首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.

Background

Studies on the role of neutrophils in Leishmania infection were mainly performed with L. (L) major, whereas less information is available for L. (L) amazonensis. Previous results from our laboratory showed a large infiltrate of neutrophils in the site of infection in a mouse strain resistant to L. (L.) amazonensis (C3H/HePas). In contrast, the susceptible strain (BALB/c) displayed a predominance of macrophages harboring a high number of amastigotes and very few neutrophils. These findings led us to investigate the interaction of inflammatory neutrophils with L. (L.) amazonensis-infected macrophages in vitro.

Methodology/Principal Findings

Mouse peritoneal macrophages infected with L. (L.) amazonensis were co-cultured with inflammatory neutrophils, and after four days, the infection was quantified microscopically. Data are representative of three experiments with similar results. The main findings were 1) intracellular parasites were efficiently destroyed in the co-cultures; 2) the leishmanicidal effect was similar when cells were obtained from mouse strains resistant (C3H/HePas) or susceptible (BALB/c) to L. (L.) amazonensis; 3) parasite destruction did not require contact between infected macrophages and neutrophils; 4) tumor necrosis factor alpha (TNF-α), neutrophil elastase and platelet activating factor (PAF) were involved with the leishmanicidal activity, and 5) destruction of the parasites did not depend on generation of oxygen or nitrogen radicals, indicating that parasite clearance did not involve the classical pathway of macrophage activation by TNF-α, as reported for other Leishmania species.

Conclusions/Significance

The present results provide evidence that neutrophils in concert with macrophages play a previously unrecognized leishmanicidal effect on L. (L.) amazonensis. We believe these findings may help to understand the mechanisms involved in innate immunity in cutaneous infection by this Leishmania species.  相似文献   

4.

Background

Antitumor cyclopalladated complexes with low toxicity to laboratory animals have shown leishmanicidal effect. These findings stimulated us to test the leishmanicidal property of one palladacycle compound called DPPE 1.2 on Leishmania (Leishmania) amazonensis, an agent of simple and diffuse forms of cutaneous leishmaniasis in the Amazon region, Brazil.

Methodology/Principal Findings

Promastigotes of L. (L.) amazonensis and infected bone marrow-derived macrophages were treated with different concentrations of DPPE 1.2. In in vivo assays foot lesions of L. (L.) amazonensis-infected BALB/c mice were injected subcutaneously with DPPE 1.2 and control animals received either Glucantime or PBS. The effect of DPPE 1.2 on cathepsin B activity of L. (L.) amazonensis amastigotes was assayed spectrofluorometrically by use of fluorogenic substrates. The main findings were: 1) axenic L. (L.) amazonensis promastigotes were destroyed by nanomolar concentrations of DPPE 1.2 (IC50 = 2.13 nM); 2) intracellular parasites were killed by DPPE 1.2 (IC50 = 128.35 nM), and the drug displayed 10-fold less toxicity to macrophages (CC50 = 1,267 nM); 3) one month after intralesional injection of DPPE 1.2 infected BALB/c mice showed a significant decrease of foot lesion size and a reduction of 97% of parasite burdens when compared to controls that received PBS; 4) DPPE 1.2 inhibited the cysteine protease activity of L. (L.) amazonensis amastigotes and more significantly the cathepsin B activity.

Conclusions/Significance

The present results demonstrated that DPPE 1.2 can destroy L. (L.) amazonensis in vitro and in vivo at concentrations that are non toxic to the host. We believe these findings support the potential use of DPPE 1.2 as an alternative choice for the chemotherapy of leishmaniasis.  相似文献   

5.

Background/Objectives

Human leishmaniases are parasitic diseases causing severe morbidity and mortality. No vaccine is available and numerous factors limit the use of current therapies. There is thus an urgent need for innovative initiatives to identify new chemotypes displaying selective activity against intracellular Leishmania amastigotes that develop and proliferate inside macrophages, thereby causing the pathology of leishmaniasis.

Methodology/Principal Findings

We have developed a biologically sound High Content Analysis assay, based on the use of homogeneous populations of primary mouse macrophages hosting Leishmania amazonensis amastigotes. In contrast to classical promastigote-based screens, our assay more closely mimics the environment where intracellular amastigotes are growing within acidic parasitophorous vacuoles of their host cells. This multi-parametric assay provides quantitative data that accurately monitors the parasitic load of amastigotes-hosting macrophage cultures for the discovery of leishmanicidal compounds, but also their potential toxic effect on host macrophages. We validated our approach by using a small set of compounds of leishmanicidal drugs and recently published chemical entities. Based on their intramacrophagic leishmanicidal activity and their toxicity against host cells, compounds were classified as irrelevant or relevant for entering the next step in the drug discovery pipeline.

Conclusions/Significance

Our assay represents a new screening platform that overcomes several limitations in anti-leishmanial drug discovery. First, the ability to detect toxicity on primary macrophages allows for discovery of compounds able to cross the membranes of macrophage, vacuole and amastigote, thereby accelerating the hit to lead development process for compounds selectively targeting intracellular parasites. Second, our assay allows discovery of anti-leishmanials that interfere with biological functions of the macrophage required for parasite development and growth, such as organelle trafficking/acidification or production of microbicidal effectors. These data thus validate a novel phenotypic screening assay using virulent Leishmania amastigotes growing inside primary macrophage to identify new chemical entities with bona fide drug potential.  相似文献   

6.

Background

Sand fly saliva contains molecules that modify the host''s hemostasis and immune responses. Nevertheless, the role played by this saliva in the induction of key elements of inflammatory responses, such as lipid bodies (LB, also known as lipid droplets) and eicosanoids, has been poorly investigated. LBs are cytoplasmic organelles involved in arachidonic acid metabolism that form eicosanoids in response to inflammatory stimuli. In this study, we assessed the role of salivary gland sonicate (SGS) from Lutzomyia (L.) longipalpis, a Leishmania infantum chagasi vector, in the induction of LBs and eicosanoid production by macrophages in vitro and ex vivo.

Methodology/Principal Findings

Different doses of L. longipalpis SGS were injected into peritoneal cavities of C57BL/6 mice. SGS induced increased macrophage and neutrophil recruitment into the peritoneal cavity at different time points. Sand fly saliva enhanced PGE2 and LTB4 production by harvested peritoneal leukocytes after ex vivo stimulation with a calcium ionophore. At three and six hours post-injection, L. longipalpis SGS induced more intense LB staining in macrophages, but not in neutrophils, compared with mice injected with saline. Moreover, macrophages harvested by peritoneal lavage and stimulated with SGS in vitro presented a dose- and time-dependent increase in LB numbers, which was correlated with increased PGE2 production. Furthermore, COX-2 and PGE-synthase co-localized within the LBs induced by L. longipalpis saliva. PGE2 production by macrophages induced by SGS was abrogated by treatment with NS-398, a COX-2 inhibitor. Strikingly, SGS triggered ERK-1/2 and PKC-α phosphorylation, and blockage of the ERK-1/2 and PKC-α pathways inhibited the SGS effect on PGE2 production by macrophages.

Conclusion

In sum, our results show that L. longipalpis saliva induces lipid body formation and PGE2 production by macrophages ex vivo and in vitro via the ERK-1/2 and PKC-α signaling pathways. This study provides new insights regarding the pharmacological mechanisms whereby L. longipalpis saliva influences the early steps of the host''s inflammatory response.  相似文献   

7.

Background

Leishmaniasis is a major health problem that affects more than 12 million people. Treatment presents several problems, including high toxicity and many adverse effects, leading to the discontinuation of treatment and emergence of resistant strains.

Methodology/Principal Findings

We evaluated the in vitro antileishmanial activity of benzaldehyde thiosemicarbazone derived from limonene complexed with copper, termed BenzCo, against Leishmania amazonensis. BenzCo inhibited the growth of the promastigote and axenic amastigote forms, with IC50 concentrations of 3.8 and 9.5 µM, respectively, with 72 h of incubation. Intracellular amastigotes were inhibited by the compound, with an IC50 of 10.7 µM. BenzCo altered the shape, size, and ultrastructure of the parasites. Mitochondrial membrane depolarization was observed in protozoa treated with BenzCo but caused no alterations in the plasma membrane. Additionally, BenzCo induced lipoperoxidation and the production of mitochondrial superoxide anion radicals in promastigotes and axenic amastigotes of Leishmania amazonensis.

Conclusion/Significance

Our studies indicated that the antileishmania activity of BenzCo might be associated with mitochondrial dysfunction and oxidative damage, leading to parasite death.  相似文献   

8.

Background

Leishmaniasis, a parasitic disease caused by protozoa of the genus Leishmania, affects more than 12 million people worldwide. Quercetin has generated considerable interest as a pharmaceutical compound with a wide range of therapeutic activities. One such activity is exhibited against the bloodstream parasite Trypanosoma brucei and amastigotes of Leishmania donovani. However, the mechanism of protozoan action of quercetin has not been studied.

Methodology/Principal Findings

In the present study, we report here the mechanism for the antileishmanial activity of quercetin against Leishmania amazonensis promastigotes. Quercetin inhibited L. amazonensis promastigote growth in a dose- and time- dependent manner beginning at 48 hours of treatment and with maximum growth inhibition observed at 96 hours. The IC50 for quercetin at 48 hours was 31.4 µM. Quercetin increased ROS generation in a dose-dependent manner after 48 hours of treatment. The antioxidant GSH and NAC each significantly reduced quercetin-induced cell death. In addition, quercetin caused mitochondrial dysfunction due to collapse of mitochondrial membrane potential.

Conclusions/Significance

The effects of several drugs that interfere directly with mitochondrial physiology in parasites such as Leishmania have been described. The unique mitochondrial features of Leishmania make this organelle an ideal drug target while minimizing toxicity. Quercetin has been described as a pro-oxidant, generating ROS which are responsible for cell death in some cancer cells. Mitochondrial membrane potential loss can be brought about by ROS added directly in vitro or induced by chemical agents. Taken together, our results demonstrate that quercetin eventually exerts its antileishmanial effect on L. amazonensis promastigotes due to the generation of ROS and disrupted parasite mitochondrial function.  相似文献   

9.

Background

Human leishmaniasis is caused by more than 20 Leishmania species and has a wide range of symptoms. Our recent studies have demonstrated the essential role of sphingolipid degradation in the virulence of Leishmania (Leishmania) major, a species responsible for localized cutaneous leishmaniasis in the Old World. In this study, we investigated the function of sphingolipid degradation in Leishmania (Leishmania) amazonensis, an etiological agent of localized and diffuse cutaneous leishmaniasis in South America.

Methodology/Principal Findings

First, we identified the enzyme LaISCL which is responsible for sphingolipid degradation in L. amazonensis. Primarily localized in the mitochondrion, LaISCL shows increased expression as promastigotes progress from replicative log phase to non-replicative stationary phase. To study its function, null mutants of LaISCL (Laiscl) were generated by targeted gene deletion and complemented through episomal gene add-back. In culture, loss of LaISCL leads to hypersensitivity to acidic pH and poor survival in murine macrophages. In animals, Laiscl mutants exhibit severely attenuated virulence towards C57BL6 mice but are fully infective towards BALB/c mice. This is drastically different from wild type L. amazonensis which cause severe pathology in both BALB/c and C57BL 6 mice.

Conclusions/Significance

A single enzyme LaISCL is responsible for the turnover of sphingolipids in L. amazonensis. LaISCL exhibits similar expression profile and biochemical property as its ortholog in L. major. Deletion of LaISCL reduces the virulence of L. amazonensis and the outcome of Laiscl-infection is highly dependent on the host''s genetic background. Therefore, compared to L. major, the role of sphingolipid degradation in virulence is substantially different in L. amazonensis. Future studies may reveal whether sphingolipid degradation is required for L. amazonensis to cause diffuse cutaneous infections in humans.  相似文献   

10.
An important area in the cell biology of intracellular parasitism is the customization of parasitophorous vacuoles (PVs) by prokaryotic or eukaryotic intracellular microorganisms. We were curious to compare PV biogenesis in primary mouse bone marrow-derived macrophages exposed to carefully prepared amastigotes of either Leishmania major or L. amazonensis. While tight-fitting PVs are housing one or two L. major amastigotes, giant PVs are housing many L. amazonensis amastigotes. In this study, using multidimensional imaging of live cells, we compare and characterize the PV biogenesis/remodeling of macrophages i) hosting amastigotes of either L. major or L. amazonensis and ii) loaded with Lysotracker, a lysosomotropic fluorescent probe. Three dynamic features of Leishmania amastigote-hosting PVs are documented: they range from i) entry of Lysotracker transients within tight-fitting, fission-prone L. major amastigote-housing PVs; ii) the decrease in the number of macrophage acidic vesicles during the L. major PV fission or L. amazonensis PV enlargement; to iii) the L. amazonensis PV remodeling after homotypic fusion. The high content information of multidimensional images allowed the updating of our understanding of the Leishmania species-specific differences in PV biogenesis/remodeling and could be useful for the study of other intracellular microorganisms.  相似文献   

11.

Background

Drug resistance is a major problem in leishmaniasis chemotherapy. RNA expression profiling using DNA microarrays is a suitable approach to study simultaneous events leading to a drug-resistance phenotype. Genomic analysis has been performed primarily with Old World Leishmania species and here we investigate molecular alterations in antimony resistance in the New World species L. amazonensis.

Methods/Principal Findings

We selected populations of L. amazonensis promastigotes for resistance to antimony by step-wise drug pressure. Gene expression of highly resistant mutants was studied using DNA microarrays. RNA expression profiling of antimony-resistant L. amazonensis revealed the overexpression of genes involved in drug resistance including the ABC transporter MRPA and several genes related to thiol metabolism. The MRPA overexpression was validated by quantitative real-time RT-PCR and further analysis revealed that this increased expression was correlated to gene amplification as part of extrachromosomal linear amplicons in some mutants and as part of supernumerary chromosomes in other mutants. The expression of several other genes encoding hypothetical proteins but also nucleobase and glucose transporter encoding genes were found to be modulated.

Conclusions/Significance

Mechanisms classically found in Old World antimony resistant Leishmania were also highlighted in New World antimony-resistant L. amazonensis. These studies were useful to the identification of resistance molecular markers.  相似文献   

12.

Background

The treatment of leishmaniasis relies mostly on parenteral drugs with potentially serious adverse effects. Additionally, parasite resistance in the treatment of leishmaniasis has been demonstrated for the majority of drugs available, making the search for more effective and less toxic drugs and treatment regimens a priority for the control of leishmaniasis. The aims of this study were to evaluate the antileishmanial activity of raloxifene in vitro and in vivo and to investigate its mechanism of action against Leishmania amazonensis.

Methodology/Principal Findings

Raloxifene was shown to possess antileishmanial activity in vitro against several species with EC50 values ranging from 30.2 to 38.0 µM against promastigotes and from 8.8 to 16.2 µM against intracellular amastigotes. Raloxifene''s mechanism of action was investigated through transmission electron microscopy and labeling with propidium iodide, DiSBAC2(3), rhodamine 123 and monodansylcadaverine. Microscopic examinations showed that raloxifene treated parasites displayed autophagosomes and mitochondrial damage while the plasma membrane remained continuous. Nonetheless, plasma membrane potential was rapidly altered upon raloxifene treatment with initial hyperpolarization followed by depolarization. Loss of mitochondrial membrane potential was also verified. Treatment of L. amazonensis – infected BALB/c mice with raloxifene led to significant decrease in lesion size and parasite burden.

Conclusions/Significance

The results of this work extend the investigation of selective estrogen receptor modulators as potential candidates for leishmaniasis treatment. The antileishmanial activity of raloxifene was demonstrated in vitro and in vivo. Raloxifene produces functional disorder on the plasma membrane of L. amazonensis promastigotes and leads to functional and morphological disruption of mitochondria, which culminate in cell death.  相似文献   

13.
Lipid bodies [lipid droplets (LBs)] are lipid-rich organelles involved in lipid metabolism, signalling and inflammation. Recent findings suggest a role for LBs in host response to infection; however, the potential functions of this organelle in Toxoplasma gondii infection and how it alters macrophage microbicidal capacity during infection are not well understood. Here, we investigated the role of host LBs in T. gondii infection in mouse peritoneal macrophages in vitro. Macrophages cultured with mouse serum (MS) had higher numbers of LBs than those cultured in foetal bovine serum and can function as a model to study the role of LBs during intracellular pathogen infection. LBs were found in association with the parasitophorous vacuole, suggesting that T. gondii may benefit from this lipid source. Moreover, increased numbers of macrophage LBs correlated with high prostaglandin E2 (PGE2) production and decreased nitric oxide (NO) synthesis. Accordingly, LB-enriched macrophages cultured with MS were less efficient at controlling T. gondii growth. Treatment of macrophages cultured with MS with indomethacin, an inhibitor of PGE2 production, increased the microbicidal capacity against T. gondii. Collectively, these results suggest that culture with MS caused a decrease in microbicidal activity of macrophages against T. gondii by increasing PGE2 while lowering NO production.  相似文献   

14.

Background

The neglected human diseases caused by trypanosomatids are currently treated with toxic therapy with limited efficacy. In search for novel anti-trypanosomatid agents, we showed previously that the Crotalus viridis viridis (Cvv) snake venom was active against infective forms of Trypanosoma cruzi. Here, we describe the purification of crovirin, a cysteine-rich secretory protein (CRISP) from Cvv venom with promising activity against trypanosomes and Leishmania.

Methodology/Principal Findings

Crude venom extract was loaded onto a reverse phase analytical (C8) column using a high performance liquid chromatographer. A linear gradient of water/acetonitrile with 0.1% trifluoroacetic acid was used. The peak containing the isolated protein (confirmed by SDS-PAGE and mass spectrometry) was collected and its protein content was measured. T. cruzi trypomastigotes and amastigotes, L. amazonensis promastigotes and amastigotes and T. brucei rhodesiense procyclic and bloodstream trypomastigotes were challenged with crovirin, whose toxicity was tested against LLC-MK2 cells, peritoneal macrophages and isolated murine extensor digitorum longus muscle. We purified a single protein from Cvv venom corresponding, according to Nano-LC MS/MS sequencing, to a CRISP of 24,893.64 Da, henceforth referred to as crovirin. Human infective trypanosomatid forms, including intracellular amastigotes, were sensitive to crovirin, with low IC50 or LD50 values (1.10–2.38 µg/ml). A considerably higher concentration (20 µg/ml) of crovirin was required to elicit only limited toxicity on mammalian cells.

Conclusions

This is the first report of CRISP anti-protozoal activity, and suggests that other members of this family might have potential as drugs or drug leads for the development of novel agents against trypanosomatid-borne neglected diseases.  相似文献   

15.

Background

The treatment for leishmaniasis is currently based on pentavalent antimonials and amphotericin B; however, these drugs result in numerous adverse side effects. The lack of affordable therapy has necessitated the urgent development of new drugs that are efficacious, safe, and more accessible to patients. Natural products are a major source for the discovery of new and selective molecules for neglected diseases. In this paper, we evaluated the effect of apigenin on Leishmania amazonensis in vitro and in vivo and described the mechanism of action against intracellular amastigotes of L. amazonensis.

Methodology/Principal Finding

Apigenin reduced the infection index in a dose-dependent manner, with IC50 values of 4.3 μM and a selectivity index of 18.2. Apigenin induced ROS production in the L. amazonensis-infected macrophage, and the effects were reversed by NAC and GSH. Additionally, apigenin induced an increase in the number of macrophages autophagosomes after the infection, surrounding the parasitophorous vacuole, suggestive of the involvement of host autophagy probably due to ROS generation induced by apigenin. Furthermore, apigenin treatment was also effective in vivo, demonstrating oral bioavailability and reduced parasitic loads without altering serological toxicity markers.

Conclusions/Significance

In conclusion, our study suggests that apigenin exhibits leishmanicidal effects against L. amazonensis-infected macrophages. ROS production, as part of the mechanism of action, could occur through the increase in host autophagy and thereby promoting parasite death. Furthermore, our data suggest that apigenin is effective in the treatment of L. amazonensis-infected BALB/c mice by oral administration, without altering serological toxicity markers. The selective in vitro activity of apigenin, together with excellent theoretical predictions of oral availability, clear decreases in parasite load and lesion size, and no observed compromises to the overall health of the infected mice encourage us to supports further studies of apigenin as a candidate for the chemotherapeutic treatment of leishmaniasis.  相似文献   

16.

Background

One of the most important drawbacks in visceral leishmaniasis (VL) population studies is the difficulty of diagnosing asymptomatic carriers. The aim of this study, conducted in an urban area in the Southeast of Brazil, was to evaluate the performance of serology to identify asymptomatic VL infection in participants selected from a cohort with a two-year follow-up period.

Methodology

Blood samples were collected in 2001 from 136 cohort participants (97 positive and 39 negatives, PCR/hybridization carried out in 1999). They were clinically evaluated and none had progressed to disease from their asymptomatic state. As controls, blood samples from 22 control individuals and 8 patients with kala-azar were collected. Two molecular biology techniques (reference tests) were performed: PCR with Leishmania-generic primer followed by hybridization using L. infantum probe, and PCR with specific primer to L. donovani complex. Plasma samples were tested by ELISA using three different antigens: L. infantum and L. amazonensis crude antigens, and rK39 recombinant protein. Accuracy of the serological tests was evaluated using sensitivity, specificity, likelihood ratio and ROC curve.

Findings

The presence of Leishmania was confirmed, by molecular techniques, in all kala-azar patients and in 117 (86%) of the 136 cohort participants. Kala-azar patients showed high reactivity in ELISAs, whereas asymptomatic individuals presented low reactivity against the antigens tested. When compared to molecular techniques, the L. amazonensis and L. infantum antigens showed higher sensitivity (49.6% and 41.0%, respectively) than rK39 (26.5%); however, the specificity of rK39 was higher (73.7%) than L. amazonensis (52.6%) and L. infantum antigens (36.8%). Moreover, there was low agreement among the different antigens used (kappa<0.10).

Conclusions

Serological tests were inaccurate for diagnosing asymptomatic infections compared to molecular methods; this could lead to misclassification bias in population studies. Therefore, studies which have used serological assays to estimate prevalence, to evaluate intervention programs or to identify risk factors for Leishmania infection, may have had their results compromised.  相似文献   

17.

Background

Human cutaneous leishmaniasis is caused by distinct species, including Leishmania amazonensis. Treatment of cutaneous leishmaniasis is far from satisfactory due to increases in drug resistance and relapses, and toxicity of compounds to the host. As a consequence for this situation, the development of new leishmanicidal drugs and the search of new targets in the parasite biology are important goals.

Methodology/Principal Findings

In this study, we investigated the mechanism of death pathway induced by the calpain inhibitor MDL28170 on Leishmania amazonensis promastigote forms. The combined use of different techniques was applied to contemplate this goal. MDL28170 treatment with IC50 (15 µM) and two times the IC50 doses induced loss of parasite viability, as verified by resazurin assay, as well as depolarization of the mitochondrial membrane, which was quantified by JC-1 staining. Scanning and transmission electron microscopic images revealed drastic alterations on the parasite morphology, some of them resembling apoptotic-like death, including cell shrinking, surface membrane blebs and altered chromatin condensation pattern. The lipid rearrangement of the plasma membrane was detected by Annexin-V labeling. The inhibitor also induced a significant increase in the proportion of cells in the sub-G0/G1 phase, as quantified by propidium iodide staining, as well as genomic DNA fragmentation, detected by TUNEL assay. In cells treated with MDL28170 at two times the IC50 dose, it was also possible to observe an oligonucleossomal DNA fragmentation by agarose gel electrophoresis.

Conclusions/Significance

The data presented in the current study suggest that MDL28170 induces apoptotic marker expression in promastigotes of L. amazonensis. Altogether, the results described in the present work not only provide a rationale for further exploration of the mechanism of action of calpain inhibitors against trypanosomatids, but may also widen the investigation of the potential clinical utility of calpain inhibitors in the chemotherapy of leishmaniases.  相似文献   

18.

Background

Previous results have shown that oral and intranasal administration of particulate Leishmania (Leishmania) amazonensis antigens (LaAg) partially protects mice against L. amazonensis infection. However, vaccination studies on species of the subgenus Viannia, the main causative agent of cutaneous and mucosal leishmaniasis in the Americas, have been hampered by the lack of easy-to-handle bio-models that accurately mimic the human disease. Recently, we demonstrated that the golden hamster is an appropriate model for studying the immunopathogenesis of cutaneous leishmaniasis caused by L. (Viannia) braziliensis. Using the golden hamster model, our current study investigated whether the protective effect of intranasal immunisation with LaAg can be extended to L. braziliensis infection.

Methodology/Principal Findings

Golden hamsters vaccinated with either two intranasal (IN) doses of LaAg (10 µg) or two intramuscular doses of LaAg (20 µg) were challenged 2 weeks post-vaccination with L. braziliensis. The results showed that IN immunisation with LaAg significantly reduced lesion growth and parasitic load as well as serum IgG and IgG2 levels. At the experimental endpoint on day 114 post-infection, IN-immunised hamsters that were considered protected expressed IFN-γ and IL10 mRNA levels that returned to uninfected skin levels. In contrast to the nasal route, intramuscular (IM) immunisation failed to provide protection.

Conclusions/Significance

These results demonstrate for the first time that the nasal route of immunisation can induce cross protection against L. braziliensis infection.  相似文献   

19.
20.

Background

It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models.

Methodology/Principal Findings

By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates.

Conclusions/Significance

These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号