首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liver X receptors (LXRs) are members of the nuclear receptor family, including the LXRα (NR1H3) and LXRβ (NR1H2) subtypes, which are related to the metabolism of glucose and cholesterol and possess anti-inflammatory functions. Mounting evidence has linked LXRs to the inhibition of cell proliferation in a variety of cancers. We revealed a differential distribution for NR1H3, but not for NR1H2, in colorectal cancer and adjacent normal tissues. We found that NR1H3 enhanced the inhibitory action of GW3965, an agonist of LXRs, on the proliferation of colorectal cancer cells. Upregulation of NR1H3 enhanced the inhibition of cell proliferation by GW3965 while silencing of NR1H3 attenuated the inhibitory effect of GW3965 on cell proliferation. Bioinformatic prediction and luciferase assays showed that NR1H3 was able to inhibit the activity of the epidermal growth factor receptor (EGFR) promoter. Moreover, we demonstrated that activation of NR1H3 inhibited the growth of transplanted tumors in an animal experiment, with the inhibition accompanied by downregulation of EGFR. Our findings suggest that NR1H3 controls cell proliferation by affecting EGFR promoter activity. The high expression of EGFR was due to the downregulation of NR1H3 which is a novel molecular mechanism in the development of colorectal cancer.  相似文献   

2.
In the past decade, substantial evidence established that long noncoding RNAs are serious about mediating the evolution of malignancies. In previous studies, LINC00365, which has not been reported in colorectal cancer (CRC), was selected using the bioinformatics analysis in GSE109454 and GSE41655 data sets. However, the function and mechanism of LINC00365 are still obscure. In our study, LINC00365 was found upregulated in CRC specimens and intimately connected with the prognosis of patients with CRC. In addition, LINC00365 overexpression enhances the cell abilities of proliferation, migration, and invasion in vitro. Meanwhile, mechanistic studies showed that LINC00365 might involve in CRC cell progression by mediating the Wnt/β-catenin pathway. Furthermore, LINC00365 upregulation increased CDK1 protein expression. In conclusion, this study suggests that LINC00365 acts as a vital part in facilitating CRC progression and might play as a therapeutic target for patients with CRC.  相似文献   

3.
Previous studies have revealed that miR-186 is involved in the pathogenesis of many malignancies. However, the role of miR-186 in hepatocellular carcinoma (HCC) carcinogenesis and its detailed mechanism are poorly understood. This study was to investigate the function of miR-186 in modulating HCC cell proliferation, cell cycle, migration, and invasion. We found that miR-186 was decreased in HCC tissues and cell lines. Loss-of-function experiments showed that reduction of miR-186 dramatically enhanced tumor cell proliferation and metastasis. Besides, miR-186 also participated in the modulation of the cell cycle. In addition, luciferase reporter assays and Western blot analysis showed that MCRS1 was a novel target of miR-186 in HCC cells. Notably, upregulation of miR-186 suppressed the nuclear β-catenin accumulation and blocked the activation of Wnt/β-catenin signaling in HCC cells. Forced MCRS1 expression abrogated the inhibitory effect of miR-186 on cell growth, metastasis and Wnt/β-catenin signaling in HCC cells. Our findings may provide new insight into the pathogenesis of HCC and miR-186/ MCRS1 might function as new therapeutic targets for HCC.  相似文献   

4.
5.
Previous research showed that microRNA-612 (miR-612) has inhibitory effects on cell proliferation, migration, invasion, and metastasis of hepatocellular carcinoma (HCC). AKT2 was confirmed to be a direct target of miR-612, through which the epithelial–mesenchymal transition (EMT) and metastasis of HCC were inhibited. Our present findings reveal that miR-612 is able to suppress the stemness of HCC by reducing the number and size of tumorspheres as well as clone formation in soft agar, and to relieve drug resistance to cisplatin and 5-fluorouracil. In addition, miR-612 hampered the capacity of tumorigenesis in NOD/SCID mice and redistributed the tumor invasive frontier of miR-612-modulating cells. Finally, our findings suggest that Wnt/β-catenin signaling is required in the regulation of EMT-associated stem cell-like traits by miR-612.  相似文献   

6.
BackgroundCelecoxib (CXB), a selective COX-2 inhibitor NSAID, has exhibited prominent anti-proliferative potential against numerous cancers. However, its low bioavailability and long term exposure related cardiovascular side effects, limit its clinical application. In order to overcome these limitations, natural bioactive compounds with lower toxicity profile are used in combination with therapeutic drugs. Therfore, in this study Piperine (PIP), a natural chemo-preventive agent possessing drug bioavailability enhancing properties, was considered to be used in combination with low doses of CXB.PurposeWe hypothesized that the combination of PIP with CXB will have a synergistic anti-proliferative effect on colon cancer cells.Study designThe potency of PIP and CXB alone and in combination was evaluated in HT-29 human colon adenocarcinoma cells and mechanism of growth inhibition was investigated by analyzing the players in apoptotic and Wnt/β-catenin signaling pathways.MethodsThe effect of PIP on the oral bioavailability of CXB in mice was investigated using HPLC analysis. The study investigated the synergistic anti-proliferative effect of CXB and PIP on HT-29 cells and IEC-6 non-tumorigenic rat intestinal epithelial cells by SRB cell viability assay. Further, the cellular and molecular mechanism(s) involved in the anti-proliferative combinatorial effect was extensively explored in HT-29 cells by flow cytometry and western blotting. The in vivo efficacy of this combination was studied in CT26.WT tumor syngeneic Balb/c mice model.ResultsPIP as a bioenhancer increased the oral bioavailability of CXB (129%). The IC50 of CXB and PIP were evaluated to select doses for combination treatment of HT-29 cells. The drug combinations having combination index (CI) less than 1 were screened using CompuSyn software. These combinations were significantly cytotoxic to HT-29 cells but IEC-6 were least effected. Further, the mechanism behind CXB and PIP mediated cell death was explored. The co-treatment led to reactive oxygen species generation, mitochondrial dysfunction, caspase activation and enhanced apoptosis in HT-29 cells. Additionally, the combination treatment synergistically modulated Wnt/β-catenin pathway, downregulated the stemness markers and boosted therapeutic response in CT26 syngeneic Balb/c mice.ConclusionThe outcomes of the study suggests that combining CXB and PIP offers a novel approach for the treatment of colon cancer.  相似文献   

7.
Lung cancer ranks topmost among the most frequently diagnosed cancers. Despite increasing research, there are still unresolved mysteries in the molecular mechanism of lung cancer. Long noncoding RNA small nucleolar RNA host gene 11 (SNHG11) was found to be upregulated in lung cancer and facilitated lung cancer cell proliferation, migration, invasion, and epithelial–mesenchymal transition progression while suppressed cell apoptosis. Moreover, the high expression of SNHG11 was correlated with poor prognosis of lung cancer patients, TNM stage, and tumor size. Further assays demonstrated that SNHG11 functioned in lung cancer cells via Wnt/β-catenin signaling pathway. Subsequently, Wnt/β-catenin pathway was found to be activated through SNHG11/miR-4436a/CTNNB1 ceRNA axis. As inhibiting miR-4436 could only partly rescue the suppression of cell function induced by silencing SNHG11, it was suspected that β-catenin might enter cell nucleus through other pathways. Mechanism investigation proved that SNHG11 would directly bind with β-catenin to activate classic Wnt pathway. Subsequently, in vivo tumorigenesis was also demonstrated to be enhanced by SNHG11. Hence, SNHG11 was found to promote lung cancer progression by activating Wnt/β-catenin pathway in two different patterns, implying that SNHG11 might contribute to lung cancer treatment by acting as a therapeutic target.  相似文献   

8.
Prostate cancer is the second most frequent malignancy in men worldwide, and its incidence is increasing. Therefore, it is urgently required to clarify the underlying mechanisms of prostate cancer. Although the long non-coding RNA LINC00115 was identified as an oncogene in several cancers, the expression and function of LINC00115 in prostate cancer have not been explored. Our results showed that LINC00115 was significantly up-regulated in prostate cancer tissues, which was significantly associated with a poor prognosis for prostate cancer patients. Functional studies showed that knockdown LINC00115 inhibited cell proliferation and invasion. In addition, LINC00115 served as a competing endogenous RNA (ceRNA) through sponging miR-212-5p to release Frizzled Family Receptor 5 (FZD5) expression. The expression of miR-212-5p was noticeably low in tumour tissues, and FZD5 expression level was down-regulated with the knockdown of LINC00115. Knockdown LINC00115 inhibited the Wnt/β‑catenin signalling pathway by inhibiting the expression of FZD5. Rescue experiments further showed that LINC00115 inhibits prostate cancer cell proliferation and invasion via targeting miR-212-5p/ FZD5/ Wnt/β-catenin axis. The present study provided clues that LINC00115 may be a promising novel therapeutic target for prostate cancer patients.  相似文献   

9.
10.
BackgroundMetastasis is a critical step in tumor development; however, its specific molecular mechanism is still not fully understood. SETDB1 overexpression is associated with tumor progression and poor prognosis. Here, we explored a novel mechanism by which SETDB1 promotes tumor metastasis in colorectal cancer.MethodsWe conducted database and clinical specimen analysis to determine the expression level of SETDB1 in colorectal cancer, as well as the prognosis of colorectal cancer with overexpressed SETDB1. We used wound healing assays, Transwell assays, and animal studies to study the effect of SETDB1 on colorectal cancer. We performed western blotting, qRT–PCR, immunofluorescence, and co-immunoprecipitation to explore the underlying associations between SETDB1 and β-catenin. We further used wound healing assays, Transwell assays, and animal studies to verify the relationship between SETDB1 and Wnt/β-catenin.ResultsSETDB1 expression was upregulated in colorectal cancer and correlated with poor prognosis. Low expression of SETDB1 decreased invasion and metastasis in colorectal cancer. Low-expression of SETDB1 in colorectal tumor cells decreased β-catenin expression and its nuclear import. We also found that SETDB1 can bind and directly methylate β-catenin, Lastly, we discovered that this metastatic ability could be decreased by activating the Wnt/β-catenin pathway with SETDB1 knock-down.ConclusionSETDB1 is highly expressed in colorectal cancer and plays an important role in the invasion and metastasis through the Wnt/β-catenin pathway. It does so by direct methylation of β-catenin. This novel SETDB1/Wnt/β-catenin pathway provides a new strategy for the treatment of colorectal cancer.  相似文献   

11.
Long noncoding RNAs (lncRNAs) are important regulators of the biological functions and underlying molecular mechanisms of colorectal cancer (CRC). However, the role of the lncRNA ZEB1-AS1 in CRC is not thoroughly understood. In this study, we found that ZEB1-AS1 was markedly upregulated in CRC. ZEB1-AS1 knockdown significantly suppressed CRC cell proliferation and induced apoptosis, whereas enhanced expression of ZEB1-AS1 had the opposite effect. Bioinformatics analysis identified miR-181a-5p as a candidate target of ZEB1-AS1. Moreover, we found an inverse correlation between ZEB1-AS1 and miR-181a-5p expression in CRC tissue. Inhibition of miR-181a-5p significantly upregulated ZEB1-AS1, whereas overexpression of miR-181a-5p had the opposite effect, suggesting that ZEB1-AS1 is negatively regulated by miR-181a-5p. Using luciferase reporter and RIP assays, we found that miR-181a-5p directly targets ZEB1-AS1. Importantly, ZEB1-AS1 may act as an endogenous ‘sponge’ to regulate miRNA targets by competing for miR-181a-5p binding. In summary, our findings provide the evidence supporting the role of ZEB1-AS1 as an oncogene in CRC. Our study also demonstrates that miR-181a-5p targets not only protein-coding genes but also the lncRNA ZEB1-AS1.  相似文献   

12.
Li  YaJie  Zhao  Yan  Li  Yi  Zhang  XiaoYi  Li  Chao  Long  NiYa  Chen  XueShu  Bao  LiYa  Zhou  JianJiang  Xie  Yuan 《Journal of physiology and biochemistry》2021,77(1):93-104
Journal of Physiology and Biochemistry - Gastric cancer (GC) is one of the most common cancers, with most patients often succumbing to death as a result of tumor metastasis. Recent work has...  相似文献   

13.
14.
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In this study, we found that nuclear accumulation of β-catenin was higher in cisplatin-resistant Huh7 cells than in Huh7 cells, indicating that Wnt signaling was activated in cisplatin-resistant cells. Wnt signaling inhibition increased cisplatin-induced growth inhibition in hepatoma cell. We further demonstrated that sorafenib could inhibit Wnt signaling in Huh7 cells and cisplatin-resistant Huh7 cells. Co-treatment with cisplatin and sorafenib was more effective in inhibiting cancer cell proliferation than cisplatin alone in vitro and in vivo, whereas Wnt3a (Wnt activator) treatment abrogated sorafenib-induced growth inhibition. These data demonstrated that sorafenib sensitizes human HCC cell to cisplatin via suppression of Wnt/β-catenin signaling, thus offering a new target for chemotherapy of HCC.  相似文献   

15.
Curcumin, a naturally occurring phenolic compound, has a diversity of antitumor activities. It has been previously demonstrated that curcumin can inhibit the invasion and metastasis of tumors through activation of the tumor suppressor DnaJ-like heat shock protein 40 (HLJ1). However, the specific roles and mechanisms of curcumin in regulating the malignant behaviors of non-small cell lung cancer (NSCLC) cells still remain unclear. In this study, we found that curcumin could inhibit the proliferation and invasion of NSCLC cells and induce G0/G1 phase arrest. Metastasis-associated protein 1 (MTA1) overexpression has been detected in a wide variety of aggressive tumors and plays an important role on cell invasion and metastasis. Our results showed that curcumin could effectively inhibit the MTA1 expression of NSCLC cells. Further research on the subsequent mechanism showed that curcumin inhibited the proliferation and invasion of NSCLC cells through MTA1-mediated inactivation of Wnt/β-catenin pathway. Wnt/β-catenin signaling was reported to play a critical cooperative role on promoting lung tumorigenesis. Thus, these investigations provided novel insights into the mechanisms of curcumin on inhibition of NSCLC cell growth and invasion and showed potential therapeutic strategies for NSCLC.  相似文献   

16.
Breast cancer (BC) is a common malignancy which is the most frequently diagnosed cancer in women all over the worldwide. This study aimed to investigate the roles of miR-1469 in the development of BC, as well as its regulatory mechanism. The expression levels of miR-1469 in BC tissues, serum, and cell lines were determined. Effects of overexpression of miR-1469 on MCF7 cell viability, colony-forming ability, apoptosis, migration, and invasion were then investigated. Furthermore, the potential target of miR-1469 in MCF7 cells was explored. Besides, the association between miR-1469, PTEN/PI3K/AKT, and Wnt/β-catenin pathways was elucidated. Notably, confirmatory experiments by downregulation of miR-1469 in SK-BR-3 cells were further performed. The miR-1469 expression was significantly downregulated in BC tissues, serum, and cell lines. The overexpression of miR-1469 significantly inhibited the proliferation, arrested cell-cycle at G2/M phase, increased apoptosis, suppressed migration, and invasion of MCF-7 cells. In addition, HOXA1 was verified as a direct target of miR-1469, and the effects of overexpression of miR-1469 on the malignant behaviors of MCF7 cells were significantly counteracted by overexpression of HOXA1 concurrently. Furthermore, the overexpression of miR-1469 suppressed the activation of PTEN/PI3K/AKT and Wnt/β-catenin pathways, which was reversed overexpression of HOXA1 concurrently. Besides, confirmatory experiments showed that the inhibition of miR-1469 promoted the malignant behaviors of SK-BR-3 cells, which was inversed after miR-1469 inhibition and HOXA1 knockdown at the same time. Our findings reveal that downregulation of miR-1469 may promote the development of BC by targeting HOXA1 and activating PTEN/PI3K/AKT and Wnt/β-catenin pathways. MiR-1469 may serve as a promising target for BC therapy.  相似文献   

17.
The Wnt signaling pathway is critical for normal tissue development and is an underlying mechanism of disease when dysregulated. Previously, we reported that the drug Niclosamide inhibits Wnt/β-catenin signaling by decreasing the cytosolic levels of Dishevelled and β-catenin, and inhibits the growth of colon cancers both in vitro and in vivo. Since the discovery of Niclosamide’s anthelmintic activity, a growing body of literature indicates that Niclosamide is a multifunctional drug. In an effort to identify derivatives of Niclosamide with improved pharmacokinetic properties that maintain the multifunctional drug activity of Niclosamide for clinical evaluation, we designed DK419, a derivative containing a 1H-benzo[d]imidazole-4-carboxamide substructure, using the structure-activity relationships (SAR) of the Niclosamide salicylanilide chemotype. Similar to Niclosamide, we found DK419 inhibited Wnt/β-catenin signaling, altered cellular oxygen consumption rate and induced production of pAMPK. Moreover, we found DK419 inhibited the growth of CRC tumor cells in vitro, had good plasma exposure when dosed orally, and inhibited the growth of patient derived CRC240 tumor explants in mice dosed orally. DK419, a derivative of Niclosamide with multifunctional activity and improved pharmacokinetic properties, is a promising agent to treat colorectal cancer, Wnt-related diseases and other diseases in which Niclosamide has demonstrated functional activity.  相似文献   

18.
J Mao  S Fan  W Ma  P Fan  B Wang  J Zhang  H Wang  B Tang  Q Zhang  X Yu  L Wang  B Song  L Li 《Cell death & disease》2014,5(1):e1039
The Wnt1 protein, a secreted ligand that activates Wnt signaling pathways, contributes to the self-renewal of cancer stem cells (CSCs) and thus may be a major determinant of tumor progression and chemoresistance. In a series of gastric cancer specimens, we found strong correlations among Wnt1 expression, CD44 expression, and the grade of gastric cancer. Stable overexpression of Wnt1 increased AGS gastric cancer cells'' proliferation rate and spheroids formation, which expressed CSC surface markers Oct4 and CD44. Subcutaneous injection of nude mice with Wnt1-overexpressing AGS cells resulted in larger tumors than injection of control AGS cells. Salinomycin, an antitumor agent, significantly reduced the volume of tumor caused by Wnt1-overexpressing AGS cells in vivo. This is achieved by inhibiting the proliferation of CD44+Oct4+ CSC subpopulation, at least partly through the suppression of Wnt1 and β-catenin expression. Taken together, activation of Wnt1 signaling accelerates the proliferation of gastric CSCs, whereas salinomycin acts to inhibit gastric tumor growth by suppressing Wnt signaling in CSCs. These results suggest that Wnt signaling might have a critical role in the self-renewal of gastric CSCs, and salinomycin targeting Wnt signaling may have important clinical applications in gastric cancer therapy.  相似文献   

19.
The above article, “Downregulation of microRNA-1469 promotes the development of breast cancer via targeting HOXA1 and activating PTEN/PI3K/AKT and Wnt/β-catenin pathways,” by Yonghui Zhang, Jing Fang, Hongmeng Zhao, Yue Yu, Xuchen Cao, and Bin Zhang, J Cell Biochem. 2019; 5097-5107. The above article, published online on 15 October 2018 in Wiley Online Library ( https://onlinelibrary.wiley.com/doi/abs/10.1002/jcb.27786 ), has been retracted by agreement between the authors, the journal acting Editor-in-Chief, Dr. Lucie Kalvodova, and the Wiley Periodicals LLC following an investigation based on public allegations. The authors stated that unintentional errors occurred during the research process, and the experimental results cannot be verified.  相似文献   

20.
Tongue squamous cell carcinoma (TSCC) is the most frequent style of oral squamous cell carcinoma. However, the molecular mechanisms and function of LINC00961 in the TSCC progression remain unknown. In this study, we proved that LINC00961 expression was downregulated in TSCC cells (Tca8113, SCC1, SCC-4, and SCC-15) compared with normal tissue. In addition, we showed that LINC00961 expression was downregulated in TSCC samples compared with matched normal tissues. Moreover, ectopic expression of LINC00961 decreased TSCC cell growth and invasion and suppressed epithelial-mesenchymal transition in TSCC cell. Furthermore, we indicated that overexpression of LINC00961 decreased β-catenin expression. Knockdown of LINC00961 promoted cell proliferation and invasion partly via promoting the Wnt/β-catenin signaling pathway. These results suggested that LINC00961 was downregulated in TSCC tissues and acted as a tumor suppressor gene in the development of TSCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号