首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
YphC and YsxC are GTPases in Bacillus subtilis that facilitate the assembly of the 50S ribosomal subunit, however their roles in this process are still uncharacterized. To explore their function, we used strains in which the only copy of the yphC or ysxC genes were under the control of an inducible promoter. Under depletion conditions, they accumulated incomplete ribosomal subunits that we named 45SYphC and 44.5SYsxC particles. Quantitative mass spectrometry analysis and the 5–6 Å resolution cryo-EM maps of the 45SYphC and 44.5SYsxC particles revealed that the two GTPases participate in the maturation of the central protuberance, GTPase associated region and key RNA helices in the A, P and E functional sites of the 50S subunit. We observed that YphC and YsxC bind specifically to the two immature particles, suggesting that they represent either on-pathway intermediates or that their structure has not significantly diverged from that of the actual substrate. These results describe the nature of these immature particles, a widely used tool to study the assembly process of the ribosome. They also provide the first insights into the function of YphC and YsxC in 50S subunit assembly and are consistent with this process occurring through multiple parallel pathways, as it has been described for the 30S subunit.  相似文献   

2.
The trmD operon is located at 56.7 min on the genetic map of the Escherichia coli chromosome and contains the genes for ribosomal protein (r-protein) S16, a 21-kDa protein (RimM, formerly called 21K), the tRNA (m1G37)methyltransferase (TrmD), and r-protein L19, in that order. Previously, we have shown that strains from which the rimM gene has been deleted have a sevenfold-reduced growth rate and a reduced translational efficiency. The slow growth and translational deficiency were found to be partly suppressed by mutations in rpsM, which encodes r-protein S13. Further, the RimM protein was shown to have affinity for free ribosomal 30S subunits but not for 30S subunits in the 70S ribosomes. Here we have isolated several new suppressor mutations, most of which seem to be located close to or within the nusA operon at 68.9 min on the chromosome. For at least one of these mutations, increased expression of the ribosome binding factor RbfA is responsible for the suppression of the slow growth and translational deficiency of a ΔrimM mutant. Further, the RimM and RbfA proteins were found to be essential for efficient processing of 16S rRNA.  相似文献   

3.
The loss of the large ribosomal protein L9 causes a reduction in translation fidelity by an unknown mechanism. To identify pathways affected by L9, we identified mutants of E. coli that require L9 for fitness. In a prior study, we characterized L9-dependent mutations in the essential GTPase Der (EngA). Here, we describe a second class of L9-dependent mutations that either compromise or inactivate elongation factor P (EF-P, eIF5A in eukaryotes). Without L9, Δefp cells are practically inviable. Cell fractionation studies revealed that, in both the Der and EF-P mutant cases, L9''s activity reduces immature 16S rRNA in 30S particles and partially restores the abundance of monosomes. Inspired by these findings, we discovered that L9 also enhances 16S maturation in wild-type cells. Surprisingly, although the amount of immature 16S in 30S particles was found to be elevated in ΔrplI cells, the amount in polysomes was low and inversely correlated with the immature 16S abundance. These findings provide an explanation for the observed fitness increases afforded by L9 in these mutants and reveal particular physiological conditions in which L9 becomes critical. Additionally, L9 may affect the partitioning of small subunits containing immature 16S rRNA.  相似文献   

4.
The in vivo assembly of ribosomal subunits requires assistance by auxiliary proteins that are not part of mature ribosomes. More such assembly proteins have been identified for the assembly of the 50S than for the 30S ribosomal subunit. Here, we show that the RimP protein (formerly YhbC or P15a) is important for the maturation of the 30S subunit. A rimP deletion (ΔrimP135) mutant in Escherichia coli showed a temperature-sensitive growth phenotype as demonstrated by a 1.2-, 1.5-, and 2.5-fold lower growth rate at 30, 37, and 44 °C, respectively, compared to a wild-type strain. The mutant had a reduced amount of 70S ribosomes engaged in translation and showed a corresponding increase in the amount of free ribosomal subunits. In addition, the mutant showed a lower ratio of free 30S to 50S subunits as well as an accumulation of immature 16S rRNA compared to a wild-type strain, indicating a deficiency in the maturation of the 30S subunit. All of these effects were more pronounced at higher temperatures. RimP was found to be associated with free 30S subunits but not with free 50S subunits or with 70S ribosomes. The slow growth of the rimP deletion mutant was not suppressed by increased expression of any other known 30S maturation factor.  相似文献   

5.
Ribosome biogenesis is a tightly regulated, multi-stepped process. The assembly of ribosomal subunits is a central step of the complex biogenesis process, involving nearly 30 protein factors in vivo in bacteria. Although the assembly process has been extensively studied in vitro for over 40 years, very limited information is known for the in vivo process and specific roles of assembly factors. Such an example is ribosome maturation factor M (RimM), a factor involved in the late-stage assembly of the 30S subunit. Here, we combined quantitative mass spectrometry and cryo-electron microscopy to characterize the in vivo 30S assembly intermediates isolated from mutant Escherichia coli strains with genes for assembly factors deleted. Our compositional and structural data show that the assembly of the 3′-domain of the 30S subunit is severely delayed in these intermediates, featured with highly underrepresented 3′-domain proteins and large conformational difference compared with the mature 30S subunit. Further analysis indicates that RimM functions not only to promote the assembly of a few 3′-domain proteins but also to stabilize the rRNA tertiary structure. More importantly, this study reveals intriguing similarities and dissimilarities between the in vitro and the in vivo assembly pathways, suggesting that they are in general similar but with subtle differences.  相似文献   

6.
The exit (E) site has been implicated in several ribosomal activities, including translocation, decoding, and maintenance of the translational reading frame. Here, we target the 30S subunit E site by introducing a deletion in rpsG that truncates the β-hairpin of ribosomal protein S7. This mutation (S7ΔR77–Y84) increases both −1 and +1 frameshifting but does not increase miscoding, providing evidence that the 30S E site plays a specific role in frame maintenance. Mutation S7ΔR77–Y84 also stimulates +1 programmed frameshifting during prfB′-lacZ translation in many synthetic contexts. However, no effect is seen when the E codon of the frameshift site corresponds to those found in nature, suggesting that E-tRNA release does not normally limit the rate of prfB frameshifting. Ribosomes containing S7ΔR77–Y84 exhibit an elevated rate of spontaneous reverse translocation and an increased K1/2 for E-tRNA. These effects are of similar magnitude, suggesting that both result from destabilization of E-tRNA. Finally, this mutation of the 30S E site does not inhibit EF-G-dependent translocation, consistent with a primary role for the 50S E site in the mechanism.  相似文献   

7.
70S ribosomes and 30S ribosomal subunits from Escherichia coli MRE 600 were exposed to gamma irradiation at -80szC. Exponential decline of activity with dose was observed when the ability of ribosomes to support the synthesis of polyphenylalanine was assayed. Irradiated ribosomes showed also an increased thermal lability. D37 values of 2.2 MR and 4.8 MR, corresponding to radiation-sensitive molecular weights of 3.1 × 105 and 1.4 × 105, were determined for inactivation of 70S ribosomes and 30S subunits, respectively. Zone sedimentation analysis of RNA isolated from irradiated bacteria or 30S ribosomal subunits showed that at average, one chain scission occurs per four hits into ribosomal RNA. From these results it was concluded that the integrity of only a part of ribosomal proteins (the sum of their molecular weights not exceeding 1.4 × 105) could be essential for the function of the 30S subunit in the polymerization of phenylalanine. This amount is smaller if the breaks in the RNA chain inactivate the ribosome.  相似文献   

8.
Rapid and accurate assembly of the ribosomal subunits, which are responsible for protein synthesis, is required to sustain cell growth. Our best understanding of the interaction of 30S ribosomal subunit components (16S ribosomal RNA [rRNA] and 20 ribosomal proteins [r-proteins]) comes from in vitro work using Escherichia coli ribosomal components. However, detailed information regarding the essential elements involved in the assembly of 30S subunits still remains elusive. Here, we defined a set of rRNA nucleotides that are critical for the assembly of the small ribosomal subunit in E. coli. Using an RNA modification interference approach, we identified 54 nucleotides in 16S rRNA whose modification prevents the formation of a functional small ribosomal subunit. The majority of these nucleotides are located in the head and interdomain junction of the 30S subunit, suggesting that these regions are critical for small subunit assembly. In vivo analysis of specific identified sites, using engineered mutations in 16S rRNA, revealed defective protein synthesis capability, aberrant polysome profiles, and abnormal 16S rRNA processing, indicating the importance of these residues in vivo. These studies reveal that specific segments of 16S rRNA are more critical for small subunit assembly than others, and suggest a hierarchy of importance.  相似文献   

9.
YjeQ (also called RsgA) and RbfA proteins in Escherichia coli bind to immature 30S ribosome subunits at late stages of assembly to assist folding of the decoding center. A key step for the subunit to enter the pool of actively translating ribosomes is the release of these factors. YjeQ promotes dissociation of RbfA during the final stages of maturation; however, the mechanism implementing this functional interplay has not been elucidated. YjeQ features an amino-terminal oligonucleotide/oligosaccharide binding domain, a central GTPase module and a carboxy-terminal zinc-finger domain. We found that the zinc-finger domain is comprised of two functional motifs: the region coordinating the zinc ion and a carboxy-terminal α-helix. The first motif is essential for the anchoring of YjeQ to the 30S subunit and the carboxy-terminal α-helix facilitates the removal of RbfA once the 30S subunit reaches the mature state. Furthermore, the ability of the mature 30S subunit to stimulate YjeQ GTPase activity also depends on the carboxy-terminal α-helix. Our data are consistent with a model in which YjeQ uses this carboxy-terminal α-helix as a sensor to gauge the conformation of helix 44, an essential motif of the decoding center. According to this model, the mature conformation of helix 44 is sensed by the carboxy-terminal α-helix, which in turn stimulates the YjeQ GTPase activity. Hydrolysis of GTP is believed to assist the release of YjeQ from the mature 30S subunit through a still uncharacterized mechanism. These results identify the structural determinants in YjeQ that implement the functional interplay with RbfA.  相似文献   

10.
Biogenesis of ribosomal subunits involves enzymatic modifications of rRNA that fine-tune functionally important regions. The universally conserved prokaryotic dimethyltransferase KsgA sequentially modifies two universally conserved adenosine residues in helix 45 of the small ribosomal subunit rRNA, which is in proximity of the decoding site. Here we present the cryo-EM structure of Escherichia coli KsgA bound to an E. coli 30S at a resolution of 3.1 Å. The high-resolution structure reveals how KsgA recognizes immature rRNA and binds helix 45 in a conformation where one of the substrate nucleotides is flipped-out into the active site. We suggest that successive processing of two adjacent nucleotides involves base-flipping of the rRNA, which allows modification of the second substrate nucleotide without dissociation of the enzyme. Since KsgA is homologous to the essential eukaryotic methyltransferase Dim1 involved in 40S maturation, these results have also implications for understanding eukaryotic ribosome maturation.  相似文献   

11.
DNA double-strand breaks (DSBs), which are formed by the Spo11 protein, initiate meiotic recombination. Previous DSB-mapping studies have used rad50S or sae2Δ mutants, which are defective in break processing, to accumulate Spo11-linked DSBs, and report large (≥ 50 kb) “DSB-hot” regions that are separated by “DSB-cold” domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2Δ mutants. We therefore developed a novel method to map genome-wide, single-strand DNA (ssDNA)–associated DSBs that accumulate in processing-capable, repair-defective dmc1Δ and dmc1Δ rad51Δ mutants. DSBs were observed at known hot spots, but also in most previously identified “DSB-cold” regions, including near centromeres and telomeres. Although approximately 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1Δ shows that most of these regions have substantial DSB activity. Southern blot assays of DSBs in selected regions in dmc1Δ, rad50S, and wild-type cells confirm these findings. Thus, DSBs are distributed much more uniformly than was previously believed. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as a critical strand-exchange activity genome-wide, and confirm previous conclusions that Spo11-induced lesions initiate all meiotic recombination.  相似文献   

12.
[URE3] is an amyloid-based prion of Ure2p, a negative regulator of poor nitrogen source catabolism in Saccharomyces cerevisiae. Overproduced Btn2p or its paralog Cur1p, in processes requiring Hsp42, cure the [URE3] prion. Btn2p cures by collecting Ure2p amyloid filaments at one place in the cell. We find that rpl4aΔ, rpl21aΔ, rpl21bΔ, rpl11bΔ, and rpl16bΔ (large ribosomal subunit proteins) or ubr2Δ (ubiquitin ligase targeting Rpn4p, an activator of proteasome genes) reduce curing by overproduced Btn2p or Cur1p. Impaired curing in ubr2Δ or rpl21bΔ is restored by an rpn4Δ mutation. No effect of rps14aΔ or rps30bΔ on curing was observed, indicating that 60S subunit deficiency specifically impairs curing. Levels of Hsp42p, Sis1p, or Btn3p are unchanged in rpl4aΔ, rpl21bΔ, or ubr2Δ mutants. Overproduction of Cur1p or Btn2p was enhanced in rpn4Δ and hsp42Δ mutants, lower in ubr2Δ strains, and restored to above wild-type levels in rpn4Δ ubr2Δ strains. As in the wild-type, Ure2N-GFP colocalizes with Btn2-RFP in rpl4aΔ, rpl21bΔ, or ubr2Δ strains, but not in hsp42Δ. Btn2p/Cur1p overproduction cures [URE3] variants with low seed number, but seed number is not increased in rpl4aΔ, rpl21bΔ or ubr2Δ mutants. Knockouts of genes required for the protein sorting function of Btn2p did not affect curing of [URE3], nor did inactivation of the Hsp104 prion-curing activity. Overactivity of the ubiquitin/proteasome system, resulting from 60S subunit deficiency or ubr2Δ, may impair Cur1p and Btn2p curing of [URE3] by degrading Cur1p, Btn2p or another component of these curing systems.  相似文献   

13.
Tetracycline blocks stable binding of aminoacyl-tRNA to the bacterial ribosomal A-site. Various tetracycline binding sites have been identified in crystals of the 30S ribosomal small subunit of Thermus thermophilus. Here we describe a direct photo- affinity modification of the ribosomal small subunits of Escherichia coli with 7-[3H]-tetracycline. To select for specific interactions, an excess of the 30S subunits over tetracycline has been used. Primer extension analysis of the 16S rRNA revealed two sites of the modifications: C936 and C948. Considering available data on tetracycline interactions with the prokaryotic 30S subunits, including the presented data (E.coli), X-ray data (T.thermophilus) and genetic data (Helicobacter pylori, E.coli), a second high affinity tetracycline binding site is proposed within the 3′-major domain of the 16S rRNA, in addition to the A-site related tetracycline binding site.  相似文献   

14.
Polyamine binding to 23S rRNA was investigated, using a photoaffinity labeling approach. This was based on the covalent binding of a photoreactive analog of spermine, N1-azidobenzamidino (ABA)-spermine, to Escherichia coli ribosomes or naked 23S rRNA under mild irradiation conditions. The cross-linking sites of ABA-spermine in 23S rRNA were determined by RNase H digestion and primer-extension analysis. Domains I, II, IV and V in naked 23S rRNA were identified as discrete regions of preferred cross-linking. When 50S ribosomal subunits were targeted, the interaction of the photoprobe with the above 23S rRNA domains was elevated, except for helix H38 in domain II whose susceptibility to cross-linking was greatly reduced. In addition, cross-linking sites were identified in domains III and VI. Association of 30S with 50S subunits, poly(U), tRNAPhe and AcPhe-tRNA to form a post-translocation complex further altered the cross-linking, in particular to helices H11–H13, H21, H63, H80, H84, H90 and H97. Poly(U)-programmed 70S ribosomes, reconstituted from photolabeled 50S subunits and untreated 30S subunits, bound AcPhe-tRNA in a similar fashion to native ribosomes. However, they exhibited higher reactivity toward puromycin and enhanced tRNA-translocation efficiency. These results suggest an essential role for polyamines in the structural and functional integrity of the large ribosomal subunit.  相似文献   

15.
The biogenesis of the large (60S) ribosomal subunit in eukaryotes involves nucleolar, nucleoplasmic, and cytoplasmic steps. The cytoplasmic protein Rei1, found in all eukaryotes, was previously shown to be necessary for the nuclear reimport of 60S subunit export factor Arx1. In this study we investigate the function of Reh1, a protein with high sequence similarity to Rei1. We demonstrate an overlapping function for Reh1 and Rei1 in the cytoplasmic maturation of the 60S subunit that is independent of Arx1 recycling. We observe that strains lacking both Reh1 and Rei1 accumulate salt-labile 60S subunits, suggesting that Reh1/Rei1 is necessary for the cytoplasmic 60S subunit to adopt its mature, stable form.Eukaryotic ribosomes are the products of a highly conserved assembly process involving more than 170 trans-acting biogenesis factors, around 75 ribosomal proteins (r-proteins), and four rRNAs (8, 10, 42). The small (40S) and large (60S) ribosomal subunits are assembled independently, first in the nucleolus and then the nucleoplasm, followed by export to the cytoplasm. Evidence suggests that the newly exported cytoplasmic pre-60S particle requires a slow maturation step before entering the pool of translating ribosomes (33, 40, 44). The exact nature of cytoplasmic 60S maturation is not well understood but is thought to involve the following steps: (i) the loading of a number of r-proteins, including Rpp0, Rpl7, Rpl10, and Rpl24; (ii) the dissociation and reimport of a small number of nonribosomal factors to the nucleus; and (iii) stabilizing structural rearrangements (43).The cytoplasmic protein Rei1 is necessary for the nuclear recycling of Arx1 (19, 27), a 60S subunit export factor (5, 20). Rei1 is conserved in all eukaryotes but absent from archaea and bacteria, suggesting an important eukaryote-specific cellular function (11). In Saccharomyces cerevisiae and a limited number of fungal organisms, an Rei1-related factor named Reh1 is also present. Reh1, like Rei1, is a cytoplasmic protein (18) with three U1-type C2H2 zinc fingers (InterPro number IPR003604), and the two proteins share 34% sequence identity and 54% sequence similarity. Previous studies indicated a degree of functional redundancy between Reh1 and Rei1, as a double deletion of REH1 and REI1 results in a synthetic growth defect (22), and overexpression of REH1 can partially suppress the rei1Δ cold-sensitive growth phenotype (22, 27). However, the overlapping functions of Reh1 and Rei1 were suggested to be unrelated to 60S subunit ribosome biogenesis based on several observations: (i) polysome profiles and rRNA processing were not affected in the reh1Δ strain (26, 27); (ii) depletion of Reh1 in the rei1Δ background did not significantly increase rRNA maturation defects observed in rei1Δ cells (26); and (iii) 60S subunit export was not affected by depletion of Reh1 in rei1Δ cells (26).Here, we investigate the overlapping functions of Reh1 and Rei1 and find strong evidence that Reh1 is involved in cytoplasmic 60S subunit biogenesis. Like Rei1, Reh1 is associated with newly synthesized 60S subunits and cytoplasmic biogenesis factors. Further, the synthetic growth defect observed in reh1Δ rei1Δ strains is independent of Arx1 recycling and correlates with severe defects in polysome profiles, subunit joining, and 60S subunit stability. We conclude that Rei1, in addition to its role in Arx1 recycling, acts redundantly with Reh1 to directly promote a stabilizing structural rearrangement in cytoplasmic 60S subunit maturation.  相似文献   

16.
17.
Summary The ultrastructure of Drosophila melanogaster cytoplasmic ribosomal subunits and monomers have been examined by electron microscopy. The Drosophila ribosomal structures are compared to those determined for other eucaryotes and E. coli. Negatively contrasted images of 60S subunits are seen in the most frequent view to be approximately round particles about 280 Å in diameter. About 35% of the particles present a single prominent projection which we call the 60S peak. The peak emanates from a flattened region of the 60S subunit. The maximum observed length of the 60S peak is approximately 90Å. The Drosophila 60S peak is highly reminiscent of the E. coli L7/L12 stalk. The Drosophila 40S subunit is an elongated, slightly bent particle which measures 280×170×160 Å. It bears a strong resemblance to small ribosomal subunits of other eucaryotes and is strikingly similar to the E. coli 30S subunit. Micrographs of 80S monomeric ribosomes show the long axis of the 40S to be parallel and in apparent contact with the flattened region of 60S subunit. The 60S peak appears to bisect the long axis of the 40S subunit. The 40S subunit seems to be oriented in the monomeric ribosome so that the 40S projection is toward the body of the large subunit. Comparison of our data with similar studies in different organisms indicates that the eucaryotic large ribosomal subunits exhibit morphological heterogeneity while the small subunits remain remarkably similar.  相似文献   

18.
Beachy RN 《Plant physiology》1980,65(5):990-994
Messenger RNAs (mRNAs), isolated from immature soybean (Glycine max L., Merr.) seeds, that bound to oligo(dT)-cellulose were fractionated by centrifugation in sucrose density gradients containing dimethyl sulfoxide. mRNAs with sedimentation values between 21S and 25S coded for the in vitro translation of polypeptides with electrophoretic mobilities similar to those of the α′ and α subunits of the 7S seed storage protein. High pressure liquid chromatographic analyses of the trypsin-induced fragments (“column fingerprinting”) verified that the polypeptides produced in vitro were closely related to authentic α′ and α subunits.  相似文献   

19.
The functional significance of ribosomal proteins is still relatively unclear. Here, we examined the role of small subunit protein S20 in translation using both in vivo and in vitro techniques. By means of lambda red recombineering, the rpsT gene, encoding S20, was removed from the chromosome of Salmonella enterica var. Typhimurium LT2 to produce a ΔS20 strain that grew markedly slower than the wild type while maintaining a wild-type rate of peptide elongation. Removal of S20 conferred a significant reduction in growth rate that was eliminated upon expression of the rpsT gene on a high-copy-number plasmid. The in vitro phenotype of mutant ribosomes was investigated using a translation system composed of highly active, purified components from Escherichia coli. Deletion of S20 conferred two types of initiation defects to the 30S subunit: (i) a significant reduction in the rate of mRNA binding and (ii) a drastic decrease in the yield of 70S complexes caused by an impairment in association with the 50S subunit. Both of these impairments were partially relieved by an extended incubation time with mRNA, fMet-tRNAfMet, and initiation factors, indicating that absence of S20 disturbs the structural integrity of 30S subunits. Considering the topographical location of S20 in complete 30S subunits, the molecular mechanism by which it affects mRNA binding and subunit docking is not entirely obvious. We speculate that its interaction with helix 44 of the 16S ribosomal RNA is crucial for optimal ribosome function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号