首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
调查鲍曼不动杆菌的临床分布及其对抗菌药物的耐药情况,为临床合理用药提供依据。将哈尔滨医科大学第一附属医院临床各种来源的鲍曼不动杆菌1582株采用K-B法进行药敏试验,并对结果进行统计分析。2008至2010年共检出鲍曼不动杆菌1582株,临床分布以ICU最多(484株,占54.5%)。对抗菌药物的耐药率逐年增高,ICU抗菌药物的耐药率明显高于非ICU病区。该菌株对临床常用抗菌药物高度耐药和多重耐药,对亚胺培南和美罗培南耐药率高达90.9%和90.3%。鲍曼不动杆菌耐药情况相对严重,临床须重视鲍曼不动杆菌的感染,加强院內感染的控制及耐药性的监测,根据药敏结果选择合适抗生素,延缓耐药性进程。  相似文献   

2.
了解本院肺部感染患者分离的鲍氏不动杆菌的耐药性。分析了自2007—2008年本院肺部感染患者分离的鲍氏不动杆菌的耐药性资料。2a间本院从肺部感染患者的痰标本中共分离到鲍氏不动杆菌124株,80%以上来源于ICU及神经内、外科,这些分离株对阿米卡星、环丙沙星及头孢他啶等抗生素高度耐药,对头孢吡肟仍保持较高敏感,尚未发现对亚胺培南及美洛培南的耐药株。临床医生要重视病原学监测,合理使用抗生素,避免耐药茵株的产生和流行。  相似文献   

3.
The opportunistic human pathogen Acinetobacter baumannii persists in the healthcare setting because of its ability to survive exposure to various antimicrobial and sterilization agents. A. baumannii’s ability to cause multiple infection types complicates diagnosis and treatment. Rapid detection of A. baumannii infections would likely improve treatment outcomes. Recently published Acinetobacter glycoproteomic data show the prevalence of O-linked glycoproteins, suggesting the possibility for an O-glycan-based detection technology. O-glycan biosynthesis is required for protein glycosylation and capsular polysaccharide production in A. baumannii. Recent publications demonstrate key roles for protein glycosylation and capsular polysaccharide in the pathogenicity of A. baumannii. Targeted antimicrobial development against O-glycan biosynthesis may produce new effective treatment options for A. baumannii infections. Here, we discuss how the data gathered through Acinetobacter glycoproteomics can be used to develop technologies for rapid diagnosis and reveal potential antimicrobial targets. In addition, we consider the efficacy of glycoconjugate vaccine development against A. baumannii.  相似文献   

4.
Acinetobacter baumannii is an important opportunistic pathogeq in hospital, and tile multidrug-resistant isolates of A. haumannii have been increasingly reported i,a recent years. A num- ber of different mechanisms of resistance have been reported, some of which are associated with plasmid-mediated acquisition of genes. Therefore, studies on plasmids in A. haumannii have been a hot issue lately. We have performed complete genome sequencing of A. haumannii MDR-TJ, which is a multidrug-resistant isolate. Finalizing the remaining large scaffold of the previous assem- bly, we found a new plasmid pABTJ2, which carries many phage-like elements. The plasmid pAB- TJ2 is a circular double-stranded DNA molecule, which is 110,967 bp in length. We annotated 125 CDSs from pABTJ2 using IMG ER and ZCURVE_V, accounting lbr 88.28% of the whole plasmid sequence. Many phage-like elements and a tRNA-coding gene were detected in pABTJ2, which is rarely reported among A. haumannii. The tRNA gene is specific for asparagine codon GTT, which may be a small chromosomal sequence picked up through incorrect excision during plasmid forma- tion. The phage-like elements may have been acquired during the integration process, as the GC content of the region carrying phage-like elements was higher than that of the adjacent regions. The finding of phage-like elements and tRNA-coding gene in pABTJ2 may provide a novel insight into the study of A. haumannii pan-plasmidome.  相似文献   

5.
Hong  Nan  Lei  Yan  Chen  Huan  Chen  Xiaofei  Tsui  Kin Ming  Hu  Danyang  Liao  Wanqing  Yan  Liang  Zhang  Hong  Zhao  Rongfen  Wu  Gang  Yu  Nong  Deng  Shuwen 《Mycopathologia》2022,187(2-3):217-224
Mycopathologia - A total of 244 Candida albicans isolates recovered from vulvovaginal candidiasis (VVC) patients in Suzhou, Eastern China, were investigated. According to CLSI documents M27-A4 and...  相似文献   

6.
Tomato chlorosis virus (ToCV) is a whitefly‐transmitted, phloem‐limited, bipartite Crinivirus. In 2012, severe interveinal symptoms characteristic of ToCV infections were observed in greenhouse tomato plants in the Shandong province of China. High levels of infestation by whiteflies (Bemisia tabaci), which transmit ToCV, were also observed on tomato plants in all the greenhouses investigated. The presence of ToCV was confirmed by specific RT‐PCR either in the sampled plants or in the whiteflies collected from the ventral surface of the leaves of diseased plants. The complete genomic nucleotide sequences (RNA1 and RNA2) of the Shandong isolate of ToCV (ToCV‐SDSG) were determined and analysed. ToCV‐SDSG RNA1 consisted of 8594 nucleotides encompassing four open reading frames (ORFs). ToCV‐SDSG RNA2 consisted of 8242 nucleotides encompassing nine ORFs. Phylogenetic analysis suggests that the Chinese ToCV‐SDSG isolate is most similar to the ToCV‐Florida isolate.  相似文献   

7.
B Li  Y Yi  Q Wang  PC Woo  L Tan  H Jing  GF Gao  CH Liu 《PloS one》2012,7(7):e42280

Background

The rates of multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) isolates among Enterobacteriaceae isolates, particularly Klebsiella pneumoniae, have risen substantially worldwide.

Methodology/Principal Findings

To better understand the molecular mechanisms of drug resistance in K. pneumoniae, we analyzed the drug resistance determinants for K. pneumoniae isolates collected from the 306 Hospital, a tertiary-care hospital in Beijing, China, for the period of September 1, 2010-October 31, 2011. Drug susceptibility testing, PCR amplification and sequencing of the drug resistance determinants were performed. Conjugation experiments were conducted to examine the natural ability of drug resistance to disseminate among Enterobacteriaceae strains using a sodium azide-resistant Escherichia coli J53 strain as a recipient. Among the 223 consecutive non-repetitive K. pneumoniae isolates included in this study, 101 (45.3%) were extended-spectrum beta-lactamases (ESBLs) positive. The rates of MDR, XDR, and PDR isolates were 61.4% (n = 137), 22.0% (n = 49), and 1.8% (n = 4), respectively. Among the tested drug resistance-associated genes, the following ones were detected at relatively high rates bla CTX-M-10 (80, 35.9%), aacC2 (73, 32.7%), dhfr (62, 27.8%), qnrS (58, 26.0%), aacA4 (57, 25.6%), aadA1 (56, 25.1%). Results from conjugation experiments indicate that many of the drug resistance genes were transmissible.

Conclusions/Significance

Our data give a “snapshot” of the complex genetic background responsible for drug resistance in K. pneumoniae in China and demonstrate that a high degree of awareness and monitoring of those drug resistance determinants are urgently needed in order to better control the emergence and transmission of drug-resistant K. pneumoniae isolates in hospital settings.  相似文献   

8.
Acinetobacter baumannii is a multidrug-resistant pathogen associated with hospital outbreaks of infection across the globe, particularly in the intensive care unit. The ability of A. baumannii to survive in the hospital environment for long periods is linked to antibiotic resistance and its capacity to form biofilms. Here we studied the prevalence, expression, and function of the A. baumannii biofilm-associated protein (Bap) in 24 carbapenem-resistant A. baumannii ST92 strains isolated from a single institution over a 10-year period. The bap gene was highly prevalent, with 22/24 strains being positive for bap by PCR. Partial sequencing of bap was performed on the index case strain MS1968 and revealed it to be a large and highly repetitive gene approximately 16 kb in size. Phylogenetic analysis employing a 1,948-amino-acid region corresponding to the C terminus of Bap showed that BapMS1968 clusters with Bap sequences from clonal complex 2 (CC2) strains ACICU, TCDC-AB0715, and 1656-2 and is distinct from Bap in CC1 strains. By using overlapping PCR, the bapMS1968 gene was cloned, and its expression in a recombinant Escherichia coli strain resulted in increased biofilm formation. A Bap-specific antibody was generated, and Western blot analysis showed that the majority of A. baumannii strains expressed an ∼200-kDa Bap protein. Further analysis of three Bap-positive A. baumannii strains demonstrated that Bap is expressed at the cell surface and is associated with biofilm formation. Finally, biofilm formation by these Bap-positive strains could be inhibited by affinity-purified Bap antibodies, demonstrating the direct contribution of Bap to biofilm growth by A. baumannii clinical isolates.  相似文献   

9.
The genus Acinetobacter is ubiquitous in soil, aquatic, and sediment environments and includes pathogenic strains, such as A. baumannii. Many Acinetobacter species isolated from various environments have biotechnological potential since they are capable of degrading a variety of pollutants. Acinetobacter sp. strain DR1 has been identified as a diesel degrader. Here we report the complete genome sequence of Acinetobacter sp. DR1 isolated from the soil of a rice paddy.The genus Acinetobacter appears to be metabolically versatile and has the ability to degrade aliphatic hydrocarbon, thus making it an organism of interest for its possible bioremediational potential (9). Despite its biotechnological potential, the majority of genome projects conducted with Acinetobacter species have focused on pathogenic strains of A. baumannii. Currently, the only available whole-genome sequence of environmental isolates is that of A. baylyi ADP1 (2). Acinetobacter sp. strain DR1 was isolated from the soil of rice paddies, located in Deok-So (Korea University Agricultural Station), in the Kyonggi province of South Korea. Strain DR1 is capable of utilizing aliphatic hydrocarbons and diesel oil (5). Similarly to A. baylyi ADP1, this strain is also competent for natural transformation. We demonstrated previously that sodium chloride added to the medium induces the overproduction of exopolysaccharide (EPS), which evidences protective activity against diesel toxicity (4). Interestingly, DR1 possesses a quorum sensing (QS) system, which has been shown to play a significant role in biofilm formation and hexadecane biodegradation. The results of proteomic studies have demonstrated that the QS system regulates a broad variety of proteins (6). Collectively, our findings demonstrate that DR1 has profound potential for environmental applications and is an environmental isolate distinct from pathogenic strains, thus indicating that the whole-genome sequencing of DR1 is a worthwhile pursuit.Initial pyrosequencing using a GS-FLX system (454 Life Science Corporation) generated 652,162 reads (264,482,836 nucleotides; 64.3-fold coverage), which were assembled into 56 contigs. To determine the order of the contigs, 1,248 fosmid clones were constructed with an average insert size of 35 kb (10.5-fold coverage). The fosmid-end sequencing of 936 clones generated 1,372,452 bp. These high-quality Sanger reads allowed the assembly of 41 large contigs into 2 scaffolds containing 38 gaps. The gaps were filled via primer walking. All procedures for genome sequencing and gap filling were conducted by Macrogen (Seoul, South Korea). Protein coding regions were predicted with the GLIMMER3 software program (3), and automatic genome annotation was conducted on a RAST server (1) and the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP). The tRNA and rRNA genes were annotated using the tRNAScan-SE (8) and RNAmmer software programs (7), respectively. The genome of Acinetobacter sp. DR1 consists of a circular 4,152,543-bp chromosome with a G+C content of 38%, 3,874 predicted coding sequences, and 71 tRNAs. There are 6 rRNA operons with a 16S, tRNA-Ile, tRNA-Ala, 23S, 5S organization. The genes studied previously were clearly identified via genome sequencing (4, 5, 6). The availability of the complete genome sequence of Acinetobacter sp. strain DR1 will contribute to an in-depth understanding of the genetic potentials of Acinetobacter species.  相似文献   

10.
The diversity of clinical (n = 92) and oral and digestive commensal (n = 120) isolates of Streptococcus salivarius was analyzed by multilocus sequence typing (MLST). No clustering of clinical or commensal strains can be observed in the phylogenetic tree. Selected strains (92 clinical and 46 commensal strains) were then examined for their susceptibilities to tetracyclines, macrolides, lincosamides, aminoglycosides, and phenicol antibiotics. The presence of resistance genes tet(M), tet(O), erm(A), erm(B), mef(A/E), and catQ and associated genetic elements was investigated by PCR, as was the genetic linkage of resistance genes. High rates of erythromycin and tetracycline resistance were observed among the strains. Clinical strains displayed either the erm(B) (macrolide-lincosamide-streptogramin B [MLSB] phenotype) or mef(A/E) (M phenotype) resistance determinant, whereas almost all the commensal strains harbored the mef(A/E) resistance gene, carried by a macrolide efflux genetic assembly (MEGA) element. A genetic linkage between a macrolide resistance gene and genes of Tn916 was detected in 23 clinical strains and 5 commensal strains, with a predominance of Tn3872 elements (n = 13), followed by Tn6002 (n = 11) and Tn2009 (n = 4) elements. Four strains harboring a mef(A/E) gene were also resistant to chloramphenicol and carried a catQ gene. Sequencing of the genome of one of these strains revealed that these genes colocalized on an IQ-like element, as already described for other viridans group streptococci. ICESt3-related elements were also detected in half of the isolates. This work highlights the potential role of S. salivarius in the spread of antibiotic resistance genes both in the oral sphere and in the gut.  相似文献   

11.
多重耐药鲍曼不动杆菌耐药性分析及抗菌治疗   总被引:7,自引:0,他引:7  
目的了解多重耐药鲍曼不动杆菌耐药谱和临床特点。方法分析2004年12月-2005年9月分离自住院患者标本的鲍曼不动杆菌耐药性资料及其治疗情况。结果从163株标本中分离出156株多重耐药鲍曼不动杆菌,对头孢哌酮/舒巴坦耐药率最低(20.51%),其次是亚胺培南(38.46%);临床常用6种抗菌药物治疗差异有显著性。结论对多重耐药鲍曼不动杆菌感染的患者应以亚胺培南/西司他丁和β-内酰胺酶抗菌抑制剂作为第一线抗菌药物。病情严重尤其是全耐药时可联合用药,可提高效果。  相似文献   

12.
13.

Background

Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus.

Methodology/Principal Findings

The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed.

Conclusion

The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas.  相似文献   

14.
The fungal ATP-binding cassette (ABC) transporter Cdr1 protein (Cdr1p), responsible for clinically significant drug resistance, is composed of two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). We have probed the nature of the drug binding pocket by performing systematic mutagenesis of the primary sequences of the 12 transmembrane segments (TMSs) found in the TMDs. All mutated proteins were expressed equally well and localized properly at the plasma membrane in the heterologous host Saccharomyces cerevisiae, but some variants differed significantly in efflux activity, substrate specificity, and coupled ATPase activity. Replacement of the majority of the amino acid residues with alanine or glycine yielded neutral mutations, but about 42% of the variants lost resistance to drug efflux substrates completely or selectively. A predicted three-dimensional homology model shows that all the TMSs, apart from TMS4 and TMS10, interact directly with the drug-binding cavity in both the open and closed Cdr1p conformations. However, TMS4 and TMS10 mutations can also induce total or selective drug susceptibility. Functional data and homology modeling assisted identification of critical amino acids within a drug-binding cavity that, upon mutation, abolished resistance to all drugs tested singly or in combinations. The open and closed Cdr1p models enabled the identification of amino acid residues that bordered a drug-binding cavity dominated by hydrophobic residues. The disposition of TMD residues with differential effects on drug binding and transport are consistent with a large polyspecific drug binding pocket in this yeast multidrug transporter.  相似文献   

15.
The whole genome analysis of two strains of the first intermediately pathogenic leptospiral species to be sequenced (Leptospira licerasiae strains VAR010 and MMD0835) provides insight into their pathogenic potential and deepens our understanding of leptospiral evolution. Comparative analysis of eight leptospiral genomes shows the existence of a core leptospiral genome comprising 1547 genes and 452 conserved genes restricted to infectious species (including L. licerasiae) that are likely to be pathogenicity-related. Comparisons of the functional content of the genomes suggests that L. licerasiae retains several proteins related to nitrogen, amino acid and carbohydrate metabolism which might help to explain why these Leptospira grow well in artificial media compared with pathogenic species. L. licerasiae strains VAR010T and MMD0835 possess two prophage elements. While one element is circular and shares homology with LE1 of L. biflexa, the second is cryptic and homologous to a previously identified but unnamed region in L. interrogans serovars Copenhageni and Lai. We also report a unique O-antigen locus in L. licerasiae comprised of a 6-gene cluster that is unexpectedly short compared with L. interrogans in which analogous regions may include >90 such genes. Sequence homology searches suggest that these genes were acquired by lateral gene transfer (LGT). Furthermore, seven putative genomic islands ranging in size from 5 to 36 kb are present also suggestive of antecedent LGT. How Leptospira become naturally competent remains to be determined, but considering the phylogenetic origins of the genes comprising the O-antigen cluster and other putative laterally transferred genes, L. licerasiae must be able to exchange genetic material with non-invasive environmental bacteria. The data presented here demonstrate that L. licerasiae is genetically more closely related to pathogenic than to saprophytic Leptospira and provide insight into the genomic bases for its infectiousness and its unique antigenic characteristics.  相似文献   

16.
目的:了解我院临床分离肠球菌的分布特征及耐药现状,为临床合理用药提供依据。方法:对我院2010年1月至2012年12月期间所有临床分离的肠球菌分布情况及药敏结果进行回顾性分析。结果:临床共分离肠球菌242株,粪肠球菌分离率(55.0%)高于屎肠球菌(40.9%),屎肠球菌分离率有增高的趋势。标本来源以尿液(62.9%)、分泌物(10.3%)、血液(6.9%)为主。肠球菌对万古霉素、替考拉宁的敏感性最高,均高于90%。发现耐万古霉素的肠球菌(VRE)7株,其中5株同时耐高浓度的氨基糖苷类抗生素(HLAR);对克林霉素、复方磺胺、阿米卡星、庆大霉素、妥布霉素、苯唑西林耐、头孢西丁耐药率最高,均高于95%。屎肠球菌对青霉素类、氨苄西林、红霉素、呋喃妥因、环丙沙星耐药率均高于粪肠球菌;对四环素、奎努普丁/达福普汀耐药率低于粪肠球菌。结论:肠球菌是临床感染重要病原菌,且具有多重耐药性,屎肠球菌和粪肠球菌耐药水平差异较大,临床应根据药敏结果合理选择抗菌药物。  相似文献   

17.
B. Wang    M. Li    C. Han    D. Li    J. Yu 《Journal of Phytopathology》2008,156(7-8):487-488
The complete nucleotide sequences of two Chinese isolates of Beet soil-borne virus (BSBV) from the Inner Mongolia and Xinjiang provinces (designated BSBV-IM and BSBV-XJ, respectively) were found to share around 99% sequence identity with that of a previously reported German isolate (BSBV-G). The genome organization of the three isolates was identical. A diversity index (Pi) analysis indicated that the overall nucleotide variability of all RNAs among the three isolates was <7%, only for the 5' part of the first triple gene block gene on RNA3 was it >6%. Although the 3' end of BSBV RNA 3 was previously reported to be highly variable, the results of this study show that the total BSBV genomes are considerably conserved, especially RNAs 1 and 2.  相似文献   

18.
We report here the complete genome sequence of a human echovirus type 30 strain ECV30/GX10/05 isolated in Guangxi, China, in 2010. Phylogenetic analysis showed that ECV30/GX10/05 was closely related to a Korean strain isolated in 2008. The sequence information will help in an understanding of the molecular epidemiology and evolution of echovirus.  相似文献   

19.
由细菌超广谱β-内酰胺酶(ESBLs)引起的细菌耐药性一直是临床相关感染性疾病治疗中的棘手问题。从不同病区患者标本中分离了96株大肠埃希菌和80株肺炎克雷伯菌,分剐采用双纸片协同试验和药物敏感试验检测了上述菌株产生ESBLs情况及对17种抗生素的耐药性。结果发现,27.1%(26/96)的大肠埃希菌株和22.5%(18/80)肺炎克雷伯菌株产ESBLs。ICU病房分离的大肠埃希菌和肺炎克雷伯菌株ESBLs总阳性率(46.0%)与介入科病房和烧伤科病房分离菌株ESBLs总阳性率(28.6%和25.0%)无显著性差异(P〉0.05),但明显高于呼吸科、骨科、其他病房及门诊部分离菌株ESBLs总阳性率(6.3%~14.3%,P〈0.01)。不产ESBLs大肠埃希菌株和肺炎克雷伯菌株对17种抗生素耐药率明显低于产ESBLs菌株。产ESBLs大肠埃希菌和肺炎克雷伯菌对氨曲南均敏感,对氨苄西林/舒巴坦、阿莫西林/棒酸、阿米卡星耐药率仅为15.8%-23.4%。上述实验结果提示,大肠埃希菌和肺炎克雷伯菌临床菌株中有较高的ESBLs阳性率,不同病区患者感染的大肠埃希菌和肺炎克雷伯菌ESBLs阳性率有很大差异,氨曲南、氨苄西林/舒巴坦、阿莫西林/棒酸、阿米卡星可作为治疗产ESBLs大肠埃希菌和肺炎克雷伯菌感染性疾病的首选药物。  相似文献   

20.
Wolbachia endosymbionts are ubiquitously found in diverse insects including many medical and hygienic pests, causing a variety of reproductive phenotypes, such as cytoplasmic incompatibility, and thereby efficiently spreading in host insect populations. Recently, Wolbachia-mediated approaches to pest control and management have been proposed, but the application of these approaches has been hindered by the lack of genetic transformation techniques for symbiotic bacteria. Here, we report the genome and structure of active bacteriophages from a Wolbachia endosymbiont. From the Wolbachia strain wCauB infecting the moth Ephestia kuehniella two closely related WO prophages, WOcauB2 of 43,016 bp with 47 open reading frames (ORFs) and WOcauB3 of 45,078 bp with 46 ORFs, were characterized. In each of the prophage genomes, an integrase gene and an attachment site core sequence were identified, which are putatively involved in integration and excision of the mobile genetic elements. The 3′ region of the prophages encoded genes with sequence motifs related to bacterial virulence and protein-protein interactions, which might represent effector molecules that affect cellular processes and functions of their host bacterium and/or insect. Database searches and phylogenetic analyses revealed that the prophage genes have experienced dynamic evolutionary trajectories. Genes similar to the prophage genes were found across divergent bacterial phyla, highlighting the active and mobile nature of the genetic elements. We suggest that the active WO prophage genomes and their constituent sequence elements would provide a clue to development of a genetic transformation vector for Wolbachia endosymbionts.Members of the genus Wolbachia are endosymbiotic bacteria belonging to the Alphaproteobacteria and infecting a wide range of arthropods, including over 60% of insect species, and some filarial nematodes. They are vertically transmitted through the maternal germ line of their host and are known to distort host reproduction by causing cytoplasmic incompatibility (CI), parthenogenesis, male killing, or feminization. The ability of Wolbachia to cause these reproductive phenotypes is thought to be responsible for their efficient and rapid spread into host populations (5, 21, 35, 51).Recently, Wolbachia-mediated pest control approaches have been proposed. A number of insect pests that have important medical and hygienic consequences, such as tsetse flies and mosquitoes that vector devastating human pathogens including African sleeping disease trypanosomes, malaria plasmodia, dengue viruses, Japanese encephalitis viruses, and others, often also carry Wolbachia infections (8, 24, 25, 34). In theory, if maternally transmitted genetic elements coinherited with a CI-inducing Wolbachia, such as mitochondria, the Wolbachia itself, or other coinfecting endosymbionts, are transformed with a gene of interest (like a gene that confers resistance of the vector insect against the pathogen infection), the genetic trait is expected to be spread and fixed in the host insect population, driven by the symbiont-induced reproductive phenotype (1, 2, 10, 11, 13, 32, 43, 44). The paratransgenesis and Wolbachia-driven population replacement approaches are, although potentially promising in controlling such insect-borne diseases, still at a conceptual stage mainly because no technique has been available for Wolbachia transformation.For genetic transformation of bacteria, mobile genetic elements such as plasmids, bacteriophages, and transposons have been used successfully. For example, pUC plasmids, λ phages, and transposons have been widely utilized for transforming Escherichia coli and other model bacterial species (38). While few plasmids and transposons have been reported from Wolbachia, a family of bacteriophages, called WO phages, has been detected from a diverse array of Wolbachia strains (3, 6, 7, 12, 17, 18, 31, 39, 49). For example, in the genomes of the Wolbachia strains wMel from the fruit fly Drosophila melanogaster and wPip from the mosquito Culex quinquefasciatus, three and five WO prophages are present, respectively (26, 52). Many of the prophages are pseudogenized and inactive while some are active and capable of producing phage particles (4, 7, 15, 17, 30, 40). Such active WO phage elements may provide tools for genetic transformation of Wolbachia endosymbionts.λ phage and many other temperate bacteriophages alternate between lytic phase and lysogenic phase in their life cycles. In the lytic phase, phage particles are produced and released via host cell lysis for infection to new host cells. In the lysogenic phase, the phage genome is integrated into the host genome via a site-specific recombination process, and the integrated phage genome, called prophage, is maintained in the host genome and multiplies together with the host DNA replication (38). Upon infection and lysogenic integration of λ phage, both ends of the linear phage genomic DNA are connected by DNA ligase, and the resultant circular phage genome is inserted into the E. coli genome by site-specific recombination at a region containing a core sequence of an attachment (att) site (28). att sites on the phage genome and the bacterial genome are called attP (phage att site) and attB (bacterial att site), respectively. After integration, attP and attB are located on both ends of the prophage, called attL (left prophage att site) and attR (right prophage att site), respectively. The integration and excision processes are mediated by a site-specific recombinase, called λ integrase, encoded in the phage genome (see Fig. S1 in the supplemental material) (27, 50). Hence, the att site and the integrase are the pivotal functional elements that mediate site-specific integration and excision of λ phage. Considering the structural similarity between λ phage and WO phage (31), identification of the att site and integrase from WO phage is of interest in that these elements could be utilized for delivering foreign genes into the Wolbachia genome.In order to identify a functional att site and integrase of WO phage, the complete genome sequences of active prophage elements producing phage particles should be determined. Here, the Wolbachia strain wCauB derived from the almond moth Cadra cautella was investigated because wCauB was reported to actively produce phage particles, and a partial genome sequence of its WO phage has been determined (15). In the original host insect, C. cautella, wCauB coexists with another Wolbachia strain wCauA, and both cause CI phenotypes and produce phage particles (15, 41). Not to be confounded by the coinfecting Wolbachia strains, we used a transfected line of the Mediterranean flour moth Ephestia kuehniella infected with wCauB only, which was generated by interspecific ooplasm transfer (42). It should be noted that a mass preparation procedure for WO phage particles by centrifugation has been established for the wCauB-infected E. kuehniella (15).In this study, we determined the complete genome sequences of two active WO prophages, named WOcauB2 and WOcauB3, that are capable of producing phage particles and that are located on the genome of the Wolbachia strain wCauB. Furthermore, we identified core sequences of att sites and integrase genes of these WO phages that are putatively involved in integration of the genetic elements into the Wolbachia genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号