首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenotypic differentiation of adventitial fibroblasts into myofibroblasts is an essential feature of vascular remodeling. The present study was undertaken to test the hypothesis that reactive oxygen species (ROS) are involved in rat adventitial fibroblast differentiation to myofibroblast. Activation of alpha-smooth muscle actin (alpha-SMA) was used as a marker of myofibroblast. Angiotensin II increased intracellular ROS in adventitial fibroblasts that was completely inhibited by the free radical scavenger NAC, the NAD(P)H oxidase inhibitor DPI, and transfection of antisense gp91phox oligonucleotides. Myofibroblast differentiation was prevented by inhibition of ROS generation with DPI, NAC, and antisense gp91phox as shown by decreased expression of alpha-SMA. Angiotensin II rapidly induced phosphorylation of p38 MAPK and JNK, both of which were inhibited by DPI, NAC, antisense gp91phox, and the selective AT1 receptor antagonist, losartan. Inhibiting p38MAPK with SB202190 or JNK with SP600125 also reduced angiotensin II-induced alpha-SMA expression. These findings demonstrate that angiotensin II induces adventitial fibroblast differentiation to myofibroblast via a pathway that involves NADPH oxidase generation of ROS and activation of p38MAPK and JNK pathways.  相似文献   

2.
Panaxydol, a polyacetylenic compound derived from Panax ginseng roots, has been shown to inhibit the growth of cancer cells. In this study, we demonstrated that panaxydol induced apoptosis preferentially in transformed cells with a minimal effect on non-transformed cells. Furthermore, panaxydol was shown to induce apoptosis through an increase in intracellular Ca2+ concentration ([Ca2+]i), activation of JNK and p38 MAPK, and generation of reactive oxygen species (ROS) initially by NADPH oxidase and then by mitochondria. Panaxydol-induced apoptosis was caspase-dependent and occurred through a mitochondrial pathway. ROS generation by NADPH oxidase was critical for panaxydol-induced apoptosis. Mitochondrial ROS production was also required, however, it appeared to be secondary to the ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the membrane translocation of regulatory p47phox and p67phox subunits and shown to be necessary for ROS generation by panaxydol treatment. Panaxydol triggered a rapid and sustained increase of [Ca2+]i, which resulted in activation of JNK and p38 MAPK. JNK and p38 MAPK play a key role in activation of NADPH oxidase, since inhibition of their expression or activity abrogated membrane translocation of p47phox and p67phox subunits and ROS generation. In summary, these data indicate that panaxydol induces apoptosis preferentially in cancer cells, and the signaling mechanisms involve a [Ca2+]i increase, JNK and p38 MAPK activation, and ROS generation through NADPH oxidase and mitochondria.  相似文献   

3.
Myeloperoxidase (MPO) is an important enzyme involved in the genesis and development of atherosclerosis. Vascular peroxidase 1 (VPO1) is a newly discovered member of the peroxidase family that is mainly expressed in vascular endothelial cells and smooth muscle cells and has structural characteristics and biological activity similar to those of MPO. Our specific aims were to explore the effects of VPO1 on endothelial cell apoptosis induced by oxidized low-density lipoprotein (ox-LDL) and the underlying mechanisms. The results showed that ox-LDL induced endothelial cell apoptosis and the expression of VPO1 in endothelial cells in a concentration- and time-dependent manner concomitant with increased intracellular reactive oxygen species (ROS) and hypochlorous acid (HOCl) generation, and up-regulated protein expression of the NADPH oxidase gp91phox subunit and phosphorylation of p38 MAPK. All these effects of ox-LDL were inhibited by VPO1 gene silencing and NADPH oxidase gp91phox subunit gene silencing or by pretreatment with the NADPH oxidase inhibitor apocynin or diphenyliodonium. The p38 MAPK inhibitor SB203580 or the caspase-3 inhibitor DEVD-CHO significantly inhibited ox-LDL-induced endothelial cell apoptosis, but had no effect on intracellular ROS and HOCl generation or the expression of NADPH oxidase gp91phox subunit or VPO1. Collectively, these findings suggest for the first time that VPO1 plays a critical role in ox-LDL-induced endothelial cell apoptosis and that there is a positive feedback loop between VPO1/HOCl and the now-accepted dogma that the NADPH oxidase/ROS/p38 MAPK/caspase-3 pathway is involved in ox-LDL-induced endothelial cell apoptosis.  相似文献   

4.
Delayed healing of corneal epithelial wounds is a serious complication in diabetes. Advanced glycation end products (AGEs) are intimately associated with the diabetic complications and are deleterious to the wound healing process. However, the effect of AGEs on corneal epithelial wound healing has not yet been evaluated. In the present study, we investigated the effect of AGE-modified bovine serum albumin (BSA) on corneal epithelial wound healing and its underlying mechanisms. Our data showed that AGE-BSA significantly increased the generation of intracellular ROS in telomerase-immortalized human corneal epithelial cells. However, the generation of intracellular ROS was completely inhibited by antioxidant N-acetylcysteine (NAC), anti-receptor of AGEs (RAGE) antibodies, or the inhibitor of NADPH oxidase. Moreover, AGE-BSA increased NADPH oxidase activity and protein expression of NADPH oxidase subunits, p22phox and Nox4, but anti-RAGE antibodies eliminated these effects. Furthermore, prevention of intracellular ROS generation using NAC or anti-RAGE antibodies rescued AGE-BSA-delayed epithelial wound healing in porcine corneal organ culture. In conclusion, our results demonstrated that AGE-BSA impaired corneal epithelial wound healing ex vivo. AGE-BSA increased intracellular ROS generation through NADPH oxidase activation, which accounted for the delayed corneal epithelial wound healing. These results may provide better insights for understanding the mechanism of delayed healing of corneal epithelial wounds in diabetes.  相似文献   

5.
The extracellular tissue penetrating protozoan parasite Entamoeba histolytica has been known to induce host cell apoptosis. However, the intracellular signaling mechanism used by the parasite to trigger apoptosis is poorly understood. In this study, we investigated the roles of reactive oxygen species (ROS), and of MAPKs in the Entamoeba-induced apoptosis of human neutrophils. The neutrophils incubated with live trophozoites of E. histolytica revealed a marked increase of receptor shedding of CD16 as well as phosphatidylserine (PS) externalization on the cell surface. The Entamoeba-induced apoptosis was effectively blocked by pretreatment of cells with diphenyleneiodonium chloride (DPI), a flavoprotein inhibitor of NADPH oxidase. A large amount of intracellular ROS was detected after exposure to viable trophozoites, and the treatment with DPI strongly inhibited the Entamoeba-induced ROS generation. However, a mitochondrial inhibitor rotenone did not attenuate the Entamoeba-induced ROS generation and apoptosis. Although E. histolytica strongly induced activation of ERK1/2 and p38 MAPK in neutrophils, the activation of ERK1/2 was closely associated with ROS-mediated apoptosis. Pretreatment of neutrophils with MEK1 inhibitor PD98059, but not p38 MAPK inhibitor SB202190, prevented Entamoeba-induced apoptosis. Moreover, DPI almost completely inhibited Entamoeba-induced phosphorylation of ERK1/2, but not phosphorylation of p38 MAPK. These results strongly suggest that NADPH oxidase-derived ROS-mediated activation of ERK1/2 is required for the Entamoeba-induced neutrophil apoptosis.  相似文献   

6.
Surfactin has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in surfactin-induced apoptosis remain poorly understood. The present study was undertaken to elucidate the underlying network of signaling events in surfactin-induced apoptosis of human breast cancer MCF-7 cells. In this study, surfactin caused reactive oxygen species (ROS) generation and the surfactin-induced cell death was prevented by antioxidants N-acetylcysteine (NAC) and catalase, suggesting involvement of ROS generation in surfactin-induced cell death. Surfactin induced a sustained activation of the phosphorylation of ERK1/2 and JNK, but not p38. Moreover, surfactin-induced cell death was reversed by PD98059 (an inhibitor of ERK1/2) and SP600125 (an inhibitor of JNK), but not by SB203580 (an inhibitor of p38). However, the phosphorylation of JNK rather than ERK1/2 activation by surfactin was blocked by NAC/catalase. These results suggest that the action of surfactin on MCF-7 cells was via ERK1/2 and JNK, but not via p38, and the ERK1/2 and JNK activation induce apoptosis through two independent signaling mechanisms. Surfactin triggered the mitochondrial/caspase apoptotic pathway indicated by enhanced Bax-to-Bcl-2 expression ratio, loss of mitochondrial membrane potential, cytochrome c release, and caspase cascade reaction. The NAC and SP600125 blocked these events induced by surfactin. Moreover, the general caspase inhibitor z-VAD-FMK inhibited the caspase-6 activity and exerted the protective effect against the surfactin-induced cell death. Taken together, these findings suggest that the surfactin induces apoptosis through a ROS/JNK-mediated mitochondrial/caspase pathway.  相似文献   

7.
CD70 is expressed in normal activated immune cells as well as in several types of tumors. It has been established that anti-CD70 mAb induces complement-dependent death of CD70(+) tumor cells, but how anti-CD70 mAb affects the intrinsic signaling is poorly defined. In this report, we show that ligation of CD70 expressed on EBV-transformed B cells using anti-CD70 mAb induced production of reactive oxygen species (ROS) and subsequent apoptosis. We observed an early expression of endoplasmic reticulum (ER) stress response genes that preceded the release of apoptotic molecules from the mitochondria and the cleavage of caspases. CD70-induced apoptosis was inhibited by pretreatment with the ER stress inhibitor salubrinal, ROS quencher N-acetylcysteine, and Ca(2+) chelator BAPTA. We supposed that ROS generation might be the first event of CD70-induced apoptosis because N-acetylcysteine blocked increases of ROS and Ca(2+), but BAPTA did not block ROS generation. We also found that CD70 stimulation activated JNK and p38 MAPK. JNK inhibitor SP600125 and p38 inhibitor SB203580 effectively blocked upregulation of ER stress-related genes and cleavage of caspases. Inhibition of ROS generation completely blocked phosphorylation of JNK and p38 MAPK and induction of ER stress-related genes. Taken together, we concluded that cross-linking of CD70 on EBV-transformed B cells triggered ER stress-mediated apoptosis via ROS generation and JNK and p38 MAPK pathway activation. Our report reveals alternate mechanisms of direct apoptosis through CD70 signaling and provides data supporting CD70 as a viable target for an Ab-based therapy against EBV-related tumors.  相似文献   

8.
ω‐Hydroxyundec‐9‐enoic acid (ω‐HUA), a plant secondary metabolite, exhibits anti‐fungal activity. However, its effect on breast cancer cells is unknown. Here, we investigated the anti‐ breast cancer activity of ω‐HUA and its underlying mechanism. Treatment of human breast cancer cell lines, MDA‐MB‐231 and MDA‐MB‐435, with ω‐HUA induced apoptotic cell death with increased cleaved caspase‐3 and poly (ADP‐ribose) polymerase (PARP) levels, and p38 and JNK phosphorylation. Inhibition of these mitogen‐activated protein kinase (MAPK) pathways using specific inhibitors or siRNA, for p38 and JNK, respectively, blocked the ω‐HUA‐induced apoptosis in a dose‐dependent manner. Moreover, pretreatment of the cells with antioxidant N‐acetyl cysteine (NAC) inhibited ω‐HUA‐induced increased reactive oxygen species (ROS) levels, cleaved caspase‐3 and cleaved PARP, and phosphorylated JNK, phosphorylated p38, and increased cell viability and colony‐forming ability. MDA‐MB‐231 xenograft model showed that the ω‐HUA‐treated group exhibited greater tumor regression and significantly reduced tumor weight compared to that exhibited by the vehicle‐administered group. Collectively, ω‐HUA‐induced intracellular ROS generation induced breast cancer cell apoptosis through JNK and p38 signaling pathway activation, resulting in tumor regression. The results suggested that ω‐HUA is an effective supplement for inhibiting human breast cancer growth.  相似文献   

9.
Kim WH  Goo SY  Shin MH  Chun SJ  Lee H  Lee KH  Park SJ 《Cellular immunology》2008,253(1-2):81-91
Vibrio vulnificus, a pathogenic bacterium causing primary septicemia, exhibited cytotoxicity towards Jurkat cells of T-lymphocytes through intracellular reactive oxygen species (ROS) production. Pretreatment of Jurkat T-cells with diphenyleneiodonium chloride (DPI) abolished V. vulnificus-induced ROS generation and bacterial ability to cause cell death. Jurkat T-cells expressing dominant-negative protein of Rac subunit of NADPH oxidase (NOX) did not show increased ROS production and cell death by V. vulnificus. Vibrio vulnificus also triggered phosphorylation of mitogen-activated protein kinases (MAPKs) including p38 and ERK1/2 in Jurkat T-cells. Experiments using inhibitors or small interfering RNAs for each MAPK showed that both MAPKs are involved in V. vulnificus-induced cell death. DPI only blocked the phosphorylation of p38 MAPK in Jurkat T-cells exposed by V. vulnificus. This study demonstrates that V. vulnificus induces death of Jurkat T-cells via ROS-dependent activation of p38 MAPK, and that NOX plays a major role in ROS generation in V. vulnificus-exposed cells.  相似文献   

10.
In addition to ultraviolet radiation, human skin is also exposed to infrared radiation (IR) from natural sunlight. IR typically increases the skin temperature. This study examined whether or not heat shock-induced ROS stimulates MMPs in keratinocyte HaCaT cells. In HaCaT cells, heat shock was found to increase the intracellular ROS levels, including hydrogen peroxide and superoxide. The heat shock treatment induced MMP-1 and MMP-9, but not MMP-2, at the mRNA and protein levels. Moreover, heat shock caused the rapid activation of the three distinct MAPKs, ERK, JNK, and p38 kinase. The heat shock-induced expression of MMP-1 and MMP-9 was significantly suppressed by a pretreatment with the antioxidant NAC or catalase. On the other hand, SOD inhibited heat shock-induced activity of MMP-9 induction, but not MMP-1. A pretreatment with NAC or catalase, but not SOD, attenuated the phosphorylation of ERK, JNK, and p38 kinase by heat shock. The potential sites of ROS generation by heat shock along with its role in the heat shock-induced expression of MMP-1 and MMP-9 were next analyzed. These results indicate that heat shock-induced ROS is promoted via NADPH oxidase, xanthine oxidase, and mitochondria. Indeed, the NADPH oxidase and xanthine oxidase activities were increased by heat shock. Overall, the ROS produced by heat shock may play an important role in the heat shock-induced activation of MAPKs, which can induce MMP-1 and-9 expressions.  相似文献   

11.
We investigated mitogen-activated protein kinase (MAPK) pathways as well as reactive oxygen species (ROS) in olaquindox-induced apoptosis. Exposure of HepG2 cells to olaquindox resulted in the phosphorylation of p38 MAPK and c-Jun N-terminal kinases (JNK). To confirm the role of p38 MAPK and JNK, HepG2 cells were pretreated with MAPKs-specific inhibitors prior to olaquindox treatment. Olaquindox-induced apoptosis was significantly potentiated by the JNK inhibitor (SP600125) or the p38 MAPK inhibitor (SB203580). Furthermore, we observed that olaquindox treatment led to ROS generation and that olaquindox-induced apoptosis and ROS generation were both significantly reduced by the antioxidants, superoxide dismutase and catalase. In addition, the levels of phosphorylation of JNK, but not p38 MAPK, were significantly suppressed after pretreatment of the antioxidants, while inhibition of the activations of JNK or p38 MAPK had no effect on ROS generation. This result suggested that ROS may be the upstream mediator for the activation of JNK. Conclusively, our results suggested that apoptosis in response to olaquindox treatment in HepG2 cells might be suppressed through p38 MAPK and ROS–JNK pathways.  相似文献   

12.

Background

Among a variety of inflammatory mediators, visfatin is a proinflammatory adipocytokine associated with inflammatory reactions in obesity, metabolic syndrome, chronic inflammatory disease, and autoimmune disease. However, the biological role of visfatin in secretion of major mucins in human airway epithelial cells has not been reported. Therefore, this study was conducted in order to investigate the effect and the brief signaling pathway of visfatin on MUC8 and MUC5B expression in human airway epithelial cells.

Results

Visfatin significantly induced MUC8 and MUC5B expression. Visfatin significantly activated phosphorylation of p38 MAPK. Treatment with SB203580 (p38 MAPK inhibitor) and knockdown of p38 MAPK by siRNA significantly blocked visfatin-induced MUC8 and MUC5B expression.Visfatin significantly increased ROS formation. Treatment with SB203580 significantly attenuated visfatin-induced ROS formation. Treatment with NAC (ROS scavenger) and DPI (NADPH oxidase inhibitor) significantly attenuated visfatin-induced MUC8 and MUC5B expression. However, treatment with NAC and DPI did not attenuate visfatin-activated phosphorylation of p38 MAPK. Visfatin significantly activated the phosphorylation of NF-κB. Treatment with PDTC (NF-κB inhibitor) significantly attenuated visfatin-induced MUC8 and MUC5B expression.

Conclusions

These results suggest that visfatin induces MUC8 and MUC5B expression through p38 MAPK/ROS/NF-κB signaling pathway in human airway epithelial cells.  相似文献   

13.
Up-regulation of cytosolic phospholipase A(2) (cPLA(2)) by cigarette smoke extract (CSE) may play a critical role in airway inflammatory diseases. However, the mechanisms underlying CSE-induced cPLA(2) expression in human tracheal smooth muscle cells (HTSMCs) were not completely understood. Here, we demonstrated that CSE-induced cPLA(2) protein and mRNA expression was inhibited by pretreatment with the inhibitors of AP-1 (tanshinone IIA) and p300 (garcinol) or transfection with siRNAs of c-Jun, c-Fos, and p300. Moreover, CSE also induced c-Jun and c-Fos expression, which were inhibited by pretreatment with the inhibitors of NADPH oxidase (diphenyleneiodonium chloride and apocynin) and the ROS scavenger (N-acetyl-L-cysteine) or transfection with siRNAs of p47(phox) and NADPH oxidase (NOX)2. CSE-induced c-Fos expression was inhibited by pretreatment with the inhibitors of MEK1 (U0126) and p38 MAPK (SB202190) or transfection with siRNAs of p42 and p38. CSE-induced c-Jun expression and phosphorylation were inhibited by pretreatment with the inhibitor of JNK1/2 (SP600125) or transfection with JNK2 siRNA. CSE-stimulated p300 phosphorylation was inhibited by pretreatment with the inhibitors of NADPH oxidase and JNK1/2. Furthermore, CSE-induced p300 and c-Jun complex formation was inhibited by pretreatment with diphenyleneiodonium chloride, apocynin, N-acetyl-L-cysteine or SP600125. These results demonstrated that CSE-induced cPLA(2) expression was mediated through NOX2-dependent p42/p44 MAPK and p38 MAPK/c-Fos and JNK1/2/c-Jun/p300 pathways in HTSMCs.  相似文献   

14.
The p38 MAPK pathway controls critical premitochondrial events culminating in apoptosis of UVB-irradiated human keratinocytes, but the upstream mediators of this stress signal are not completely defined. This study shows that in human keratinocytes exposed to UVB the generation of reactive oxygen species (ROS) acts as a mediator of apoptosis signal regulating kinase-1 (Ask-1), a redox-sensitive mitogen-activated protein kinase kinase kinase (MAP3K) regulating p38 MAPK and JNK cascades. The NADPH oxidase antagonist diphenylene iodonium chloride and the EGFR inhibitor AG1487 prevent UVB-mediated ROS generation, the activation of the Ask-1-p38 MAPK stress response pathway, and apoptosis, evidencing the link existing between the early plasma membrane-generated ROS and the activation of a lethal cascade initiated by Ask-1. Consistent with this, Ask-1 overexpression considerably sensitizes keratinocytes to UVB-induced mitochondrial apoptosis. Although the JNK pathway is also stimulated after UVB, the killing effect of Ask-1 overexpression is reverted by p38 MAPK inhibition, suggesting that Ask-1 exerts its lethal effects mainly through the p38 MAPK pathway. Moreover, p38alpha(-/-) murine embryonic fibroblasts are protected from UVB-induced apoptosis even if JNK activation is fully preserved. These results argue for an important role of the UVB-generated ROS as mediators of the Ask-1-p38 MAPK pathway that, by culminating in apoptosis, restrains the propagation of potentially mutagenic keratinocytes.  相似文献   

15.
16.
Khz is a compound derived from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia that inhibits the growth of cancer cells. The results of the present study show that Khz induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz induced apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating JNK to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-induced apoptosis was caspase-dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the translocation of regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz. Khz triggered a rapid and sustained increase in [Ca2+]i, which activated JNK. JNK plays a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. In summary, these data indicate that Khz preferentially induces apoptosis in cancer cells, and the signaling mechanisms involve an increase in [Ca2+]i, JNK activation, and ROS generation via NADPH oxidase and mitochondria.  相似文献   

17.
The hierarchy of events accompanying induction of apoptosis by the microtubule inhibitor docetaxel was investigated in HL-60 human leukemia cells. Treatment of HL-60 cells with docetaxel resulted in the production of reactive oxygen species (ROS), activation of caspase-3 (-like) protease, c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) activation, bcl-2 phosphorylation and apoptosis. Docetaxel elicited ROS production from NADPH oxidase as demonstrated by specific oxidase inhibitor diphenylene iodonium (DPI). ROS mediated the caspase-3 activation and apoptosis in HL-60 cells. The caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) effectively inhibited JNK/SAPK activation, bcl-2 phosphorylation and partially attenuated the ROS production induced by docetaxel. Docetaxel-induced bcl-2 phosphorylation was completely blocked by expression of dominant negative JNK or the JNK/SAPK inhibitor SP600125. Overexpression of bcl-2 partially prevented docetaxel-mediated ROS production and subsequent caspase-3 activation, thereby inhibiting apoptotic cell death. It is thus conferred that such sequent events as ROS production, caspase activation, JNK/SAPK activation, bcl-2 phosphorylation and the further generation of ROS should be parts of an amplification loop to increase caspase activity, thereby facilitating the apoptotic cell death process.  相似文献   

18.
Cardiac tissues express constitutively an NADPH oxidase, which generates reactive oxygen species (ROS) and is involved in redox signaling. Myocardial metabolism generates abundant adenosine, which binds to its receptors and plays important roles in cardiac function. The adenosine A2A receptor (A2AR) has been found to be expressed in cardiac myocytes and coronary endothelial cells. However, the role of the A2AR in the regulation of cardiac ROS production remains unknown. We found that knockout of A2AR significantly decreased (39+/-8%) NADPH-dependent O2- production in mouse hearts compared to age (10 weeks)-matched wild-type controls. This was accompanied by a significant decrease in Nox2 (a catalytic subunit of NADPH oxidase) protein expression, and down-regulation of ERK1/2, p38MAPK, and JNK phosphorylation (all P<0.05). In wild-type mice, intraperitoneal injection of the selective A2AR antagonist SCH58261 (3-10 mg/kg body weight for 90 min) inhibited phosphorylation of p47phox (a regulatory subunit of Nox2), which was accompanied by a down-regulated cardiac ROS production (48+/-8%), and decreased JNK and ERK1/2 activation by 54+/-28% (all P<0.05). In conclusion, A2AR through MAPK signaling regulates p47phox phosphorylation and cardiac ROS production by NADPH oxidase. Modulation of A2AR activity may have potential therapeutic applications in controlling ROS production by NADPH oxidase in the heart.  相似文献   

19.
20.
Vascular hyperpermeability associated with retinal vascular leakage is known to occur in patients with diabetes, and contributes to endothelial barrier dysfunction. This study aimed to examine the effect of pigment epithelium-derived factor (PEDF) on advanced glycation end products (AGEs)-induced endothelial cell permeability. Cultured porcine retinal endothelial cell (PREC) was exposed to AGE-modified bovine serum albumin (AGE-BSA) and the endothelial cell permeability was detected by measuring the flux of rhodamine B isothiocyanate (RITC)-dextran across the PREC monolayers. We found that AGE-BSA increased the RITC-dextran flux across a PREC monolayer and PEDF blocked the solute flux induced by AGE-BSA. In order to explore the underlying signaling mechanism of PEDF on the inhibitory effect of AGE-BSA-induced permeability, we demonstrate that PEDF could inhibit the AGE-BSA-induced permeability via phosphatidylinositol 3-kinase (PI3K)/Akt pathway. AGE-BSA also increased the endothelial cell permeability by stimulating the reactive oxygen species (ROS) generation via NADPH oxidase activity and Akt phosphorylation at Ser473. PEDF decreased ROS generation in AGE-BSA-exposed endothelial cells by suppressing the NADPH oxidase activity via down regulating the phosphorylation of p22PHOx at Thr147. This led to blockade of AGE-induction of PI3K/Akt activation in permeability. Furthermore, PEDF inhibited the AGE-BSA-induced permeability by increased expression of tight junction protein zona occludens-1(ZO-1), co-incident with an increase in barrier properties of endothelial monolayer. Together, our results indicate that PEDF could possibly act as potent anti-permeability molecule by targeting the PI3K/Akt signaling pathway by suppressing if NADPH oxidase mediated ROS generation and ZO-1 tight junction protein and it offers potential targets to inhibit the ocular related diseases such as diabetic retinopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号