首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Legume rhizobia symbiotic nitrogen (N2) fixation plays a critical role in sustainable nitrogen management in agriculture and in the Earth's nitrogen cycle. Signaling between rhizobia and legumes initiates development of a unique plant organ, the root nodule, where bacteria undergo endocytosis and become surrounded by a plant membrane to form a symbiosome. Between this membrane and the encased bacteria exists a matrix-filled space (the symbiosome space) that is thought to contain a mixture of plant- and bacteria-derived proteins. Maintenance of the symbiosis state requires continuous communication between the plant and bacterial partners. Here, we show in the model legume Medicago truncatula that a novel family of six calmodulin-like proteins (CaMLs), expressed specifically in root nodules, are localized within the symbiosome space. All six nodule-specific CaML genes are clustered in the M. truncatula genome, along with two other nodule-specific genes, nodulin-22 and nodulin-25. Sequence comparisons and phylogenetic analysis suggest that an unequal recombination event occurred between nodulin-25 and a nearby calmodulin, which gave rise to the first CaML, and the gene family evolved by tandem duplication and divergence. The data provide striking evidence for the recruitment of a ubiquitous Ca(2+)-binding gene for symbiotic purposes.  相似文献   

2.
3.
4.
The symbiotic interaction between cnidarians (e.g., corals and sea anemones) and photosynthetic dinoflagellates of the genus Symbiodinium is triggered by both host–symbiont recognition processes and metabolic exchange between the 2 partners. The molecular communication is crucial for homeostatic regulation of the symbiosis, both under normal conditions and during stresses that further lead to symbiosis collapse. It is therefore important to identify and fully characterise the key players of this intimate interaction at the symbiotic interface. In this study, we determined the cellular and subcellular localization and expression of the sterol‐trafficking Niemann–Pick type C proteins (NPC1 and NPC2) in the symbiotic sea anemones Anemonia viridis and Aiptasia sp. We first established that NPC1 is localised within vesicles in host tissues and to the symbiosome membranes in several anthozoan species. We demonstrated that the canonical NPC2‐a protein is mainly expressed in the epidermis, whereas the NPC2‐d protein is closely associated with symbiosome membranes. Furthermore, we showed that the expression of the NPC2‐d protein is correlated with symbiont presence in healthy symbiotic specimens. As npc2‐d is a cnidarian‐specific duplicated gene, we hypothesised that it probably arose from a subfunctionalisation process that might result in a gain of function and symbiosis adaptation in anthozoans. Niemann–Pick type C proteins may be key players in a functional symbiosis and be useful tools to study host–symbiont interactions in the anthozoan–dinoflagellate association.  相似文献   

5.
Flavins in different compartments of effective nodules fromGlycine max cv Maple Arrow xBradyrhizobium japonicum strains were studied by spectrophotometry and chromatographic techniques. Flavins in the peribacteroid space were riboflavin (80%) and FMN (20%), as identified by TLC and HPLC. Flavin concentrations in the soybean root nodule cytoplasm, in the symbiosome space (PBS) and in the cytosol of bacteroids were monitored between 20 and 40 days post infection (d.p.i.) Between the 20th and 29th d.p.i. an at least four times higher flavin/protein ratio was found in PBS of effective nodules compared with the nodule cytoplasm. Between nitrogenase activity in the free-living state and bacterial flavin accumulation, no correlation could be observed. Flavin accumulation is not restricted to an effective symbiosis, as indicated by the analysis of ineffective nodules with strainB. japonicum RH-31 Marburg. Flavin accumulation is absent in uninfected soybean root tissue and in free-living rhizobia, thus indicating that flavin accumulation is a result of symbiotic interaction. Flavin accumulation is also missing in nodules with a hypersensitive response against the bacteria.  相似文献   

6.
Schleicher TR  Nyholm SV 《PloS one》2011,6(10):e25649
The beneficial symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium, Vibrio fischeri, provides a unique opportunity to study host/microbe interactions within a natural microenvironment. Colonization of the squid light organ by V. fischeri begins a lifelong association with a regulated daily rhythm. Each morning the host expels an exudate from the light organ consisting of 95% of the symbiont population in addition to host hemocytes and shed epithelial cells. We analyzed the host and symbiont proteomes of adult squid exudate and surrounding light organ epithelial tissue using 1D- and 2D-polyacrylamide gel electrophoresis and multidimensional protein identification technology (MudPIT) in an effort to understand the contribution of both partners to the maintenance of this association. These proteomic analyses putatively identified 1581 unique proteins, 870 proteins originating from the symbiont and 711 from the host. Identified host proteins indicate a role of the innate immune system and reactive oxygen species (ROS) in regulating the symbiosis. Symbiont proteins detected enhance our understanding of the role of quorum sensing, two-component signaling, motility, and detoxification of ROS and reactive nitrogen species (RNS) inside the light organ. This study offers the first proteomic analysis of the symbiotic microenvironment of the adult light organ and provides the identification of proteins important to the regulation of this beneficial association.  相似文献   

7.
Nodule bacteria (Bradyrhizobium japonicum) of various activities were preincubated with homologous lectin and then used for inoculating soybean (Glycine max (L.) Merrill) seeds. The effect of this inoculation on the photosynthetic rate, lectin activity in leaves, and plant development at different supply of mineral nitrogen was investigated under the conditions of pot experiments. There was a positive relationship between the photosynthetic rate and the lectin activity of proteins isolated from soybean leaves. Under the conditions of effective symbiosis, activation of functioning of the symbiotic apparatus by preincubation of the rhizobia with lectin exerted an additional stimulating effect on the photosynthetic rate. It is suggested that a relationship between the effectiveness of legume-rhizobium symbiosis and the lectin activity in leaves is mediated by the regulation of photosynthesis through a demand for assimilates in the source-sink system of soybean plants.  相似文献   

8.
Arabinogalactan proteins (AGP) are a diverse family of proteoglycans associated with the cell surfaces of plants. AGP have been implicated in a wide variety of plant cell processes, including signaling in symbioses. This study investigates the existence of putative AGP in free-living cyanobacterial cultures of the nitrogen-fixing, filamentous cyanobacteria Nostoc punctiforme and Nostoc sp. strain LBG1 and at the symbiotic interface in the symbioses between Nostoc spp. and two host plants, the angiosperm Gunnera manicata (in which the cyanobacterium is intracellular) and the liverwort Blasia pusilla (in which the cyanobacterium is extracellular). Enzyme-linked immunosorbent assay, immunoblotting, and immunofluorescence analyses demonstrated that three AGP glycan epitopes (recognized by monoclonal antibodies LM14, MAC207, and LM2) are present in free-living Nostoc cyanobacterial species. The same three AGP glycan epitopes are present at the Gunnera-Nostoc symbiotic interface and the LM2 epitope is detected during the establishment of the Blasia-Nostoc symbiosis. Bioinformatic analysis of the N. punctiforme genome identified five putative AGP core proteins that are representative of AGP classes found in plants. These results suggest a possible involvement of AGP in cyanobacterial-plant symbioses and are also suggestive of a cyanobacterial origin of AGP.  相似文献   

9.
Legume plants establish a symbiotic association with bacteria called rhizobia, resulting in the formation of nitrogen-fixing root nodules. A Lotus japonicus symbiotic mutant, sen1, forms nodules that are infected by rhizobia but that do not fix nitrogen. Here, we report molecular identification of the causal gene, SEN1, by map-based cloning. The SEN1 gene encodes an integral membrane protein homologous to Glycine max nodulin-21, and also to CCC1, a vacuolar iron/manganese transporter of Saccharomyces cerevisiae, and VIT1, a vacuolar iron transporter of Arabidopsis thaliana. Expression of the SEN1 gene was detected exclusively in nodule-infected cells and increased during nodule development. Nif gene expression as well as the presence of nitrogenase proteins was detected in rhizobia from sen1 nodules, although the levels of expression were low compared with those from wild-type nodules. Microscopic observations revealed that symbiosome and/or bacteroid differentiation are impaired in the sen1 nodules even at a very early stage of nodule development. Phylogenetic analysis indicated that SEN1 belongs to a protein clade specific to legumes. These results indicate that SEN1 is essential for nitrogen fixation activity and symbiosome/bacteroid differentiation in legume nodules.  相似文献   

10.
Voltage-dependent anion channels (VDACs) are generally considered as the main pathway for metabolite transport across the mitochondrial outer membrane. Recent proteomic studies on isolated symbiosome membranes from legume nodules indicated that VDACs might also be involved in transport of nutrients between plants and rhizobia. In an attempt to substantiate this, we carried out a detailed molecular and cellular characterization of VDACs in Lotus japonicus and soybean (Glycine max). Database searches revealed at least five genes encoding putative VDACs in each of the legumes L. japonicus, Medicago truncatula, and soybean. We obtained and sequenced cDNA clones from L. japonicus encoding five full-length VDAC proteins (LjVDAC1.1-1.3, LjVDAC2.1, and LjVDAC3.1). Complementation of a yeast (Saccharomyces cerevisiae) mutant impaired in VDAC1, a porin of the mitochondrial outer membrane, showed that LjVDAC1.1, LjVDAC1.2, LjVDAC2.1, and LjVDAC3.1, but not LjVDAC1.3, are functional and targeted to the mitochondrial outer membrane in yeast. Studies of the expression pattern of the five L. japonicus VDAC genes revealed largely constitutive expression of each throughout the plant, including nodules. Antibodies to LjVDAC1.1 of L. japonicus and the related POM36 protein of potato (Solanum tuberosum) recognized several proteins between 30 and 36 kD on western blots, including LjVDAC1.1, LjVDAC1.2, LjVDAC1.3, and LjVDAC2.1. Immunolocalization of VDACs in L. japonicus and soybean root nodules demonstrated their presence on not only mitochondria but also on numerous, small vesicles at the cell periphery. No evidence was found for the presence of VDACs on the symbiosome membrane. Nonetheless, the data indicate that VDACs may play more diverse roles in plants than suspected previously.  相似文献   

11.
Root nodule development: origin, function and regulation of nodulin genes   总被引:3,自引:0,他引:3  
The symbiotic root nodule, an organ formed on leguminous plants, is a product of successful interactions between the host plant and the soil bacteria, Rhizobium spp. Plant hormones play an important role in the genesis of this organ. The hormonal balance appears to be modulated by the signals produced by bacteria. Many host genes induced during nodule organogenesis and the symbiotic state have been identified and characterized from several legumes. These genes encode nodule-specific proteins (nodulins) which perform diverse functions in root nodule development and metabolism. Formation of a subcellular compartment housing the bacteria is essential to sustain the symbiotic state, and several nodulins are involved in maintaining the integrity and function of this compartment. The bacteroid enclosed in the perbacteroid membrane behaves as an 'organelle,'completely dependent on the host for all its requirements for carbon, nitrogen and other essential elements. Thus it seems likely that the nodulins in the peribacteroid membrane perform specific transport functions. While the function of a few other nodulins is known (e.g. nodulin-100, nodulin-35), a group of uncharacterized nodulins exists in soybean root nodules. These nodulins share structural similarities and seem to have been derived from a common ancestor. Induction of nodulin genes occurs prior to and independent of nitrogen fixation, and thus is a prelude to symbiosis. Although some of the early nodulin genes are induced prior to or during infection, induction of late nodulins requires endocytotic release of bacteria.  相似文献   

12.
Nodulin 26 (nod26) is a major intrinsic protein that constitutes the major protein component on the symbiosome membrane (SM) of N2-fixing soybean nodules. Functionally, nod26 forms a low energy transport pathway for water, osmolytes, and NH3 across the SM. Besides their transport functions, emerging evidence suggests that high concentrations of major intrinsic proteins on membranes provide interaction and docking targets for various cytosolic proteins. Here it is shown that the C-terminal domain peptide of nod26 interacts with a 40-kDa protein from soybean nodule extracts, which was identified as soybean cytosolic glutamine synthetase GS1β1 by mass spectrometry. Fluorescence spectroscopy assays show that recombinant soybean GS1β1 binds the nod26 C-terminal domain with a 1:1 stoichiometry (Kd = 266 nm). GS1β1 also binds to isolated SMs, and this binding can be blocked by preincubation with the C-terminal peptide of nod26. In vivo experiments using either a split ubiquitin yeast two-hybrid system or bimolecular fluorescence complementation show that the four cytosolic GS isoforms expressed in soybean nodules interact with full-length nod26. The binding of GS, the principal ammonia assimilatory enzyme, to the conserved C-terminal domain of nod26, a transporter of NH3, is proposed to promote efficient assimilation of fixed nitrogen, as well as prevent potential ammonia toxicity, by localizing the enzyme to the cytosolic side of the symbiosome membrane.  相似文献   

13.
Leguminous plants have the ability to make their own nitrogen fertilizer by forming a root nodule symbiosis with nitrogen-fixing soil bacteria, collectively called rhizobia. This biological process plays a critical role in sustainable agriculture because it reduces the need for external nitrogen input. One remarkable property of legume–rhizobial symbiosis is its high level of specificity, which occurs at both inter- and intra-species levels and takes place at multiple phases of the interaction, ranging from initial bacterial infection and nodulation to late nodule development associated with nitrogen fixation. Knowledge of the molecular mechanisms controlling symbiotic specificity will facilitate the development of new crop varieties with improved agronomic potential for nitrogen-fixing symbiosis. In this report, we describe fine mapping of the Rj4 locus, a gene controlling nodulation specificity in soybean (Glycine max). The Rj4 allele prevents the host plant from nodulation with many strains of Bradyrhizobium elkanii, which are frequently present in soils of the southeastern USA. Since B. elkanii strains are poor symbiotic partners of soybean, cultivars containing an Rj4 allele are considered favorable. We have delimited the Rj4 locus within a 57-kb genomic region on soybean chromosome 1. The data reported here will facilitate positional cloning of the Rj4 gene and the development of genetic markers for marker-assisted selection in soybean.  相似文献   

14.
Infection of legume roots with Rhizobium species results in the development of a root nodule structure in which the bacteria form an intracellular symbiosis with the plant. We report here that the infection of soybean (Glycine max L.) roots with Rhizobium japonicum results in the synthesis by the plant of at least 18–20 polypeptides other than leghemoglobin during the development of root nodules. Identification of these “nodule-specific” host polypeptides (referred to as nodulins) was accomplished by two-dimensional gel analysis of the immunoprecipitates formed by a “nodule-specific” antiserum with in vitro translation products of root-nodule polysomes that are free of bacteroidal contaminations. Nodulins account for 7–11% of the total 35S-methionine-labeled protein synthesized in the host cell cytoplasm, and the majority of them are of 12,000–20,000 molecular weight. These proteins are absent from the uninfected roots, bacteroids and free-living Rhizobium, and appear to be coded for by the plant genes that may be obligatory for the development of symbiosis in the legume root nodules. Analysis of nodulins in ineffective (unable to fix nitrogen) nodules developed due to Rhizobium strains SM5 and 61A24 showed that their synthesis is reduced and their expression differentially influenced by mutations in rhizobia. Two polypeptides of bacterial origin were also found to be cross-reactive with the “nodule-specific” antiserum, suggesting that they are secreted by Rhizobium into the host cell cytoplasm during symbiotic nitrogen fixation.  相似文献   

15.
A temporal pattern of the peribacteroid membrane (PBM) transport function was studied. Spectrophotometric recording was used for establishing the effect of carbon-and nitrogen-containing substrates (malate, succinate, and glutamate) on the acidification of the peribacteroid space and the intensity of light scattering in the symbiosome suspension from broad bean (Vicia faba L.) root nodules of different age. At the early stages of nodule formation and functioning, PBM is permeable not only for malate and succinate, but also for glutamate, and this permeability fully provides for the active bacteroid division and the nitrogenase complex synthesis in the bacteroids at the expense of the carbon-and nitrogen-containing substrates. Mature nodules are characterized by the greatest nitrogen-fixing activity. In these nodules, PBM is selectively permeable for malate and succinate, but constitutes a barrier for glutamate. Thereby, mutually beneficial relations between the symbiotic partners are achieved. In senescent nodules, a rearrangement of symbiotic interactions is directed toward a minimization of both carbon and nitrogen metabolite consumption by the bacteroids. It is concluded that, in the course of the development of the legume-rhizobia symbiosis, the PBM transport function is changed. This function determines a qualitatively different pattern of symbiotic partner interactions in the following sequence: parasitism-mutualism-commensalism.  相似文献   

16.
张其春  郗永勤 《生态学报》2017,37(11):3607-3618
挖掘城市废弃物中有价值的资源,已经成为世界各国开展废弃物开发与管理的共同选择。产业共生是推动经济绿色发展和提高资源效率的战略工具,已经成为探讨废弃物资源化利用问题的重要视角。将产业共生理论引入城市废弃物资源化利用领域,提出城市废弃物资源化共生网络的概念,并将其典型特征概括为"四个统一",即价值网络与责任网络的统一,集聚共生与虚拟共生的统一,稳健型与脆弱性的统一以及自组织性与主体建构性的统一。借鉴超网络理论构建城市废弃物资源化共生网络体系的结构模型,并从共生单元、共生模式、共生界面和共生环境4个层面对该模型进行详细解析。城市废弃物资源化共生网络可分为核心网络和外围网络,两者之间存在全方位、多层次的合作机制。在城市废弃物资源化共生网络中,共生单元具有多层次性和多样性特征,它们之间存在着不同类型、效率各异的共生关系,推动共生模式向对称互惠一体化共生进化是破解城市废弃物资源化利用难题的关键;共生界面具有物质交换、能量传递、信息共享、知识传播及利益协调等多样化功能,而共生关系的进化以及共生界面功能发挥又依赖于优越的共生环境。此外,城市废弃物资源化共生网络有依托型、平等型、嵌套型和虚拟型等4种运作模式,国内典型案例分析表明这4种运作模式将长期并存。  相似文献   

17.
Legume–rhizobia symbioses play a major role in food production for an ever growing human population. In this symbiosis, dinitrogen is reduced (“fixed”) to ammonia by the rhizobial nitrogenase enzyme complex and is secreted to the plant host cells, whereas dicarboxylic acids derived from photosynthetically produced sucrose are transported into the symbiosomes and serve as respiratory substrates for the bacteroids. The symbiosome membrane contains high levels of SST1 protein, a sulfate transporter. Sulfate is an essential nutrient for all living organisms, but its importance for symbiotic nitrogen fixation and nodule metabolism has long been underestimated. Using chemical imaging, we demonstrate that the bacteroids take up 20‐fold more sulfate than the nodule host cells. Furthermore, we show that nitrogenase biosynthesis relies on high levels of imported sulfate, making sulfur as essential as carbon for the regulation and functioning of symbiotic nitrogen fixation. Our findings thus establish the importance of sulfate and its active transport for the plant–microbe interaction that is most relevant for agriculture and soil fertility.  相似文献   

18.
Summary Geosiphon pyriforme represents a photoautotrophic endosymbiosis of aGlomus-like fungus with the cyanobacteriumNostoc punctiforme. The fungus forms unicellular bladders of up to 2 mm in length and 0.5 mm in diameter growing on the soil surface and harboring the endosymbioticNostoc filaments. The cyanobacteria are located in a compartment (the symbiosome) bordered by a host membrane. The space between this symbiosome membrane (SM) and theNostoc cell wall is filled with an about 30–40 nm thick layer of amorphous material, which is present also in the regions of the symbiosome where noNostoc filaments are located. At these sites the amorphous material consists of a 20–30 nm thick layer separating the SM. The region between the SM and the cyanobacterium is defined as symbiosome space (SS). Fungal bladders, hyphae and free livingNostoc were analyzed by affinity techniques as well as the material occurring in the SS. FITC-coupled lectins with sugar specificity to -D-mannosyl/-D-glucosyl (Con A), N-acetyl--D-glucosamine oligomers (WGA), -L-fucosyl (UEA-I), -D-galactosyl (RCA-120), -D-galactosyl (BS-I-B4), N-acetyl--D-galactosamine (HPA), and sialic acid (EBL) residues were tested. WGA binding and calcofluor white staining demonstrated that the bladder wall as well as the SS contain fibrillar chitin. Of the other lectins only Con A clearly labeled the symbiosome. On the contrary, the lectin binding properties of the slime produced by free livingNostoc-colonies indicate the presence of mannose, fucose, GalNAc, sialic acid, and galactose, while chitin or GlucNAc-oligomers could not be detected. The symbiosome was also investigated electron microscopically. WGA-gold binding confirmed the presence of chitin, while a slight PATAg reaction indicated some polysaccharidic molecules within the SS. Our results show that the amorphous material within the SS contains molecules typical of the fungal cell wall and suggest that the SM is related to the fungal plasma membrane. The applied lectins all bind to the hyphal surface, indicating a high molecular complexity. Mannosyl, -galactosyl, and sialic acid residues are strongly exposed at the outer cell wall layer, whereas GlucNAc, GalNAc, and -galactosyl residues seem to be present in smaller amounts. The symbiotic interface established between the fungus andNostoc inGeosiphon shows many similarities to that occurring between fungi and root cells in arbuscular mycorrhizas.Abbreviations AM arbuscular mycorrhiza - BS-I-B4 Bandeiraea simplicifolia lectin I isolectin B4 - CLSM confocal laser scanning microscopy - Con A Concanavalin A - EBL elderberry bark lectin I - FITC fluorescein isothiocyanate - HPA Helix pomatia agglutinin - PATAg periodic acid-thiocarbohydrazide-Ag proteinate - SM symbiosome membrane - SS symbiosome space - RCA-120 Ricinus communis agglutinin 120 - UEA-I Ulex europaeus agglutinin I - WGA wheat germ agglutinin Dedicated to Professor Dr. Peter Sitte at the occasion of his 65th birthday  相似文献   

19.
Intracellular interactions between bacteria and host cells are widespread in nature. In this review, the similarity between the infection processes of bacteria in plant and animal cells will be addressed. As paradigms, we selected the symbiosis between rhizobia and leguminous plants, and the survival of intracellular pathogenic bacteria in animal cells. The rhizobial symbiosis with leguminous plants is a model system for the study of plant-bacterium interactions. Through this interaction, the bacteria are released in a vacuole-like structure, called the symbiosome. The molecular processes, which lead to a functional symbiosome, are far from known. However, membrane fusion processes, and therefore also Ca2+, are crucial to establish this highly specialized organelle-like structure. A homologous system is the infection by certain bacterial pathogens of animal cells. These bacteria enter their host via phagocytosis and avoid the fusion with lysosomes, resulting in a membrane-bound vacuole in which the pathogens survive. The origin and maturation of this phagosome depends on Ca2+-signaling processes in the host cell and on proteins that regulate membrane fusion processes, such as SNAREs, Rab proteins, synaptotagmins and calmodulin. The aim of this review is to compare the endosymbiosis in leguminous plants with the surviving pathogens in animal host cells with a focus on Ca2+-signaling and membrane fusion-related processes. For both systems, the interaction starts with a bacterial entry of the host cell. It will be demonstrated that in both cases Ca2+ is a crucial second messenger. However, more emphasis will be put on the comparison of the later stages of infection, i.e., the formation of specialized bacteria-containing vacuoles. From structural, functional, and proteomic data, it is clear that phagosomes and symbiosomes are more related to each other than originally assumed. Proteins such as V-ATPases, calreticulin, phosphatidylinositol-3-kinase, Rab proteins, and SNAREs are present in both the phagosome and the symbiosome membrane, indicating that common cellular processes are used for building these intracellular organelles.  相似文献   

20.
The economic and ecological importance of the symbiosis of soybean with Bradyrhizobium japonicum strains is significant in several countries, particularly Brazil; however, up to now, only one complete and a draft genome for this species are available. In this study, we have obtained a proteomic reference map of B. japonicum strain CPAC 15 (=SEMIA 5079) – used in commercial inoculants for application to soybean crops in Brazil – grown under in vitro conditions. CPAC 15 belongs to the same serogroup as strain USDA 123, and both are known as the soybean bradyrhizobial strains with highest competitive and saprophytic known so far. To increase the precision of the proteomic map, we compared whole‐cell 2‐D protein gel‐electrophoresis profiles of CPAC 15 and of two related strains. One‐hundred and seventy representative spots, selected from the three profiles, were analyzed by MS. In total, 148 spots were successfully identified as cytoplasmic and periplasmic proteins belonging to diverse metabolic pathways, several of them related to the saprophytic and competitive abilities of CPAC 15. We attributed probable functions to 26 hypothetical proteins, including those involved in polyhydroxybutyrate metabolism, β‐lactamase, stress responses and aromatic compound degradation, all with high probability of being related to the saprophytic ability of CPAC 15. In addition, by providing valuable information about expressed proteins in B. japonicum in vitro, our results emphasize the importance of accurate functional annotation of uncharacterized expressed proteins, improving considerably our understanding of the legume–rhizobia symbiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号