首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The restriction-modification systems use epigenetic modification to distinguish between self and nonself DNA. A modification enzyme transfers a methyl group to a base in a specific DNA sequence while its cognate restriction enzyme introduces breaks in DNA lacking this methyl group. So far, all the restriction enzymes hydrolyze phosphodiester bonds linking the monomer units of DNA. We recently reported that a restriction enzyme (R.PabI) of the PabI superfamily with half-pipe fold has DNA glycosylase activity that excises an adenine base in the recognition sequence (5′-GTAC). We now found a second activity in this enzyme: at the resulting apurinic/apyrimidinic (AP) (abasic) site (5′-GT#C, # = AP), its AP lyase activity generates an atypical strand break. Although the lyase activity is weak and lacks sequence specificity, its covalent DNA–R.PabI reaction intermediates can be trapped by NaBH4 reduction. The base excision is not coupled with the strand breakage and yet causes restriction because the restriction enzyme action can impair transformation ability of unmethylated DNA even in the absence of strand breaks in vitro. The base excision of R.PabI is inhibited by methylation of the target adenine base. These findings expand our understanding of genetic and epigenetic processes linking those in prokaryotes and eukaryotes.  相似文献   

2.
The OGG1 gene of Saccharomyces cerevisiae codes for a DNA glycosylase that excises 7,8-dihydro-8- oxoguanine (8-OxoG) and 2,6-diamino-4-hydroxy-5- N -methylformamidopyrimidine (Fapy) from damaged DNA. In this paper, we have analysed the substrate specificity and the catalytic mechanism of the Ogg1 protein acting on DNA subtrates containing 8-OxoG residues or apurinic/apyrimidinic (AP) sites. The Ogg1 protein displays a marked preference for DNA duplexes containing 8-OxoG placed opposite a cytosine, the rank order for excision of 8-OxoG and cleavage efficiencies being 8-OxoG/C >8-OxoG/T >>8-OxoG/G and 8-OxoG/A. The cleavage of the DNA strand implies the excision of 8-OxoG followed by abeta-elimination reaction at the 3'-side of the resulting AP site. The Ogg1 protein efficiently cleaves a DNA duplex where a preformed AP site is placed opposite a cytosine (AP/C). In contrast, AP/T, AP/A or AP/G substrates are incised with a very low efficiency. Furthermore, cleavage of 8-OxoG/C or AP/C substrates implies the formation of a reaction intermediate that is converted into a stable covalent adduct in the presence of sodium borohydre (NaBH4). Therefore, the Ogg1 protein is a eukaryotic DNA glycosylase/AP lyase. Sequence homology searches reveal that Ogg1 probably shares a common ancestor gene with the endonuclease III of Escherichia coli. A consensus sequence indicates a highly conserved lysine residue, K120 of endonuclease III or K241 of Ogg1, respectively. Mutations of K241 to Gln (K241Q) and Arg (K241R) have been obtained after site directed mutagenesis of OGG1. Mutation K241Q completely abolishes DNA glycosylase activity and covalent complex formation in the presence of NaBH4. However, the K241Q mutant still binds DNA duplexes containing 8-OxoG/C. In contrast, K241R mutation results in a catalytically active form of Ogg1. These results strongly suggest that the free amino group of Lys241 is involved in the catalytic mechanism of the Ogg1 protein.  相似文献   

3.
DNA glycosylases are key enzymes in the first step of base excision DNA repair, recognizing DNA damage and catalyzing the release of damaged nucleobases. Bifunctional DNA glycosylases also possess associated apurinic/apyrimidinic (AP) lyase activity that nick the damaged DNA strand at an abasic (or AP) site, formed either spontaneously or at the first step of repair. NEIL1 is a bifunctional DNA glycosylase capable of processing lesions, including AP sites, not only in double-stranded but also in single-stranded DNA. Here, we show that proteins participating in DNA damage response, YB-1 and RPA, affect AP site cleavage by NEIL1. Stimulation of the AP lyase activity of NEIL1 was observed when an AP site was located in a 60 nt-long double-stranded DNA. Both RPA and YB-1 inhibited AP site cleavage by NEIL1 when the AP site was located in single-stranded DNA. Taking into account a direct interaction of YB-1 with the AP site, located in single-stranded DNA, and the high affinity of both YB-1 and RPA for single-stranded DNA, this behavior is presumably a consequence of a competition with NEIL1 for the DNA substrate. Xeroderma pigmentosum complementation group C protein (XPC), a key protein of another DNA repair pathway, was shown to interact directly with AP sites but had no effect on AP site cleavage by NEIL1.  相似文献   

4.
HU is one of the most abundant DNA binding proteins in Escherichia coli. We find that it binds strongly to DNA containing an abasic (AP) site or tetrahydrofuran (THF) (apparent Kd ≈50 nM). It also possesses an AP lyase activity that cleaves at a deoxyribose but not at a THF residue. The binding and cleavage of an AP site was observed only with the HUαβ heterodimer. Site-specific mutations at K3 and R61 residues led to a change in substrate binding and cleavage. Both K3A(α)K3A(β) and R61A(α)R61A(β) mutant HU showed significant reduction in binding to DNA containing AP site; however, only R61A(α)R61A(β) mutant protein exhibited significant loss in AP lyase activity. Both K3A(α)K3A(β) and R61K(α)R61K(β) showed slight reduction in AP lyase activities. The function of HU protein as an AP lyase was confirmed by the ability of hupA or hupB mutations to further reduce the viability of an E. coli dut(Ts) xth mutant, which generates lethal AP sites at 37°C; the hupA and hupB derivatives, respectively, had a 6-fold and a 150-fold lower survival at 37°C than did the parental strain. These data suggest, therefore, that HU protein plays a significant role in the repair of AP sites in E. coli.  相似文献   

5.
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) processes DNA 3′-end-blocking modifications, possesses DNA and RNA 3′-nucleosidase activity and is also able to hydrolyze an internal apurinic/apyrimidinic (AP) site and its synthetic analogs. The mechanism of Tdp1 interaction with DNA was analyzed using pre-steady state stopped-flow kinetics with tryptophan, 2-aminopurine and Förster resonance energy transfer fluorescence detection. Phosphorothioate or tetramethyl phosphoryl guanidine groups at the 3′-end of DNA have been used to prevent 3′-nucleosidase digestion by Tdp1. DNA binding and catalytic properties of Tdp1 and its mutants H493R (Tdp1 mutant SCAN1) and H263A have been compared. The data indicate that the initial step of Tdp1 interaction with DNA includes binding of Tdp1 to the DNA ends followed by the 3′-nucleosidase reaction. In the case of DNA containing AP site, three steps of fluorescence variation were detected that characterize (i) initial binding the enzyme to the termini of DNA, (ii) the conformational transitions of Tdp1 and (iii) search for and recognition of the AP-site in DNA, which leads to the formation of the catalytically active complex and to the AP-site cleavage reaction. Analysis of Tdp1 interaction with single- and double-stranded DNA substrates shows that the rates of the 3′-nucleosidase and AP-site cleavage reactions have similar values in the case of single-stranded DNA, whereas in double-stranded DNA, the cleavage of the AP-site proceeds two times faster than 3′-nucleosidase digestion. Therefore, the data show that the AP-site cleavage reaction is an essential function of Tdp1 which may comprise an independent of AP endonuclease 1 AP-site repair pathway.  相似文献   

6.
The mechanism of hydrolysis of the apurinic/apyrimidinic (AP) site and its synthetic analogs by using tyrosyl-DNA phosphodiesterase 1 (Tdp1) was analyzed. Tdp1 catalyzes the cleavage of AP site and the synthetic analog of the AP site, 3-hydroxy-2(hydroxymethyl)-tetrahydrofuran (THF), in DNA by hydrolysis of the phosphodiester bond between the substituent and 5′ adjacent phosphate. The product of Tdp1 cleavage in the case of the AP site is unstable and is hydrolyzed with the formation of 3′- and 5′-margin phosphates. The following repair demands the ordered action of polynucleotide kinase phosphorylase, with XRCC1, DNA polymerase β, and DNA ligase. In the case of THF, Tdp1 generates break with the 5′-THF and the 3′-phosphate termini. Tdp1 is also able to effectively cleave non-nucleotide insertions in DNA, decanediol and diethyleneglycol moieties by the same mechanism as in the case of THF cleavage. The efficiency of Tdp1 catalyzed hydrolysis of AP-site analog correlates with the DNA helix distortion induced by the substituent. The following repair of 5′-THF and other AP-site analogs can be processed by the long-patch base excision repair pathway.  相似文献   

7.
One of the most frequent lesions formed in cellular DNA are abasic (apurinic/apyrimidinic, AP) sites that are both cytotoxic and mutagenic, and must be removed efficiently to maintain genetic stability. It is generally believed that the repair of AP sites is initiated by the AP endonucleases; however, an alternative pathway seems to prevail in Schizosaccharomyces pombe. A mutant lacking the DNA glycosylase/AP lyase Nth1 is very sensitive to the alkylating agent methyl methanesulfonate (MMS), suggesting a role for Nth1 in base excision repair (BER) of alkylation damage. Here, we have further evaluated the role of Nth1 and the second putative S.pombe AP endonuclease Apn2, in abasic site repair. The deletion of the apn2 open reading frame dramatically increased the sensitivity of the yeast cells to MMS, also demonstrating that the Apn2 has an important function in the BER pathway. The deletion of nth1 in the apn2 mutant strain partially relieves the MMS sensitivity of the apn2 single mutant, indicating that the Apn2 and Nth1 act in the same pathway for the repair of abasic sites. Analysis of the AP site cleavage in whole cell extracts of wild-type and mutant strains showed that the AP lyase activity of Nth1 represents the major AP site incision activity in vitro. Assays with DNA substrates containing base lesions removed by monofunctional DNA glycosylases Udg and MutY showed that Nth1 will also cleave the abasic sites formed by these enzymes and thus act downstream of these enzymes in the BER pathway. We suggest that the main function of Apn2 in BER is to remove the resulting 3′-blocking termini following AP lyase cleavage by Nth1.  相似文献   

8.
Mitochondrial DNA polymerase gamma (pol gamma) is active in base excision repair of AP (apurinic/apyrimidinic) sites in DNA. Usually AP site repair involves cleavage on the 5' side of the deoxyribose phosphate by AP endonuclease. Previous experiments suggested that DNA pol gamma acts to catalyze the removal of a 5'-deoxyribose phosphate (dRP) group in addition to playing the conventional role of a DNA polymerase. We confirm that DNA pol gamma is an active dRP lyase and show that other members of the family A of DNA polymerases including Escherichia coli DNA pol I also possess this activity. The dRP lyase reaction proceeds by formation of a covalent enzyme-DNA intermediate that is converted to an enzyme-dRP intermediate following elimination of the DNA. Both intermediates can be cross-linked with NaBH(4). For both DNA pol gamma and the Klenow fragment of pol I, the enzyme-dRP intermediate is extremely stable. This limits the overall catalytic rate of the dRP lyase, so that family A DNA polymerases, unlike pol beta, may only be able to act as dRP lyases in repair of AP sites when they occur at low frequency in DNA.  相似文献   

9.
Williams SD  David SS 《Biochemistry》2000,39(33):10098-10109
The E. coli adenine glycosylase MutY is a member of the base excision repair (BER) superfamily of DNA repair enzymes. MutY plays an important role in preventing mutations caused by 7, 8-dihydro-8-oxo-2'-deoxyguanosine (OG) by removing adenine from OG:A base pairs. Some enzymes of the BER superfamily catalyze a strand scission even concomitant with base removal. These bifunctional glycosylase/AP lyases bear a conserved lysine group in the active site region, which is believed to be the species performing the initial nucleophilic attack at C1' in the catalysis of base removal. Monofunctional glycosylases such as MutY are thought to perform this C1' nucleophilic displacement by a base-activated water molecule, and, indeed, the conservation of amine functionality positioning has not been observed in protein sequence alignments. Bifunctional glycosylase/AP lyase activity was successfully engineered into MutY by replacing serine 120 with lysine. MutY S120K is capable of catalyzing DNA strand scission at a rate equivalent to that of adenine excision for both G:A and OG:A mispair substrates. The extent of DNA backbone cleavage is independent of treating reaction aliquots with 0.1 M NaOH. Importantly, the replacement of the serine with lysine results in a catalytic rate that is compromised by at least 20-fold. The reduced efficiency in the glycosylase activity is also reflected in a reduced ability of S120K MutY to prevent DNA mutations in vivo. These results illustrate that the mechanisms of action of the two classes of these enzymes are quite similar, such that a single amino acid change is sufficient, in the case of MutY, to convert a monofunctional glycosylase to a bifunctional glycosylase/AP lyase.  相似文献   

10.
X Liu  R Roy 《Biochemistry》2001,40(45):13617-13622
The human endonuclease III (hNTH1) is an important DNA glycosylase with associated abasic lyase activity. We previously demonstrated that the K212Q mutant was totally inactive, while the K212R mutant had reduced DNA glycosylase/lyase activity and could form a covalent complex with the substrate DNA upon reduction. We further characterized the biochemical properties of this K212R mutant protein. NH2- (N-) terminal sequencing in combination with mass spectrometry of the peptide-DNA adduct suggested that "opportunistic" lysine(s) in the lysine-rich N-terminal tail formed a Schiff base which might result in beta-elimination. However, simultaneous substitution of Lys-75 with Gln and deletion of first 72 residues in the N-terminal tail could not cause further alteration in the glycosylase reaction or beta-elimination event. Nonetheless, the time kinetics of K212R and its subsequent mutants showed glycosylase activity without any detectable AP-lyase activity during the first 10 min of the reaction. These results suggest that a single point mutation at the active site (K212R) uncoupled the glycosylase activity from the lyase activity. We propose that the uncoupled reaction carried out by K212R is a result of direct attack either by the nonionized form of the guanidino group of arginine which forms an unstable Schiff base that hydrolyzes prior to the beta-elimination event or by hydroxide ion to cleave the glycosylic bond. In either case this reaction is followed by a secondary beta-elimination event performed by random lysine residues primarily from the N-terminal tail region.  相似文献   

11.
The thymine DNA mismatch glycosylase from Methanobacterium thermoformicicum, a member of the endonuclease III family of repair proteins, excises the pyrimidine base from T-G and U-G mismatches. Unlike endonuclease III, it does not cleave the phosphodiester backbone by a beta-elimination reaction. This cleavage event has been attributed to a nucleophilic attack by the conserved Lys120 of endonuclease III on the aldehyde group at C1' of the deoxyribose and subsequent Schiff base formation. The inability of TDG to perform this beta-elimination event appears to be due to the presence of a tyrosine residue at the position equivalent to Lys120 in endonuclease III. The purpose of this work was to investigate the requirements for AP lyase activity. We replaced Tyr126 in TDG with a lysine residue to determine if this replacement would yield an enzyme with an associated AP lyase activity capable of removing a mismatched pyrimidine. We observed that this replacement abolishes the glycosylase activity of TDG but does not affect substrate recognition. It does, however, convert the enzyme into an AP lyase. Chemical trapping assays show that this cleavage proceeds through a Schiff base intermediate and suggest that the amino acid at position 126 interacts with C1' on the deoxyribose sugar.  相似文献   

12.
The Escherichia coli adenine glycosylase MutY is involved in the repair of 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG):A and G:A mispairs in DNA. DNA strand cleavage via beta-elimination (beta-lyase) activity coupled with MutY's removal of misincorporated adenine bases was sought using both qualitative and quantitative methods. The qualitative assays demonstrate formation of a Schiff base intermediate which is characteristic of DNA glycosylases catalyzing a concomitant beta-lyase reaction. Borohydride reduction of the Schiff base results in the formation of a covalent DNA-MutY adduct which is easily detected in SDS-PAGE experiments. However, quantitative activity assays which monitor DNA strand scission accompanying base release suggest MutY behaves as a simple monofunctional glycosylase. Treatment with base effects DNA strand cleavage at apurinic/apyrimidinic (AP) sites arising via simple glycosylase activity. The amount of cleaved DNA in MutY reactions treated with base is much greater than that in non-base treated reactions, indicating that AP site generation by MutY is not associated with a concomitant beta-lyase step. As standards, identical assays were performed with a known monofunctional enzyme (uracil DNA glycosylase) and a known bifunctional glycosylase/lyase (FPG), the results of which were used in comparison with those of the MutY experiments. The apparent inconsistency between the data obtained for MutY by the qualitative and quantitative methods underscores the current debate surrounding the catalytic activity of this enzyme, and a detailed explanation of this controversy is proposed. The work presented here lays ground for the identification of specific active site residues responsible for the chemical mechanism of MutY enzyme catalysis.  相似文献   

13.
Apurinic/apyrimidinic (AP) sites are among the most frequent DNA lesions. The first step in the AP site repair involves the magnesium-dependent enzyme AP endonuclease 1 (APE1) that catalyzes hydrolytic cleavage of the DNA phosphodiester bond at the 5′ side of the AP site, thereby generating a single-strand DNA break flanked by the 3′-OH and 5′-deoxyribose phosphate (dRP) groups. Increased APE1 activity in cancer cells might correlate with tumor chemoresistance to DNA-damaging treatment. It has been previously shown that the multifunctional oncoprotein Y-box-binding protein 1 (YB-1) interacts with APE1 and inhibits APE1-catalyzed hydrolysis of AP sites in single-stranded DNAs. In this work, we demonstrated that YB-1 stabilizes the APE1 complex with double-stranded DNAs containing the AP sites and stimulates cleavage of these AP sites at low magnesium concentrations.  相似文献   

14.
Reaction intermediates and products formed by the restriction endonuclease of Escherichia coli B with fd replicative form DNA substrates containing recognition sites in known positions and orientations have been characterized by electron microscopy. After exposure of these substrates to enzyme, loops of duplex DNA were frequently observed, usually at or near the termini. Analysis of the size and structure of the loops observed with various DNA substrates suggests that the enzyme binds initially to the recognition site then remains bound to the DNA in the region of this site while tracking towards a site of cleavage. Tracking appears to occur only on the 5′ side of the asymmetric recognition sequence, 5′ … T-G-A-(N)8-T-G-C-T … 3′; however, the location of the cleavage sites appears to be random, at least within certain limits of distance from the recognition site. Enzyme-DNA complexes remain intact even after the double-strand cleavage is completed, and this complex acts as a potent ATPase with no obvious function. This latter reaction might represent an artifactual uncoupling of ATP hydrolysis from the tracking of the enzyme along the DNA; alternatively, it might indicate an in vivo function for the enzyme of which we are unaware.  相似文献   

15.
The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5′-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5′-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5′-GT*A and 5′- TGT* trinucleotide sequences, and 5′-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5′-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine–pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the ?3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.  相似文献   

16.
The mammalian apurinic/apyrimidinic (AP) endonuclease (APE1) is a multifunctional protein that plays essential roles in DNA repair and gene regulation. We decomposed the APEs into 12 blocks of highly conserved sequence and structure (molegos). This analysis suggested that residues in molegos common to all APEs, but not to the less specific nuclease, DNase I, would dictate enhanced binding to damaged DNA. To test this hypothesis, alanine was substituted for N226 and N229, which form hydrogen bonds to the DNA backbone 3' of the AP sites in crystal structures of the APE1/DNA complex. While the cleavage rate at AP sites of both N226A and N229A mutants increased, their ability to bind to damaged DNA decreased. The ability of a double mutant (N226A/N229A) to bind damaged DNA was further decreased, while the V(max) was almost identical to that of the wild-type APE1. A double mutant at N226 and R177, a residue that binds to the same phosphate as N229, had a significantly decreased activity and substrate binding. As the affinity for product DNA was decreased in all the mutants, the enhanced reaction rate of the single mutants could be due to alleviation of product inhibition of the enzyme. We conclude that hydrogen bonds to phosphate groups 3' to the cleavage site is essential for APE1's binding to the product DNA, which may be necessary for efficient functioning of the base excision repair pathway. The results indicate that the molego analysis can aid in the redesign of proteins with altered binding affinity and activity.  相似文献   

17.
The Ogg1 protein of Saccharomyces cerevisiae belongs to a family of DNA glycosylases and apurinic/apyrimidinic site (AP) lyases, the signature of which is the alpha-helix-hairpin-alpha-helix-Gly/Pro-Asp (HhH-GPD) active site motif together with a conserved catalytic lysine residue, to which we refer as the HhH-GPD/K family. In the yeast Ogg1 protein, yOgg1, the HhH-GPD/K motif spans residues 225-260 and the conserved lysine is K241. In this study, we have purified the K241R and K241Q mutant proteins and compared their catalytic and DNA binding properties to that of the wild-type yOgg1. The results show that the K241R mutation greatly impairs both the DNA glycosylase and the AP lyase activities of yOgg1. Specificity constants for cleavage of a 34mer oligodeoxyribonucleotide containing a 7,8-dihydro-8-oxoguanine (8-OxoG) paired with a cytosine, [8-OxoG.C], are 56 x 10(-)(3) and 5 x 10(-)(3) min(-)(1) nM(-)(1) for the wild-type and the K241R protein, respectively. On the other hand, the K241Q mutation abolishes the DNA glycosylase and AP lyase activities of yOgg1. In contrast, the K241R and K241Q proteins have conserved wild-type DNA binding properties. K(dapp) values for binding of [8-OxoG.C] are 6.9, 7.4, and 4.8 nM for the wild-type, K241R, and K241Q proteins, respectively. The results also show that AP site analogues such as 1, 3-propanediol (Pr), tetrahydrofuran (F), or cyclopentanol (Cy) are not substrates but constitute good inhibitors of the wild-type yOgg1. Therefore, we have used a 59mer [Pr.C] duplex to further analyze the DNA binding properties of the wild-type, K241R, and K241Q proteins. Hydroxyl radical footprints of the wild-type yOgg1 show strong protection of six nucleotides centered around the Pr lesion in the damaged strand. On the complementary strand, only the cytosine placed opposite Pr was strongly protected. The same footprints were observed with the K241R and K241Q proteins, confirming their wild-type DNA binding properties. These results indicate that the K241Q mutant protein can be used to study interactions between yOgg1 and DNA containing metabolizable substrates such as 8-OxoG or an AP site.  相似文献   

18.
Shen X  Woodgate R  Goodman MF 《DNA Repair》2005,4(12):665-1373
Escherichia coli DNA polymerase IV and V (pol IV and pol V) are error-prone DNA polymerases that are induced as part of the SOS regulon in response to DNA damage. Both are members of the Y-family of DNA polymerases. Their principal biological roles appear to involve translesion synthesis (TLS) and the generation of mutational diversity to cope with stress. Although neither enzyme is known to be involved in base excision repair (BER), we have nevertheless observed apurinic/apyrimidinic 5'-deoxyribose phosphate (AP/5'-dRP) lyase activities intrinsic to each polymerase. Pols IV and V catalyze cleavage of the phosphodiester backbone at the 3'-side of an apurinic/apyrimidinic (AP) site as well as the removal of a 5'-deoxyribose phosphate (dRP) at a preincised AP site. The specific activities of the two error-prone polymerase-associated lyases are approximately 80-fold less than the associated lyase activity of human DNA polymerase beta, which is a key enzyme used in short patch BER. Pol IV forms a covalent Schiff's base intermediate with substrate DNA that is trapped by sodium borohydride, as proscribed by a beta-elimination mechanism. In contrast, a NaBH(4) trapped intermediate is not observed for pol V, even though the lyase specific activity of pol V is slightly higher than that of pol IV. Incubation of pol V (UmuD'(2)C) with a molar excess of UmuD drives an exchange of subunits to form UmuD'D+insoluble UmuC causing inactivation of polymerase and lyase activities. The concomitant loss of both activities is strong evidence that pol V contains a bona fide lyase activity.  相似文献   

19.
Topoisomerase V (Topo-V) is the only member of a novel topoisomerase subtype. Topo-V is unique because it is a bifunctional enzyme carrying both topoisomerase and DNA repair lyase activities within the same protein. Previous studies had shown that the topoisomerase domain spans the N-terminus of the protein and is followed by 12 tandem helix–hairpin–helix [(HhH)2] domains. There are at least two DNA repair lyase active sites for apurinic/apyrimidinic (AP) site processing, one within the N-terminal region and the second within the C-terminal domain of Topo-V, but their exact locations and characteristics are unknown. In the present study, the N-terminal 78-kDa fragment of Topo-V (Topo-78), containing the topoisomerase domain and one of the lyase DNA repair domains, was characterized by structural and biochemical studies. The results show that an N-terminal 69-kDa fragment is the minimal fragment with both topoisomerase and AP lyase activities. The lyase active site of Topo-78 is at the junction of the fifth and sixth (HhH)2 domains. From the biochemical and structural data, it appears that Lys571 is the most probable nucleophile responsible for the lyase activity. Our experiments also suggest that Topo-V most likely acts as a Class I AP endonuclease in vivo.  相似文献   

20.
BAP1 is an apurinic/apyrimidinic lyase (AP lyase) that plays an important role in the repair of DNA damage. The present study deals with the prediction of the 3D structure of bovine AP lyase based on its sequence homology with human AP lyase. The predicted 3D model of bovine AP1 shows remarkable similarity with human endonuclease in the overall 3D fold. However, significant differences in the model and the X-ray structure were located at some of the important sites. We have analyzed the active center of the enzyme and other sites that are involved in DNA repair. A number of amino acids bind the bases located in the major/minor grooves of DNA. An insertion of Arg176 in the major groove and Met270 in the minor groove caps the DNA bound enzyme's active site, stabilizing the extra helical AP site conformation and effectively locking the protein onto the AP-DNA. Three BAP1 mutants were also modeled and analyzed as regards the changes in the structure. Substitution of Arg176-->Ala leads to the loss of DNA binding whereas mutation of Asp282-->Ala and His308-->Asn leads to a decrease in the enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号