates p38 signal pathway and increased p50 and p65 nuclear expression. In addition, treatment of cervical cancer cells with the pharmacological p38/NF-κB signal pathway inhibitors, SB203580 and PDTC, potently restored the roles of invasion and upregulation of MMPs induced by IL-17A.

Conclusion

IL-17A could promote the migration and invasion of cervical cancer cell via up-regulating MMP2 and MMP9 expression, and down-regulating TIMP-1 and TIMP-2 expression via p38/NF-κB signal pathway. IL-17A may be a potential target to improve the prognosis for patients with cervical cancer.  相似文献   

7.
Acute HIV-1 infection of CD4 T cells often results in apoptotic death of infected cells, yet it is unclear what evolutionary advantage this offers to HIV-1. Given the independent observations that acute T cell HIV-1 infection results in (1) NF-κB activation, (2) caspase 8 dependent apoptosis, and that (3) caspase 8 directly activates NF-κB, we questioned whether these three events might be interrelated. We first show that HIV-1 infected T cell apoptosis, NF-κB activation, and caspase 8 cleavage by HIV-1 protease are coincident. Next we show that HIV-1 protease not only cleaves procaspase 8, producing Casp8p41, but also independently stimulates NF-κB activity. Finally, we demonstrate that the HIV protease cleavage of caspase 8 is necessary for optimal NF-κB activation and that the HIV-1 protease specific cleavage fragment Casp8p41 is sufficient to stimulate HIV-1 replication through NF-κB dependent HIV-LTR activation both in vitro as well as in cells from HIV infected donors. Consequently, the molecular events which promote death of HIV-1 infected T cells function dually to promote HIV-1 replication, thereby favoring the propagation and survival of HIV-1.  相似文献   

8.
9.
10.
Aberrant Nuclear Factor-κappaB (NF-κB) activation due to rapid IκBα turnover and high basal IκBα kinase (IKK) activity has been frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits anti-proliferative, anti-inflammatory and anti-carcinogenic activities by inhibiting NF-κB pathway, through a mechanism not fully understood. We found that apigenin feeding in microgram doses (bioavailable in humans) inhibited prostate tumorigenesis in TRAMP mice by interfering with NF-κB signaling. Apigenin feeding to TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate and completely abolished metastasis, which correlated with inhibition of NF-κB activation and binding to the DNA. Apigenin intake blocked phosphorylation and degradation of IκBα by inhibiting IKK activation, which in turn led to suppression of NF-κB activation. The expression of NF-κB-regulated gene products involved in proliferation (cyclin D1, and COX-2), anti-apoptosis (Bcl-2 and Bcl-xL), and angiogenesis (vascular endothelial growth factor) were also downregulated after apigenin feeding. These events correlated with the induction of apoptosis in tumor cells, as evident by increased cleaved caspase-3 labeling index in the dorsolateral prostate. Our results provide convincing evidence that apigenin inhibits IKK activation and restores the expression of IκBα, preventing it’s phosphorylation in a fashion similar to that elicited by IKK and proteasomal inhibitors through suppression of NF-κB signaling pathway.  相似文献   

11.
12.
NF-κB plays an important role in cancer initiation and progression. CD44, a cell surface glycoprotein, is involved in many cellular processes including cell adhesion, migration and proliferation. However, whether and how the two molecules interact in breast cancer is not clear. In recent years, the up-regulation of CD44 has served as a marker for tumor initiating cells in breast cancer and other cancer types. Despite the important role of CD44 in cellular processes and cancer, the mechanism underlying CD44 up-regulation in cancers remains poorly understood. Previously, we have identified a novel cis-element, CR1, located upstream of the CD44 promoter. We demonstrated that NF-κB and AP-1 are key trans-acting factors that interact with CR1. Here, we further analyzed the role of NF-κB in regulating CD44 expression in triple negative breast cancer cells, MDA-MB-231 and SUM159. Inhibition of NF-κB by Bay-11-7082 resulted in a reduction in CD44 expression. CD44 repression via NF-κB inhibition consequently decreased proliferation and invasiveness of breast cancer cells. These findings provide not only new insight into the molecular mechanism underlying CD44 regulation but also potential therapeutic targets that may help eliminate chemo- and radiation-resistant cancer cells.  相似文献   

13.

Background

Insulin-like growth factor 2 mRNA binding protein 3 (IMP3) is expressed in metastatic and a subset of primary renal cell carcinoma (RCC). However, the role of IMP3 in RCC progression was poorly understood. We aim to uncover the mechanism of IMP3 in regulating clear cell RCC (CCRCC) progression and validate the prognostic significance of IMP3 in localized CCRCC.

Methods

Caki-1 cells stably overexpressing IMP3 and Achn cells with knockdown of IMP3 were analyzed for cell migration and invasion by Transwell assay. RNA-seq was used to profile gene expression in IMP3-expressing Caki-1 cells. A cohort of 469 localized CCRCC patients were examined for IMP3 expression by immunohistochemistry using tumor tissue array.

Results

IMP3 promoted Caki-1 cell migration and invasion, whereas knockdown of IMP3 by RNAi inhibited Achn cell migration and invasion. Enhanced IMP3 expression activated NF-кB pathway and through which, it functioned in promoting the RCC cell migration. IMP3 expression in localized CCRCC was found to be associated with higher nuclear grade, higher T stage, necrosis and sarcomatoid differentiation (p< 0.001). Enhanced IMP3 expression was correlated with shorter recurrence-free and overall survivals. Multivariable analysis validated IMP3 as an independent prognostic factor for localized CCRCC patients.

Conclusion

IMP3 promotes RCC cell migration and invasion by activation of NF-кB pathway. IMP3 is validated to be an independent prognostic marker for localized CCRCC.  相似文献   

14.

Background

Pathological angiogenesis plays an essential role in tumor aggressiveness and leads to unfavorable prognosis. The aim of this study is to detect the potential role of Retinoblastoma binding protein 2 (RBP2) in the tumor angiogenesis of non-small cell lung cancer (NSCLC).

Methods

Immunohistochemical staining was used to detect the expression of RBP2, hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and CD34. Two pairs of siRNA sequences and pcDNA3-HA-RBP2 were used to down-regulate and up-regulate RBP2 expression in H1975 and SK-MES-1 cells. An endothelial cell tube formation assay, VEGF enzyme-linked immunosorbent assay, real-time PCR and western blotting were performed to detect the potential mechanisms mediated by RBP2 in tumor angiogenesis.

Results

Of the 102 stage I NSCLC specimens analyzed, high RBP2 protein expression is closely associated with tumor size (P = 0.030), high HIF-1α expression (P = 0.028), high VEGF expression (P = 0.048), increased tumor angiogenesis (P = 0.033) and poor prognosis (P = 0.037); high MVD was associated with high HIF-1α expression (P = 0.034), high VEGF expression (P = 0.001) and poor prognosis (P = 0.040). Multivariate analysis indicated that RBP2 had an independent influence on the survival of patients with stage I NSCLC (P = 0.044). By modulating the expression of RBP2, our findings suggested that RBP2 protein depletion decreased HUVECs tube formation by down-regulating VEGF in a conditioned medium. RBP2 stimulated the up-regulation of VEGF, which was dependent on HIF-1α, and activated the HIF-1α via phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Moreover, VEGF increased the activation of Akt regulated by RBP2.

Conclusions

The RBP2 protein may stimulate HIF-1α expression via the activation of the PI3K/Akt signaling pathway under normoxia and then stimulate VEGF expression. These findings indicate that RBP2 may play a critical role in tumor angiogenesis and serve as an attractive therapeutic target against tumor aggressiveness for early-stage NSCLC patients.  相似文献   

15.
16.
Interferon γ (IFN-γ), a multifunctional cytokine, was upregulated in the resected gastric cancer tissue. However, whether IFN-γ is involved in the regulation of gastric cancer has not been well elucidated. Herein, we aimed to investigate the effects and mechanism of IFN-γ on gastric cancer. In this study, we found a vital role of IFN-γ in enhancing proliferation, inhibiting apoptosis, and promoting cell migration and invasion in gastric cancer cells SGC-7901 and MGC-803. Additionally, IFN-γ activated nuclear factor κB (NF-κB) signaling pathway by upregulating the phosphorylation expression of p65 and IκBα, and induced the expression of integrin β3 in vitro. Therefore, to further investigate the relationship between IFN-γ and integrin β3, SGC-7901 cells were transfected with integrin β3 siRNA. And then cells expressed lower cell viability, migration, and invasion rates, while cell apoptosis was significantly enhanced. Meanwhile, expression of integrin β3, MMP-2, MMP-9, and NF-κB, including p65 and IκBα, and the nuclear translocation of NF-κB/p65 were dramatically repressed, whereas IFN-γ significantly improved the effects. Moreover, in vivo, the experiment of xenograft model and pulmonary metastasis model also retarded in integrin β3 siRNA group. And the expression of integrin β3, MMP-2, MMP-9, and NF-κB was repressed. However, the treatment with IFN-γ improved tumor volume, lung/total weight, tumor nodules, and the protein expression described above compared with integrin β3 siRNA group. Overall, the results indicated that IFN-γ induces gastric cancer cell proliferation and metastasis partially through the upregulation of integrin β3-mediated NF-κB signaling. Hence, the inhibition of IFN-γ or integrin β3 may be the key for the treatment of gastric cancer.  相似文献   

17.
Short interspersed nuclear elements (SINEs) are highly abundant, RNA polymerase III-transcribed noncoding retrotransposons that are silenced in somatic cells but activated during certain stresses including viral infection. How these induced SINE RNAs impact the host-pathogen interaction is unknown. Here we reveal that during murine gammaherpesvirus 68 (MHV68) infection, rapidly induced SINE RNAs activate the antiviral NF-κB signaling pathway through both mitochondrial antiviral-signaling protein (MAVS)-dependent and independent mechanisms. However, SINE RNA-based signaling is hijacked by the virus to enhance viral gene expression and replication. B2 RNA expression stimulates IKKβ-dependent phosphorylation of the major viral lytic cycle transactivator protein RTA, thereby enhancing its activity and increasing progeny virion production. Collectively, these findings suggest that SINE RNAs participate in the innate pathogen response mechanism, but that herpesviruses have evolved to co-opt retrotransposon activation for viral benefit.  相似文献   

18.
In Epstein-Barr virus (EBV)-infected gastric carcinoma, EBV-encoded BARF1 has been hypothesized to function as an oncogene. To evaluate cellular changes induced by BARF1, we isolated the full-length BARF1 gene from gastric carcinoma cells that were naturally infected with EBV and transfected BARF1 into EBV-negative gastric carcinoma cells. BARF1 protein was primarily secreted into culture supernatant and only marginally detectable within cells. Compared with gastric carcinoma cells containing empty vector, BARF1-expressing gastric carcinoma cells exhibited increased cell proliferation (P < 0.05). There were no significant differences in apoptosis, invasion, or migration between BARF1-expressing gastric carcinoma cells and empty vector-transfected cells. BARF1-expressing gastric carcinoma cells demonstrated increased nuclear expression of nuclear factor kappa B (NF-κB) RelA protein and increased NF-κB-dependent cyclin D1. The expression of p21WAF1 was diminished by BARF1 transfection and increased by NF-κB inhibition. Proliferation of naturally EBV-infected gastric carcinoma cells was suppressed by BARF1 small interfering RNA (siRNA) (P < 0.05). Immunohistochemical analysis of 120 human gastric carcinoma tissues demonstrated increased expression of cyclin D1 and reduced expression of p21WAF1 in EBV-positive samples versus EBV-negative gastric carcinomas (P < 0.05). In conclusion, the secreted BARF1 may stimulate proliferation of EBV-infected gastric carcinoma cells via upregulation of NF-κB/cyclin D1 and reduction of the cell cycle inhibitor p21WAF1, thereby facilitating EBV-induced cancer progression.  相似文献   

19.
NF-κB signaling plays an important role in tumor cell proliferation, cell survival, angiogenesis, invasion, metastasis and drug/radiation resistance. Combination therapy involving NF-κB pathway inhibition is an attractive strategy for the treatment of advanced forms of thyroid cancer. This study was designed to test the efficacy of NF-κB pathway inhibition in combination with cytotoxic chemotherapy, using docetaxel and ionizing radiation in in vitro models of thyroid cancer. We found that while both docetaxel and ionizing radiation activated NF-κB signaling in thyroid cancer cells, there was no synergistic effect on cell proliferation and/or programmed cell death with either genetic (transduction of a dominant negative mutant form of IκBα) or pharmacologic (proteasome inhibitor bortezomib and IKKβ inhibitor GO-Y030) inhibition of the NF-κB pathway in thyroid cancer cell lines BCPAP, 8505C, THJ16T and SW1736. Docetaxel plus bortezomib synergistically decreased in vitro invasion of 8505C cells, but not in the other cell lines. Screening of a panel of clinically relevant targeted therapies for synergy with genetic NF-κB inhibition in a proliferation/cytotoxicity assay identified the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) as a potential candidate. However, the synergistic effect was confirmed only in the BCPAP cells. These results indicate that NF-κB inhibitors are unlikely to be beneficial as combination therapy with taxane cytotoxic chemotherapy, external radiation therapy or radioiodine therapy. There may be unique circumstances where NF-κB inhibitors may be considered in combination with docetaxel to reduce tumor invasion or in combination with HDAC inhibitors to reduce tumor growth, but this does not appear to be a combination therapy that could be broadly applied to patients with advanced thyroid cancer. Further research may identify which subsets of patients/tumors may respond to this therapeutic approach.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号