首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Xia XJ  Zhou YH  Ding J  Shi K  Asami T  Chen Z  Yu JQ 《The New phytologist》2011,191(3):706-720
? Brassinosteroids (BRs) are a new class of plant hormones that are essential for plant growth and development. Here, the involvement of BRs in plant systemic tolerance to biotic and abiotic stresses was studied. ? The effects of 24-epibrassinolide (EBR) on plant stress tolerance were studied through the assessment of symptoms of photooxidative stress by chlorophyll fluorescence imaging pulse amplitude modulation, the analysis of gene expression using quantitative real-time PCR and the measurement of hydrogen peroxide (H?O?) production using a spectrophotometric assay or confocal laser scanning microscopy. ? Treatment of primary leaves with EBR induced systemic tolerance to photooxidative stress in untreated upper and lower leaves. This was accompanied by the systemic accumulation of H?O? and the systemic induction of genes associated with stress responses. Foliar treatment of EBR also enhanced root resistance to Fusarium wilt pathogen. Pharmacological study showed that EBR-induced systemic tolerance was dependent on local and systemic H?O? accumulation. The expression of BR biosynthetic genes was repressed in EBR-treated leaves, but elevated significantly in untreated systemic leaves. Further analysis indicated that EBR-induced systemic induction of BR biosynthetic genes was mediated by systemically elevated H?O?. ? These results strongly argue that local EBR treatment can activate the continuous production of H?O?, and the autopropagative nature of the reactive oxygen species signal, in turn, mediates EBR-induced systemic tolerance.  相似文献   

2.
3.
Brassinosteroids (BRs), a class of plant steroid hormones, play a significant role in the amelioration of various biotic and abiotic stresses. In order to further explore and elaborate their roles in plants subjected to chilling stress, suspension cultured cells of Chorispora bungeana with or without 24-epibrassinolide (EBR) application were exposed to 4 and 0°C for 5 days. The EBR treated cells exhibited higher viability after exposure to low temperatures compared with the control. Under chilling stress, reactive oxygen species (ROS) levels and lipid peroxidation were increased in the cultured cells, which were significantly inhibited by EBR application. The activities of antioxidative enzymes such as ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) were increased during chilling treatments, and these increases were more significant in the EBR applied suspension cells. The EBR treatment also greatly enhanced contents of ascorbic acid (AsA) and reduced glutathione (GSH) under chilling stress. From these results, it can be concluded that EBR could play the positive roles in the alleviation of oxidative damage caused by ROS overproduction through enhancing antioxidant defense system, resulting in improving the tolerance of C. bungeana suspension cultures to chilling stress.  相似文献   

4.
The objective of this study was to investigate whether abscisic acid (ABA), a second messenger in chilling stress responses, is involved in brassinosteroids (BRs)-induced chilling tolerance in suspension cultured cells from Chorispora bungeana. The suspension cells were treated with 24-epibrassinolide (EBR), ABA, ABA biosynthesis inhibitor fluridone (Flu) and EBR in combination with Flu. Their effects on chilling tolerance, reactive oxygen species (ROS) levels and antioxidant defense system were analyzed. The results showed that EBR treatment markedly alleviated the decrease of cell viability and the increases of ion leakage and lipid peroxidation induced by chilling stress, suggesting that application of EBR could improve the chilling tolerance of C. bungeana suspension cultures. In addition, similar results were observed when exogenous ABA was applied. Treatment with Flu alone and in combination with EBR significantly suppressed cell viability and increased ion leakage and lipid peroxidation under low temperature conditions, indicating that the inhibition of ABA biosynthesis could decrease the chilling tolerance of C. bungeana suspension cultures and the EBR-enhanced chilling tolerance. Further analyses showed that EBR and ABA enhanced antioxidant defense and slowed down the accumulation of ROS caused by chilling. However, Flu application differentially blocked these protective effects of EBR. Moreover, EBR was able to mimic the effect of ABA by markedly increasing ABA content in the suspension cells under chilling conditions, whereas the EBR-induced ABA accumulation was inhibited by the addition of Flu. Taken together, these results demonstrate that EBR may confer chilling tolerance to C. bungeana suspension cultured cells by enhancing the antioxidant defense system, which is partially mediated by ABA, resulting in preventing the overproduction of ROS to alleviate oxidative injury induced by chilling.  相似文献   

5.
Brassinosteroids (BRs), an important class of plant steroidal hormones, play a significant role in the amelioration of various biotic and abiotic stresses. 24-epibrassinolide (EBR), an active brassinosteroid, was applied exogenously in different concentrations to characterize a role of BRs in tolerance of melon (Cucumis melo L.) to high temperature (HT) stress and to investigate photosynthetic performance of HT-stressed, Honglvzaocui (HT-tolerant) and Baiyuxiang (HTsensitive), melon variety. Under HT, Honglvzaocui showed higher biomass accumulation and a lower index of heat injury compared with the Baiyuxiang. The exogenous application of 1.0 mg L?1 EBR, the most effective concentration, alleviated dramatically the growth suppression caused by HT in both ecotypes. Similarly, EBR pretreatment of HTstressed plants attenuated the decrease in relative chlorophyll content, net photosynthetic rate, stomatal conductance, stomatal limitation, and water-use efficiency (WUE), as well as the maximal quantum yield of PSII photochemistry (Fv/Fm), the efficiency of excitation capture of open PSII center, the effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching coefficient, and the photon activity distribution coefficients of PSI (α). EBR pretreatment further inhibited the increase in intracellular CO2 concentration, leaf transpiration rate, minimal fluorescence of dark-adapted state, nonphotochemical quenching, thermal dissipation, and photon activity distribution coefficients of PSII. Results obtained here demonstrated that EBR could alleviate the detrimental effects of HT on the plant growth by improving photosynthesis in leaves, mainly reflected as up-regulation of photosynthetic pigment contents and photochemical activity associated with PSI.  相似文献   

6.
A role of brassinosteroids in early fruit development in cucumber   总被引:2,自引:0,他引:2  
  相似文献   

7.
Brassinosteroids (BRs) have been proposed to increase the resistance of plants to drought stress. The effect of foliar application of 0.1 μM 24-epibrassinolide (EBR) on chlorophyll (Chl) content, photosystem 2 (PS 2) photochemistry, membrane permeability, lipid peroxidation, relative water content (RWC), proline content, and the antioxidant system in drought-stressed Chorispora bungeana plants was investigated. The results showed that polyethylene glycol (PEG) induced water stress decreased RWC, Chl content and variable to maximum Chl fluorescence ratio (Fv/Fm) less in plants pretreated with EBR than in non-pretreated plants. In addition, lipid peroxidation, measured in terms of malondialdehyde content, membrane permeability and proline content in drought-stressed plants were less increased in EBR pretreated plants, while antioxidative enzyme activities and reduced ascorbate and glutathione contents were more increased in EBR pretreated than in non-pretreated plants. These results suggested that EBR could improve plant growth under drought stress  相似文献   

8.
9.
The objective of this study was to investigate the influence of exogenous 24-epibrassinolide (EBR) on the substances involved in antioxidation and osmoregulation responses of young grape plants under chilling stress. The grapevine leaves were sprayed with 0 (control), 0.05, 0.10 or 0.15 mg/L of 24-epibrassinolide and then exposed to 4 and 0 °C for 24 h, respectively. The EBR treatment significantly enhanced the activities of antioxidative enzymes such as catalase, superoxide dismutase, peroxidase and ascorbate peroxidase in the plant leaves compared with the control. The contents of ascorbic acid and reduced glutathione increased after the EBR treatment, while reactive oxygen species (ROS) and lipid peroxidation were inhibited. In addition, the EBR treatment also greatly increased the contents of free proline, soluble protein, and soluble sugar. These results indicated that exogenous EBR treatment could enhance the antioxidation defense system and reduce oxidative damage caused by ROS and lipid oxidation in the young grapevine leaves. Meanwhile, it was found that the treatment could also increase the osmoregulation substance content in the grapevine leaves and improve their resistance against chilling stress.  相似文献   

10.
Water deficit is considered the main abiotic stress that limits agricultural production worldwide. Brassinosteroids (BRs) are natural substances that play roles in plant tolerance against abiotic stresses, including water deficit. This research aims to determine whether BRs can mitigate the negative effects caused by water deficiency, revealing how BRs act and their possible contribution to increased tolerance of cowpea plants to water deficit. The experiment was a factorial design with the factors completely randomised, with two water conditions (control and water deficit) and three levels of brassinosteroids (0, 50 and 100 nM 24-epibrassinolide; EBR is an active BRs). Plants sprayed with 100 nM EBR under the water deficit presented significant increases in ΦPSII, qP and ETR compared with plants subjected to the water deficit without EBR. With respect to gas exchange, P N, E and g s exhibited significant reductions after water deficit, but application of 100 nM EBR caused increases in these variables of 96, 24 and 33%, respectively, compared to the water deficit + 0 nM EBR treatment. To antioxidant enzymes, EBR resulted in increases in SOD, CAT, APX and POX, indicating that EBR acts on the antioxidant system, reducing cell damage. The water deficit caused significant reductions in Chl a, Chl b and total Chl, while plants sprayed with 100 nM EBR showed significant increases of 26, 58 and 33% in Chl a, Chl b and total Chl, respectively. This study revealed that EBR improves photosystem II efficiency, inducing increases in ΦPSII, qP and ETR. This substance also mitigated the negative effects on gas exchange and growth induced by the water deficit. Increases in SOD, CAT, APX and POX of plants treated with EBR indicate that this steroid clearly increased the tolerance to the water deficit, reducing reactive oxygen species, cell damage, and maintaining the photosynthetic pigments. Additionally, 100 nM EBR resulted in a better dose–response of cowpea plants exposed to the water deficit.  相似文献   

11.
12.
Brassinosteroids (BRs) are a new group of plant growth substances that promote plant growth and productivity. We showed in this study that improved growth of cucumber (Cucumis sativus) plants after treatment with 24-epibrassinolide (EBR), an active BR, was associated with increased CO2 assimilation and quantum yield of PSII (ΦPSII). Treatment of brassinazole (Brz), a specific inhibitor for BR biosynthesis, reduced plant growth and at the same time decreased CO2 assimilation and ΦPSII. Thus, the growth-promoting activity of BRs can be, at least partly, attributed to enhanced plant photosynthesis. To understand how BRs enhance photosynthesis, we have analyzed the effects of EBR and Brz on a number of photosynthetic parameters and their affecting factors, including the contents and activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Northern and Western blotting demonstrated that EBR upregulated, while Brz downregulated, the expressions of rbcL, rbcS and other photosynthetic genes. In addition, EBR had a positive effect on the activation of Rubisco based on increased maximum Rubisco carboxylation rates (V c,max), total Rubisco activity and, to a greater extent, initial Rubisco activity. The accumulation patterns of Rubisco activase (RCA) based on immunogold-labeling experiments suggested a role of RCA in BR-regulated activation state of Rubisco. Enhanced expression of genes encoding other Calvin cycle genes after EBR treatment may also play a positive role in RuBP regeneration (J max), thereby increasing maximum carboxylation rate of Rubisco (V c,max). Thus, BRs promote photosynthesis and growth by positively regulating synthesis and activation of a variety of photosynthetic enzymes including Rubisco in cucumber.  相似文献   

13.
14.
Brassinosteroids (BRs) and abscisic acid (ABA) are essential regulators of plant growth and stress tolerance. Although the antagonistic interaction of BRs and ABA is proposed to ensure the balance between growth and defense in model plants, the crosstalk between BRs and ABA in response to chilling in tomato (Solanum lycopersicum), a warm-climate horticultural crop, is unclear. Here, we determined that overexpression of the BR biosynthesis gene DWARF (DWF) or the key BR signaling gene BRASSINAZOLE-RESISTANT1 (BZR1) increases ABA levels in response to chilling stress via positively regulating the expression of the ABA biosynthesis gene 9-CIS-EPOXYCAROTENOID DIOXYGENASE1 (NCED1). BR-induced chilling tolerance was mostly dependent on ABA biosynthesis. Chilling stress or high BR levels decreased the abundance of BRASSINOSTEROID-INSENSITIVE2 (BIN2), a negative regulator of BR signaling. Moreover, we observed that chilling stress increases BR levels and results in the accumulation of BZR1. BIN2 negatively regulated both the accumulation of BZR1 protein and chilling tolerance by suppressing ABA biosynthesis. Our results demonstrate that BR signaling positively regulates chilling tolerance via ABA biosynthesis in tomato. The study has implications in production of warm-climate crops in horticulture.  相似文献   

15.
Brassinosteroid-Mediated Stress Responses   总被引:25,自引:3,他引:22  
Brassinosteroids (BRs) are a group of naturally occurring plant steroidal compounds with wide-ranging biological activity that offer the unique possibility of increasing crop yields through both changing plant metabolism and protecting plants from environmental stresses. In recent years, genetic and biochemical studies have established an essential role for BRs in plant development, and on this basis BRs have been given the stature of a phytohormone. A remarkable feature of BRs is their potential to increase resistance in plants to a wide spectrum of stresses, such as low and high temperatures, drought, high salt, and pathogen attack. Despite this, only a few studies aimed at understanding the mechanism by which BRs promote stress resistance have been undertaken. Studies of the BR signaling pathway and BR gene-regulating properties indicate that there is cross-talk between BRs and other hormones, including those with established roles in plant defense responses such as abscisic acid, jasmonic acid, and ethylene. Recent studies aimed at understanding how BRs modulate stress responses suggest that complex molecular changes underlie BR-induced stress tolerance in plants. Analyses of these changes should generate exciting results in the future and clarify whether the ability of BRs to increase plant resistance to a range of stresses lies in the complex interactions of BRs with other hormones. Future studies should also elucidate if BRI1, an essential component of the BR receptor, directly participates in stress response signaling through interactions with ligands and proteins involved in plant defense responses.  相似文献   

16.
以2年生葡萄(Vitis vinifera L.)酿酒品种赤霞珠扦插苗为材料,在水培条件下,分别用0、0.05、0.10和0.20mg/L 24-表油菜素内酯(EBR)预处理幼苗,然后进行50mmol/L NaCl胁迫,分别在胁迫6d和12d测定幼苗叶片中超氧阴离子(O_2~)、丙二醛(MDA)、抗氧化物质含量以及相关酶活性,探讨EBR预处理对葡萄幼苗耐盐性的影响。结果表明:与单独盐胁迫处理相比,不同浓度的EBR预处理使盐胁迫葡萄幼苗叶片O_2~和MDA含量显著降低,同时使其抗氧化物质抗坏血酸(AsA)、脱氢抗坏血酸(DHA)、还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)含量以及抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、超氧化物歧化酶(SOD)活性显著升高;其中,0.10mg/L EBR预处理的表现最佳,在盐胁迫12d时,其葡萄叶O_2~和MDA含量比单独盐胁迫处理分别显著降低30.5%和22.0%,其叶片相应AsA和GSH的含量较单独盐胁迫处理分别显著提高82.8%和27.9%,且GR、APX和SOD活性分别显著提高7.2%、8.5%和24.0%。研究发现,在盐胁迫条件下,适宜浓度的外源BRs预处理能够显著降低葡萄叶片中活性氧含量,提高抗氧化物质含量和抗氧化酶活性,以促进AsA-GSH循环的快速有效运转,有效减轻植株的过氧化伤害,缓解盐胁迫对葡萄幼苗的伤害,提高葡萄的耐盐性。  相似文献   

17.
Brassinosteroids (BRs) are an important group of plant steroidal hormones that are actively involved in a myriad of key growth and developmental processes from germination to senescence. Moreover, BRs are known for their effective role in alleviation of stress-induced changes in normal metabolism via the activation of different tolerance mechanisms. Efforts to improve plant growth through exogenous application of BRs (through different modes such as foliar spray, presowing seed treatment, or through root growing medium) have gained considerable ground world over. It has been widely demonstrated that the exogenous application of BRs to stressed plants imparts the stress tolerance mechanisms. In BR-induced regulation of physio-biochemical processes in plants, interaction (crosstalk) of BRs with other phytohormones has been reported. This crosstalk may fine-tune the effective roles of other hormones in regulating stress tolerance. The multifaceted role of BRs consolidated so far has reflected their immense potential to help plants in counteracting the stress-induced changes. The effects of introgression and up- and down-regulation of BR-related genes reported so far to improve crop productivity have been presented here. Strong evidence exists that BRs are involved in signal transduction particularly in the regulation of the mitogen-activated protein kinase (MAPK) cascade, which in turn is involved in controlled development, cell death, and the perception of pathogen-associated molecular pattern (PAMP) signaling. How far BRs are involved in signal transduction pathways operative under stressful environments has also been comprehensively discussed in this review.  相似文献   

18.
Rhododendron delavayi is an alpine evergreen ornamental plant with strong tolerance to drought stress. Brassinosteroids are promising agents for alleviating the negative effects of drought on plants, but the mechanism by which BRs induce plant resistance to drought is not well understood. The present study investigated the effects of exogenous spray of 24-epibrassionlide (EBR) at different concentrations (0~1 mg l−1) on the physiological response of R. delavayi to drought caused by no watering for 10 days. With the increase in EBR concentration, net photosynthetic rate, stomatal conductance, transportation rate, light saturated photosynthetic rate, light compensation point, light saturation point, excitation energy capture efficiency of reaction center, actual photochemical efficiency of photosystem II (PSII), photochemical quenching and electron transport rate significantly increased, but there were no significant effects on photosynthetic pigment content. These results suggested that the EBR-induced improvement in CO2 assimilation under drought was mainly related to stomatal and non-stomatal factors, and partially attributed to the increased photochemical efficiency of PSII. In addition, the leaf water potential increased with the increase in EBR concentration, while the malondialdehyde, superoxide dismutase, catalase, proline and soluble protein decreased. The results suggested EBR application partially alleviated the negative effect of drought on R. delavayi by improving water relations and decreasing lipid peroxidation and reactive oxygen species production. We concluded that exogenous application of EBR improved photosynthesis and alleviated the negative effects of drought-induced membrane peroxidation and severe oxidative stress.  相似文献   

19.
油菜素甾醇(BR)作为植物内源激素, 广泛参与植物的生长发育过程及逆境应答。虽然BR调控生长发育的分子机制目前已相对清楚, 但在水稻(Oryza sativa)中, BR在逆境反应中的功能还鲜有报道。该研究系统分析了BR在高盐胁迫过程中的作用, 表明盐胁迫和逆境激素脱落酸可抑制BR合成基因D2D11的表达, 典型的BR缺陷突变体(如d2-2d61-1)则表现出对盐胁迫敏感性增强。此外, 通过对BR核心转录因子OsBZR1的过表达株系进行分析, 发现BR可显著诱导OsBZR1的去磷酸化, 盐胁迫对OsBZR1蛋白的积累水平和磷酸化状态均有调控作用。转录组数据分析表明, BR处理前后差异表达基因中有38.4%同时受到盐胁迫调控, 其中91.5%受到BR和高盐一致调控, 并显著富集在应激反应过程中。研究结果表明, BR正调控水稻的耐盐性, 而盐胁迫通过抑制BR合成来限制水稻的生长。  相似文献   

20.
Drought is major stress that severely reduces plant growth and productivity. To improve drought tolerance, an exogenous brassinosteroids (BRs) has been used effectively in the field condition. However, the application of BRs is expensive due to the scarcity of natural BRs and the multistep synthesis of BRs. In an attempt to reduce the cost, 7,8-dihydro-8α-20-hydroxyecdysone (DHECD) has been proposed to function as an imitation of 24-epibrassinolide (EBR). In this study, chili pepper plants (Capsicum annuum L. var. frutescens (L.) Kuntze) were sprayed with DHECD, EBR at 1 µM or distilled water (control). Plants were subjected to severe water stress (25% pot water capacity) for 5 days and their physiological effects and yield were investigated. The result showed that the applications of DHECD and EBR before the beginning of water stress could improve leaf water status determined by relative water content in plants grown under drought condition. The electrolyte leakage, lipid peroxidation level, and H2O2 production were significantly declined, while the accumulations of proline and total soluble sugar were increased in the treated plants. Moreover, the net photosynthesis (PN) was elevated due to the increases of stomatal conductance (gs) and intercellular CO2 concentration (Ci) after BR pretreatments under drought. In addition, applications of DHECD and EBR maintained all chlorophyll fluorescence parameters; Fv/Fm, Fv′/Fm′, ΦPSII, qP, and ETR, to remain the photosynthesis. As a result, shoot biomass, fruit yield and capsaicin level were considerably enhanced in the treated plants. DHECD showed better performance to maintain membrane integrity; however, EBR had more effect on the osmotic maintenance. The result also showed that pretreatment with BRs had little or no effect on well-watered plants. The study concluded that DHECD and EBR alleviated the impact of drought on physiological responses and consequently minimized yield loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号