首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric deposition of nutrients to the North Atlantic Basin   总被引:18,自引:6,他引:12  
Atmospheric chemical models are used to estimate the deposition rate of various inorganic oxides of nitrogen (NOy), reduced nitrogen species (NHx) and mineral dust to the North Atlantic Ocean (NAO). The estimated deposition of NOy to the NAO (excluding the coastal ocean) and the Caribbean is 360 × 109 Moles-N m–2 yr–1 (5.0 Tg N); this is equivalent to about 13% of the estimated global emission rate (natural and anthropogenic) and a quarter of the emission rate from sources in North America and Europe. In the case of NHx, 258 Moles-N m–2 yr–1 (3.6 Tg N) are deposited to the NAO and the Caribbean; this is about 6% of the global continental emissions. There is relatively little data on the deposition rate of organic nitrogen species; nonetheless, this evidence suggests that concentrations and deposition rates are comparable to those for inorganic nitrogen.Because of anthropogenic emissions, the present-day deposition rate of NOy to the NAO is about five times greater than pre-industrial times largely due to emissions from energy production and biomass burning. The present-day emissions of NHx from continental anthropogenic sources are about four-to-five times greater than natural sources, mostly due to the impact of emissions from animal wastes associated with food production. Indeed, present-day emissions of NHx from animal waste are estimated to be about 10 times greater than the pre-human era. The deposition rate of mineral dust to the NAO is about 170 Tg yr–1; deposited with the dust (assuming average crustal abundances) is about 6 Tg yr–1 of Fe and 0.2 Tg yr–1 of P. Dust deposition in the NAO is almost completely attributable to transport from North African sources; a substantial fraction of the dust over the NAO is probably mobilized as a consequence of land use practices in arid regions and, consequently, it should be regarded as a pollutant.  相似文献   

2.
Contemporary and pre-industrial global reactive nitrogen budgets   总被引:56,自引:6,他引:50  
Increases and expansion of anthropogenic emissions of both oxidized nitrogen compounds, NOx, and a reduced nitrogen compound, NH3, have driven an increase in nitrogen deposition. We estimate global NOx and NH3 emissions and use a model of the global troposphere, MOGUNTIA, to examine the pre-industrial and contemporary quantities and spatial patterns of wet and dry NOy and NHx deposition. Pre-industrial wet plus dry NOx and NHx deposition was greatest for tropical ecosystems, related to soil emissions, biomass burning and lightning emissions. Contemporary NOy+NHx wet and dry deposition onto Northern Hemisphere (NH) temperate ecosystems averages more than four times that of preindustrial N deposition and far exceeds contemporary tropical N deposition. All temperate and tropical biomes receive more N via deposition today than pre-industrially. Comparison of contemporary wet deposition model estimates to measurements of wet deposition reveal that modeled and measured wet deposition for both NO 3 and NH 4 + were quite similar over the U.S. Over Western Europe, the model tended to underestimate wet deposition of NO 3 and NH 4 + but bulk deposition measurements were comparable to modeled total deposition. For the U.S. and Western Europe, we also estimated N emission and deposition budgets. In the U.S., estimated emissions exceed interpolated total deposition by 3-6 Tg N, suggesting that substantial N is transported offshore and/or the remote and rural location of the sites may fail to capture the deposition of urban emissions. In Europe, by contrast, interpolated total N deposition balances estimated emissions within the uncertainty of each.Abbreviations EMEP European Monitoring and Evaluation Program - GEIA Global Emissions Inventory Activity - NADP/NTN National Atmospheric Deposition Program/National Trends Network in the US - NH Northern Hemisphere - NHx=NH3+NH + 4 NOx=NO+NO2 NOy total odd nitrogen=NOx+HNO3+HONO+HO2NO2+NO3+radical (NO3 .)+Peroxyacetyl nitrates+N2O5+organic nitrates - SH Southern Hemisphere - Gg 109 g - Tg 1012 g  相似文献   

3.
Sutton  M.A.  Milford  C.  Nemitz  E.  Theobald  M.R.  Hill  P.W.  Fowler  D.  Schjoerring  J.K.  Mattsson  M.E.  Nielsen  K.H.  Husted  S.  Erisman  J.W.  Otjes  R.  Hensen  A.  Mosquera  J.  Cellier  P.  Loubet  B.  David  M.  Genermont  S.  Neftel  A.  Blatter  A.  Herrmann  B.  Jones  S.K.  Horvath  L.  Führer  E.C.  Mantzanas  K.  Koukoura  Z.  Gallagher  M.  Williams  P.  Flynn  M.  Riedo  M. 《Plant and Soil》2001,228(1):131-145
A new study to address the biosphere-atmosphere exchange of ammonia (NH3) with grasslands is applying a European transect to interpret NH3 fluxes in relation to atmospheric conditions, grassland management and soil chemistry. Micrometeorological measurements using the aerodynamic gradient method (AGM) with continuous NH3 detectors are supported by bioassays of the NH3 `stomatal compensation point' (s). Relaxed eddy accumulation (REA) is also applied to enable flux measurements at one height; this is relevant to help address flux divergence due to gas-particle inter-conversion or the presence of local sources in a landscape.Continuous measurements that contrast intensively managed grasslands with semi-natural grasslands allow a scaling up from 15 min values to seasonal means. The measurements demonstrate the bi-directional nature of NH3 fluxes, with typically daytime emission and small nocturnal deposition. They confirm the existence of enhanced NH3 emissions (e.g. 30 g N ha–1 d–1) following cutting of intensively managed swards. Further increased emissions follow fertilization with NH4NO3 (typically 70 g N ha–1 d–1). Measurements using REA support these patterns, but require a greater analytical precision than with the AGM.The results are being used to develop models of NH3 exchange. `Canopy compensation point' resistance models reproduce bi-directional diurnal patterns, but currently lack a mechanistic basis to predict changes in relation to grassland phenology. An advance proposal here is the coupling of s to dynamic models of grassland C–N cycling, and a relationship with modelled plant substrate-N is shown. Applications of the work include incorporation of the resistance models in NH3 dispersion modelling and assessment of global change scenarios.  相似文献   

4.
Soil nitrogen (N) budgets are used in a global, distributed flow-path model with 0.5° × 0.5° resolution, representing denitrification and N2O emissions from soils, groundwater and riparian zones for the period 1900–2000 and scenarios for the period 2000–2050 based on the Millennium Ecosystem Assessment. Total agricultural and natural N inputs from N fertilizers, animal manure, biological N2 fixation and atmospheric N deposition increased from 155 to 345 Tg N yr−1 (Tg = teragram; 1 Tg = 1012 g) between 1900 and 2000. Depending on the scenario, inputs are estimated to further increase to 408–510 Tg N yr−1 by 2050. In the period 1900–2000, the soil N budget surplus (inputs minus withdrawal by plants) increased from 118 to 202 Tg yr−1, and this may remain stable or further increase to 275 Tg yr−1 by 2050, depending on the scenario. N2 production from denitrification increased from 52 to 96 Tg yr−1 between 1900 and 2000, and N2O–N emissions from 10 to 12 Tg N yr−1. The scenarios foresee a further increase to 142 Tg N2–N and 16 Tg N2O–N yr−1 by 2050. Our results indicate that riparian buffer zones are an important source of N2O contributing an estimated 0.9 Tg N2O–N yr−1 in 2000. Soils are key sites for denitrification and are much more important than groundwater and riparian zones in controlling the N flow to rivers and the oceans.  相似文献   

5.
Excessive ammonia (NH3) emitted from nitrogen (N) fertilizer applications in global croplands plays an important role in atmospheric aerosol production, resulting in visibility reduction and regional haze. However, large uncertainty exists in the estimates of NH3 emissions from global and regional croplands, which utilize different data and methods. In this study, we have coupled a process‐based Dynamic Land Ecosystem Model (DLEM) with the bidirectional NH3 exchange module in the Community Multiscale Air‐Quality (CMAQ) model (DLEM‐Bi‐NH3) to quantify NH3 emissions at the global and regional scale, and crop‐specific NH3 emissions globally at a spatial resolution of 0.5° × 0.5° during 1961–2010. Results indicate that global NH3 emissions from N fertilizer use have increased from 1.9 ± 0.03 to 16.7 ± 0.5 Tg N/year between 1961 and 2010. The annual increase of NH3 emissions shows large spatial variations across the global land surface. Southern Asia, including China and India, has accounted for more than 50% of total global NH3 emissions since the 1980s, followed by North America and Europe. Rice cultivation has been the largest contributor to total global NH3 emissions since the 1990s, followed by corn and wheat. In addition, results show that empirical methods without considering environmental factors (constant emission factor in the IPCC Tier 1 guideline) could underestimate NH3 emissions in context of climate change, with the highest difference (i.e., 6.9 Tg N/year) occurring in 2010. This study provides a robust estimate on global and regional NH3 emissions over the past 50 years, which offers a reference for assessing air quality consequences of future nitrogen enrichment as well as nitrogen use efficiency improvement.  相似文献   

6.
Global nitrogen fixation contributes 413 Tg of reactive nitrogen (Nr) to terrestrial and marine ecosystems annually of which anthropogenic activities are responsible for half, 210 Tg N. The majority of the transformations of anthropogenic Nr are on land (240 Tg N yr−1) within soils and vegetation where reduced Nr contributes most of the input through the use of fertilizer nitrogen in agriculture. Leakages from the use of fertilizer Nr contribute to nitrate (NO3) in drainage waters from agricultural land and emissions of trace Nr compounds to the atmosphere. Emissions, mainly of ammonia (NH3) from land together with combustion related emissions of nitrogen oxides (NOx), contribute 100 Tg N yr−1 to the atmosphere, which are transported between countries and processed within the atmosphere, generating secondary pollutants, including ozone and other photochemical oxidants and aerosols, especially ammonium nitrate (NH4NO3) and ammonium sulfate (NH4)2SO4. Leaching and riverine transport of NO3 contribute 40–70 Tg N yr−1 to coastal waters and the open ocean, which together with the 30 Tg input to oceans from atmospheric deposition combine with marine biological nitrogen fixation (140 Tg N yr−1) to double the ocean processing of Nr. Some of the marine Nr is buried in sediments, the remainder being denitrified back to the atmosphere as N2 or N2O. The marine processing is of a similar magnitude to that in terrestrial soils and vegetation, but has a larger fraction of natural origin. The lifetime of Nr in the atmosphere, with the exception of N2O, is only a few weeks, while in terrestrial ecosystems, with the exception of peatlands (where it can be 102–103 years), the lifetime is a few decades. In the ocean, the lifetime of Nr is less well known but seems to be longer than in terrestrial ecosystems and may represent an important long-term source of N2O that will respond very slowly to control measures on the sources of Nr from which it is produced.  相似文献   

7.
Although human excreta as a NH3 source has been recognized globally, this source has never been quantitatively determined in cities, hampering efforts to fully assess the causes of urban air pollution. In the present study, the exhausts of 15 ceiling ducts from collecting septic tanks in 13 buildings with 6 function types were selected to quantify NH3 emission rates in the megacity of Shanghai. As a comparison, the ambient NH3 concentrations across Shanghai were also measured at 13 atmospheric monitoring sites. The concentrations of NH3 in the ceiling ducts (28092661+5803 μg m-3) outweigh those of the open air (~10 μg m-3) by 2–3 orders of magnitude, and there is no significant difference between different seasons. δ15N values of NH3 emitted from two ceiling ducts are also seasonally consistent, suggesting that human excreta may be a stable source of NH3 in urban areas. The NH3 concentration levels were variable and dependent on the different building types and the level of human activity. NH3 emission rates of the six residential buildings (RBNH3) were in agreement with each other. Taking occupation time into account, we confined the range of the average NH3 emission factor for human excreta to be 2–4 times (with the best estimate of 3 times) of the averaged RBNH3 of 66.0±58.9 g NH3 capita-1 yr-1. With this emission factor, the population of ~21 million people living in the urban areas of Shanghai annually emitted approximately 1386 Mg NH3, which corresponds to over 11.4% of the total NH3 emissions in the Shanghai urban areas. The spatial distribution of NH3 emissions from human excreta based on population data was calculated for the city of Shanghai at a high-resolution (100×100 m). Our results demonstrate that human excreta should be included in official ammonia emission inventories.  相似文献   

8.
Nitrogen (N) deposition has increased significantly globally since the industrial revolution. Previous studies on the response of gaseous emissions to N deposition have shown controversial results, pointing to the system-specific effect of N addition. Here we conducted an N addition experiment in a temperate natural forest in northeastern China to test how potential changes in N deposition alter soil N2O emission and its sources from nitrification and denitrification. Soil N2O emission was measured using closed chamber method and a separate incubation experiment using acetylene inhibition method was carried out to determine denitrification fluxes and the contribution of nitrification and denitrification to N2O emissions between Jul. and Oct. 2012. An NH4NO3 addition of 50 kg N/ha/yr significantly increased N2O and N2 emissions, but their “pulse emission” induced by N addition only lasted for two weeks. Mean nitrification-derived N2O to denitrification-derived N2O ratio was 0.56 in control plots, indicating higher contribution of denitrification to N2O emissions in the study area, and this ratio was not influenced by N addition. The N2O to (N2+N2O) ratio was 0.41–0.55 in control plots and was reduced by N addition at one sampling time point. Based on this short term experiment, we propose that N2O and denitrification rate might increase with increasing N deposition at least by the same fold in the future, which would deteriorate global warming problems.  相似文献   

9.
Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen–carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001–2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr−1 (1.9 Pg C yr−1), of which 10 Tg N yr−1 (0.2 Pg C yr−1) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen–carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr−1 per 1°C degree climate warming) will add an important long-term climate forcing.  相似文献   

10.
Mosier  Arvin R 《Plant and Soil》2001,228(1):17-27
Crop and livestock agricultural production systems are important contributors to local, regional and global budgets of NH3, NOx (NO + NO2) and N2O. Emissions of NH3 and NOx (which are biologically and chemically active) into the atmosphere serve to redistribute fixed N to local and regional aquatic and terrestrial ecosystems that may otherwise be disconnected from the sources of the N gases. The emissions of NOx also contribute to local elevated ozone concentrations while N2O emissions contribute to global greenhouse gas accumulation and to stratospheric ozone depletion.Ammonia is the major gaseous base in the atmosphere and serves to neutralize about 30% of the hydrogen ions in the atmosphere. Fifty to 75% of the 55 Tg N yr–1 NH3 from terrestrial systems is emitted from animal and crop-based agriculture from animal excreta and synthetic fertilizer application. About half of the 50 Tg N yr–1 of NOx emitted from the earth surface annually arises from fossil fuel combustion and the remainder from biomass burning and emissions from soil. The NOx emitted, principally as nitric oxide (NO), reacts rapidly in the atmosphere and in a complex cycle with light, ozone and hydrocarbons, and produces nitric acid and particulate nitrate. These materials can interact with plants and the soil locally or be transported form the site and interact with atmospheric particulate to form aerosols. These salts and aerosols return to fertilize terrestrial and aquatic systems in wet and dry deposition. A small fraction of this N may be biologically converted to N2O. About 5% of the total atmospheric greenhouse effect is attributed to N2O from which 70% of the annual global anthropogenic emissions come from animal and crop production.The coupling of increased population with a move of a large sector of the world population to diets that require more energy and N input, will lead to continued increases in anthropogenic input into the global N cycle. This scenario suggests that emissions of NH3, NOx and N2O from agricultural systems will continue to increase and impact global terrestrial and aquatic systems, even those far removed from agricultural production, to an ever growing extent, unless N resources are used more efficiently or food consumption trends change.  相似文献   

11.
Our understanding and quantification of global soil nitrous oxide (N2O) emissions and the underlying processes remain largely uncertain. Here, we assessed the effects of multiple anthropogenic and natural factors, including nitrogen fertilizer (N) application, atmospheric N deposition, manure N application, land cover change, climate change, and rising atmospheric CO2 concentration, on global soil N2O emissions for the period 1861–2016 using a standard simulation protocol with seven process‐based terrestrial biosphere models. Results suggest global soil N2O emissions have increased from 6.3 ± 1.1 Tg N2O‐N/year in the preindustrial period (the 1860s) to 10.0 ± 2.0 Tg N2O‐N/year in the recent decade (2007–2016). Cropland soil emissions increased from 0.3 Tg N2O‐N/year to 3.3 Tg N2O‐N/year over the same period, accounting for 82% of the total increase. Regionally, China, South Asia, and Southeast Asia underwent rapid increases in cropland N2O emissions since the 1970s. However, US cropland N2O emissions had been relatively flat in magnitude since the 1980s, and EU cropland N2O emissions appear to have decreased by 14%. Soil N2O emissions from predominantly natural ecosystems accounted for 67% of the global soil emissions in the recent decade but showed only a relatively small increase of 0.7 ± 0.5 Tg N2O‐N/year (11%) since the 1860s. In the recent decade, N fertilizer application, N deposition, manure N application, and climate change contributed 54%, 26%, 15%, and 24%, respectively, to the total increase. Rising atmospheric CO2 concentration reduced soil N2O emissions by 10% through the enhanced plant N uptake, while land cover change played a minor role. Our estimation here does not account for indirect emissions from soils and the directed emissions from excreta of grazing livestock. To address uncertainties in estimating regional and global soil N2O emissions, this study recommends several critical strategies for improving the process‐based simulations.  相似文献   

12.
Agricultural activities have greatly altered the global nitrogen (N) cycle and produced nitrogenous gases of environmental significance. More than half of all chemical N fertilizer produced globally is used in crop production in East, Southeast and South Asia, where rice is central to nutrition. Emissions of nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) from croplands in this region were estimated by considering background emission and emissions resulting from N added to croplands, including chemical N, animal manure, biologically fixed N and N in crop residues returned to fields. Background emission fluxes of N2O and NO from croplands were estimated to be 1.22 and 0.57 kg N ha?1 yr?1, respectively. Separate fertilizer‐induced emission factors were estimated for upland fields and rice fields. Total N2O emission from croplands in the study region was estimated to be 1.19 Tg N yr?1, with 43% contributed by background emissions. The average fertilizer‐induced N2O emission, however, accounts for only 0.93% of the applied N, which is less than the default IPCC value of 1.25%, because of the low emission factor from paddy fields. Total NO emission was 591 Gg N yr?1 in the study region, with 40% from background emissions. The average fertilizer‐induced NO emission factor was 0.48%. Total NH3 emission was estimated to be 11.8 Tg N yr?1. The use of urea and ammonium bicarbonate and the cultivation of rice led to a high average NH3 loss rate from chemical N fertilizer in the study region. Emissions were displayed at a 0.5° × 0.5° resolution with the use of a global landuse database.  相似文献   

13.
Cryptogamic covers, which comprise some of the oldest forms of terrestrial life on Earth (Lenton & Huntingford, 2003 ), have recently been found to fix large amounts of nitrogen and carbon dioxide from the atmosphere (Elbert et al., 2012 ). Here we show that they are also greenhouse gas sources with large nitrous oxide (N2O) and small methane (CH4) emissions. Whilst N2O emission rates varied with temperature, humidity, and N deposition, an almost constant ratio with respect to respiratory CO2 emissions was observed for numerous lichens and bryophytes. We employed this ratio together with respiration data to calculate global and regional N2O emissions. If our laboratory measurements are typical for lichens and bryophytes living on ground and plant surfaces and scaled on a global basis, we estimate a N2O source strength of 0.32–0.59 Tg year?1 for the global N2O emissions from cryptogamic covers. Thus, our emission estimate might account for 4–9% of the global N2O budget from natural terrestrial sources. In a wide range of arid and forested regions, cryptogamic covers appear to be the dominant source of N2O. We suggest that greenhouse gas emissions associated with this source might increase in the course of global change due to higher temperatures and enhanced nitrogen deposition.  相似文献   

14.
A global budget for atmospheric NH3   总被引:8,自引:3,他引:5  
We provide an assessment of the global sources of NH3 in the atmosphere, which indicates an annual flux of about 75 Tg of N as NH3. The emissions from land are dominated by the release of NH3 during the hydrolysis of urea from the urine of domestic animals (32 TgN/yr) and by emanations from soils in unmanaged ecosystems (10 TgN/yr) and from fertilized agricultural soils (9 TgN/yr). Emissions from the sea surface may approach 13 TgN/yr. The total annual source of NH3 is in reasonable agreement with estimates of global NH 4 + deposition from the atmosphere, the major fate of atmospheric NH3. As an alkaline atmospheric species, NH3 emitted to the atmosphere each year can neutralize only about 32% of the annual production of H+ in the atmosphere from natural and anthropogenic sources.  相似文献   

15.

Purpose

Characterization factors (CFs) quantifying the potential impact of acidifying emissions on inland aquatic environments in life cycle assessment are typically available on a generic level. The lack of spatial differentiation may weaken the relevance of generic CFs since it was shown that regional impact categories such as aquatic acidification were influenced by the surroundings of the emission location. This paper presents a novel approach for the development of spatially differentiated CFs at a global scale for the aquatic acidification impact category.

Methods

CFs were defined as the change in relative decrease of lake fish species richness due to a change in acidifying chemicals emissions. The characterization model includes the modelling steps linking emission to atmospheric acid deposition (atmospheric fate factor) change, which lead to lake H+ concentration (receiving environment fate factor) change and a decrease in relative fish species richness (effect factor). We also evaluated the significance of each factor (i.e. atmospheric fate, receiving environment fate and effects) to the overall CFs spatial variability and parameter uncertainty.

Results and discussion

The highest CFs were found for emissions occurring in Canada, Scandinavia and the northern central Asia because of the extensive lake areas in these regions (lake areas being one of the parameters of the CFs; the bigger the lake areas, the higher the CFs). The CFs’ spatial variability ranged over 5, 6 and 8 orders of magnitude for NOx, SO2 and NH3 emissions, respectively. We found that the aquatic receiving environment fate factor is the dominant contributor to the overall spatial variability of the CFs, while the effect factors contributed to 98 % of the total parameter uncertainty.

Conclusions

The resulting characterization model and factors enable a consistent evaluation of spatially explicit acidifying emissions impacts at the global scale.  相似文献   

16.
Cropland soil is an important source of atmospheric nitric oxide (NO) and ammonia (NH3). Chinese croplands are characterized by intensive management, but limited information is available with regard to NO emissions from croplands in China and NH3 emissions in south China. In this study, a mesocosm experiment was conducted to measure NO and NH3 emissions from a typical vegetable-land soil in the Pearl River Delta following the applications of 150 kg N ha−1 as urea, ammonium nitrate (AN) and ammonium bicarbonate (ABC), respectively. Over the sampling period after fertilization (72 days for NO and 39 days for NH3), mean NO fluxes (± standard error of three replicates) in the control and urea, AN and ABC fertilized mesocosms were 10.9±0.9, 73.1±2.9, 63.9±1.8 and 66.0±4.0 ng N m−2 s−1, respectively; mean NH3 fluxes were 8.9±0.2, 493.6±4.4, 144.8±0.1 and 684.7±8.4 ng N m−2 s−1, respectively. The fertilizer-induced NO emission factors for urea, AN and ABC were 2.6±0.1%, 2.2±0.1% and 2.3±0.2%, respectively. The fertilizer-induced NH3 emission factors for the three fertilizers were 10.9±0.2%, 3.1±0.1% and 15.2±0.4%, respectively. From the perspective of air quality protection, it would be better to increase the proportion of AN application due to its lower emission factors for both NO and NH3.  相似文献   

17.
Wetland rice cultivation is one of the major sources of atmospheric methane (CH4). Global rice production may increase by 65% between 1990 and 2025, causing an increase of methane emissions from a 92 Tg CH4 y–1 now to 131 Tg in 2025.Methane production depends strongly on the ratio oxidizing: reducing capacity of the soil. It can be influenced by e.g. addition of sulphate, which inhibits methanogenesis. The type and application mode of mineral fertilizers may also affect methane emissions. Addition of organic matter in the form of compost or straw causes an increase of methane emissions, but methane production is lower for materials with a low C/N ratio.High percolation rates in wetland rice soils and occasional drying up of the soil during the cultivation period depresses methane release. Water management practices aimed at reducing emissions are only feasible during specific periods in the rice growing season in flat lowland irrigated areas with high security of water availability and good control of the water supply. Intermittent drying of soils may not be possible on terraced rice lands.Assuming a 10 to 30% reduction in emission rates per unit harvested area, the global emission may amount to 93 Tg CH4 y in 2025. A reduction of global emissions seems very difficult. To develop techniques for reducing CH4 emissions from wetland rice fields, research is required concerning interactions between soil chemical and physical properties, and soil, water and crop management and methanogenesis. Such techniques should not adversely affect rice yields.  相似文献   

18.
Estimates of global riverine nitrous oxide (N2O) emissions contain great uncertainty. We conducted a meta‐analysis incorporating 169 observations from published literature to estimate global riverine N2O emission rates and emission factors. Riverine N2O flux was significantly correlated with NH4, NO3 and DIN (NH4 + NO3) concentrations, loads and yields. The emission factors EF(a) (i.e., the ratio of N2O emission rate and DIN load) and EF(b) (i.e., the ratio of N2O and DIN concentrations) values were comparable and showed negative correlations with nitrogen concentration, load and yield and water discharge, but positive correlations with the dissolved organic carbon : DIN ratio. After individually evaluating 82 potential regression models based on EF(a) or EF(b) for global, temperate zone and subtropical zone datasets, a power function of DIN yield multiplied by watershed area was determined to provide the best fit between modeled and observed riverine N2O emission rates (EF(a): R2 = 0.92 for both global and climatic zone models, n = 70; EF(b): R2 = 0.91 for global model and R2 = 0.90 for climatic zone models, n = 70). Using recent estimates of DIN loads for 6400 rivers, models estimated global riverine N2O emission rates of 29.6–35.3 (mean = 32.2) Gg N2O–N yr−1 and emission factors of 0.16–0.19% (mean = 0.17%). Global riverine N2O emission rates are forecasted to increase by 35%, 25%, 18% and 3% in 2050 compared to the 2000s under the Millennium Ecosystem Assessment's Global Orchestration, Order from Strength, Technogarden, and Adapting Mosaic scenarios, respectively. Previous studies may overestimate global riverine N2O emission rates (300–2100 Gg N2O–N yr−1) because they ignore declining emission factor values with increasing nitrogen levels and channel size, as well as neglect differences in emission factors corresponding to different nitrogen forms. Riverine N2O emission estimates will be further enhanced through refining emission factor estimates, extending measurements longitudinally along entire river networks and improving estimates of global riverine nitrogen loads.  相似文献   

19.
Polymer coated urea (PCU) is a N fertilizer which, when added to moist soil, uses temperature-controlled diffusion to regulate N release in matching plant demand and mitigate environmental losses. Uncoated urea and PCU were compared for their effects on gaseous (N2O and NH3) and aqueous (NO3-) N environmental losses in cool season turfgrass over the entire PCU N-release period. Field studies were conducted on established turfgrass sites with mixtures of Kentucky bluegrass (Poa pratensis L.) and perennial ryegrass (Lolium perenne L.) in sand and loam soils. Each study compared 0 kg N ha-1 (control) to 200 kg N ha-1 applied as either urea or PCU (Duration 45CR®). Application of urea resulted in 127–476% more evolution of measured N2O into the atmosphere, whereas PCU was similar to background emission levels from the control. Compared to urea, PCU reduced NH3 emissions by 41–49% and N2O emissions by 45–73%, while improving growth and verdure compared to the control. Differences in leachate NO3- among urea, PCU and control were inconclusive. This improvement in N management to ameliorate atmospheric losses of N using PCU will contribute to conserving natural resources and mitigating environmental impacts of N fertilization in turfgrass.  相似文献   

20.
Anthropogenic‐driven global change, including changes in atmospheric nitrogen (N) deposition and precipitation patterns, is dramatically altering N cycling in soil. How long‐term N deposition, precipitation changes, and their interaction influence nitrous oxide (N2O) emissions remains unknown, especially in the alpine steppes of the Qinghai–Tibetan Plateau (QTP). To fill this knowledge gap, a platform of N addition (10 g m−2 year−1) and altered precipitation (±50% precipitation) experiments was established in an alpine steppe of the QTP in 2013. Long‐term N addition significantly increased N2O emissions. However, neither long‐term alterations in precipitation nor the co‐occurrence of N addition and altered precipitation significantly affected N2O emissions. These unexpected findings indicate that N2O emissions are particularly susceptible to N deposition in the alpine steppes. Our results further indicated that both biotic and abiotic properties had significant effects on N2O emissions. N2O emissions occurred mainly due to nitrification, which was dominated by ammonia‐oxidizing bacteria, rather than ammonia‐oxidizing archaea. Furthermore, the alterations in belowground biomass and soil temperature induced by N addition modulated N2O emissions. Overall, this study provides pivotal insights to aid the prediction of future responses of N2O emissions to long‐term N deposition and precipitation changes in alpine ecosystems. The underlying microbial pathway and key predictors of N2O emissions identified in this study may also be used for future global‐scale model studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号