首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antimicrobial peptides are important as the first line of innate defense, through their tendency to disrupt bacterial membranes or intracellular pathways and potentially as the next generation of antibiotics. How they protect wet epithelia is not entirely clear, with most individually inactive under physiological conditions and many preferentially targeting Gram-positive bacteria. Tears covering the surface of the eye are bactericidal for Gram-positive and -negative bacteria. Here we narrow much of the bactericidal activity to a latent C-terminal fragment in the prosecretory mitogen lacritin and report that the mechanism combines membrane permeabilization with rapid metabolic changes, including reduced levels of dephosphocoenzyme A, spermidine, putrescine, and phosphatidylethanolamines and elevated alanine, leucine, phenylalanine, tryptophan, proline, glycine, lysine, serine, glutamate, cadaverine, and pyrophosphate. Thus, death by metabolic stress parallels cellular attempts to survive. Cleavage-dependent appearance of the C-terminal cationic amphipathic α-helix is inducible within hours by Staphylococcus epidermidis and slowly by another mechanism, in a chymotrypsin- or leupeptin protease-inhibitable manner. Although bactericidal at low micromolar levels, within a biphasic 1–10 nm dose optimum, the same domain is mitogenic and cytoprotective for epithelia via a syndecan-1 targeting mechanism dependent on heparanase. Thus, the C terminus of lacritin is multifunctional by dose and proteolytic processing and appears to play a key role in the innate protection of the eye, with wider potential benefit elsewhere as lacritin flows from exocrine secretory cells.  相似文献   

2.
Sir2 is a central regulator of yeast aging and its deficiency increases daughter cell inheritance of stress- and aging-induced misfolded proteins deposited in aggregates and inclusion bodies. Here, by quantifying traits predicted to affect aggregate inheritance in a passive manner, we found that a passive diffusion model cannot explain Sir2-dependent failures in mother-biased segregation of either the small aggregates formed by the misfolded Huntingtin, Htt103Q, disease protein or heat-induced Hsp104-associated aggregates. Instead, we found that the genetic interaction network of SIR2 comprises specific essential genes required for mother-biased segregation including those encoding components of the actin cytoskeleton, the actin-associated myosin V motor protein Myo2, and the actin organization protein calmodulin, Cmd1. Co-staining with Hsp104-GFP demonstrated that misfolded Htt103Q is sequestered into small aggregates, akin to stress foci formed upon heat stress, that fail to coalesce into inclusion bodies. Importantly, these Htt103Q foci, as well as the ATPase-defective Hsp104Y662A-associated structures previously shown to be stable stress foci, co-localized with Cmd1 and Myo2-enriched structures and super-resolution 3-D microscopy demonstrated that they are associated with actin cables. Moreover, we found that Hsp42 is required for formation of heat-induced Hsp104Y662A foci but not Htt103Q foci suggesting that the routes employed for foci formation are not identical. In addition to genes involved in actin-dependent processes, SIR2-interactors required for asymmetrical inheritance of Htt103Q and heat-induced aggregates encode essential sec genes involved in ER-to-Golgi trafficking/ER homeostasis.  相似文献   

3.
The physiological role of autophagic flux within the vascular endothelial layer remains poorly understood. Here, we show that in primary endothelial cells, oxidized and native LDL stimulates autophagosome formation. Moreover, by both confocal and electron microscopy, excess native or modified LDL appears to be engulfed within autophagic structures. Transient knockdown of the essential autophagy gene ATG7 resulted in higher levels of intracellular 125I‐LDL and oxidized LDL (OxLDL) accumulation, suggesting that in endothelial cells, autophagy may represent an important mechanism to regulate excess, exogenous lipids. The physiological importance of these observations was assessed using mice containing a conditional deletion of ATG7 within the endothelium. Following acute intravenous infusion of fluorescently labeled OxLDL, mice lacking endothelial expression of ATG7 demonstrated prolonged retention of OxLDL within the retinal pigment epithelium (RPE) and choroidal endothelium of the eye. In a chronic model of lipid excess, we analyzed atherosclerotic burden in ApoE?/?mice with or without endothelial autophagic flux. The absence of endothelial autophagy markedly increased atherosclerotic burden. Thus, in both an acute and chronic in vivo model, endothelial autophagy appears critically important in limiting lipid accumulation within the vessel wall. As such, strategies that stimulate autophagy, or prevent the age‐dependent decline in autophagic flux, might be particularly beneficial in treating atherosclerotic vascular disease.  相似文献   

4.
Huntington disease (HD) is an inherited neurodegenerative disease resulting from an abnormal expansion of polyglutamine in huntingtin (Htt). Compromised oxidative stress defense systems have emerged as a contributing factor to the pathogenesis of HD. Indeed activation of the Nrf2 pathway, which plays a prominent role in mediating antioxidant responses, has been considered as a therapeutic strategy for the treatment of HD. Given the fact that there is an interrelationship between impairments in mitochondrial dynamics and increased oxidative stress, in this present study we examined the effect of mutant Htt (mHtt) on these two parameters. STHdhQ111/Q111 cells, striatal cells expressing mHtt, display more fragmented mitochondria compared to STHdhQ7/Q7 cells, striatal cells expressing wild type Htt, concurrent with alterations in the expression levels of Drp1 and Opa1, key regulators of mitochondrial fission and fusion, respectively. Studies of mitochondrial dynamics using cell fusion and mitochondrial targeted photo-switchable Dendra revealed that mitochondrial fusion is significantly decreased in STHdhQ111/Q111 cells. Oxidative stress leads to dramatic increases in the number of STHdhQ111/Q111 cells containing swollen mitochondria, while STHdhQ7/Q7 cells just show increases in the number of fragmented mitochondria. mHtt expression results in reduced activity of Nrf2, and activation of the Nrf2 pathway by the oxidant tBHQ is significantly impaired in STHdhQ111/Q111 cells. Nrf2 expression does not differ between the two cell types, but STHdhQ111/Q111 cells show reduced expression of Keap1 and p62, key modulators of Nrf2 signaling. In addition, STHdhQ111/Q111 cells exhibit increases in autophagy, whereas the basal level of autophagy activation is low in STHdhQ7/Q7 cells. These results suggest that mHtt disrupts Nrf2 signaling which contributes to impaired mitochondrial dynamics and may enhance susceptibility to oxidative stress in STHdhQ111/Q111 cells.  相似文献   

5.
6.
Protein conformational maladies such as Huntington Disease are characterized by accumulation of intracellular and extracellular protein inclusions containing amyloid-like proteins. There is an inverse correlation between proteotoxicity and aggregation, so facilitated protein aggregation appears cytoprotective. To define mechanisms for protective protein aggregation, a screen for suppressors of nuclear huntingtin (Htt103Q) toxicity was conducted. Nuclear Htt103Q is highly toxic and less aggregation prone than its cytosolic form, so we identified suppressors of cytotoxicity caused by Htt103Q tagged with a nuclear localization signal (NLS). High copy suppressors of Htt103Q-NLS toxicity include the polyQ-domain containing proteins Nab3, Pop2, and Cbk1, and each suppresses Htt toxicity via a different mechanism. Htt103Q-NLS appears to inactivate the essential functions of Nab3 in RNA processing in the nucleus. Function of Pop2 and Cbk1 is not impaired by nuclear Htt103Q, as their respective polyQ-rich domains are sufficient to suppress Htt103Q toxicity. Pop2 is a subunit of an RNA processing complex and is localized throughout the cytoplasm. Expression of just the Pop2 polyQ domain and an adjacent proline-rich stretch is sufficient to suppress Htt103Q toxicity. The proline-rich domain in Pop2 resembles an aggresome targeting signal, so Pop2 may act in trans to positively impact spatial quality control of Htt103Q. Cbk1 accumulates in discrete perinuclear foci and overexpression of the Cbk1 polyQ domain concentrates diffuse Htt103Q into these foci, which correlates with suppression of Htt toxicity. Protective action of Pop2 and Cbk1 in spatial quality control is dependent upon the Hsp70 co-chaperone Sti1, which packages amyloid-like proteins into benign foci. Protein:protein interactions between Htt103Q and its intracellular neighbors lead to toxic and protective outcomes. A subset of polyQ-rich proteins buffer amyloid toxicity by funneling toxic aggregation intermediates to the Hsp70/Sti1 system for spatial organization into benign species.  相似文献   

7.
Epithelial proliferation, critical for homeostasis, healing, and colon cancer progression, is in part controlled by epidermal growth factor receptor (EGFR). Proliferation of colonic epithelia can be induced by Citrobacter rodentium infection, and we have demonstrated that activity of tumor suppressor FOXO3 was attenuated after this infection. Thus the aim of this study was to determine the contribution of FOXO3 in EGFR-dependent proliferation of intestinal epithelia and colon cancer cell lines. In this study we show that, during infection with C. rodentium, EGFR was significantly phosphorylated in colonic mucosa and Foxo3 deficiency in this model lead to an increased number of bromodeoxyuridine-positive cells. In vitro, in human colon cancer cells, increased expression and activation of EGFR was associated with proliferation that leads to FOXO3 phosphorylation (inactivation). Following EGFR activation, FOXO3 was phosphorylated (via phosphatidylinositol 3-kinase/Akt) and translocated to the cytosol where it was degraded. Moreover, inhibition of proliferation by overexpressing FOXO3 was not reversed by the EGFR signaling, implicating FOXO3 as one of the regulators downstream of EGFR. FOXO3 binding to the promoter of the cell cycle inhibitor p27kip1 was decreased by EGFR signaling, suggesting its role in EGFR-dependent proliferation. In conclusion, we show that proliferation in colonic epithelia and colon cancer cells, stimulated by EGFR, is mediated via loss of FOXO3 activity and speculate that FOXO3 may serve as a target in the development of new pharmacological treatments of proliferative diseases.  相似文献   

8.
9.
Renewal of nongermative epithelia is poorly understood. The novel mitogen "lacritin" is apically secreted by several nongermative epithelia. We tested 17 different cell types and discovered that lacritin is preferentially mitogenic or prosecretory for those types that normally contact lacritin during its glandular outward flow. Mitogenesis is dependent on lacritin's C-terminal domain, which can form an alpha-helix with a hydrophobic face, as per VEGF's and PTHLP's respective dimerization or receptor-binding domain. Lacritin targets downstream NFATC1 and mTOR. The use of inhibitors or siRNA suggests that lacritin mitogenic signaling involves Galpha(i) or Galpha(o)-PKCalpha-PLC-Ca2+-calcineurin-NFATC1 and Galpha(i) or Galpha(o)-PKCalpha-PLC-phospholipase D (PLD)-mTOR in a bell-shaped, dose-dependent manner requiring the Ca2+ sensor STIM1, but not TRPC1. This pathway suggests the placement of transiently dephosphorylated and perinuclear Golgi-translocated PKCalpha upstream of both Ca2+ mobilization and PLD activation in a complex with PLCgamma2. Outward flow of lacritin from secretory cells through ducts may generate a proliferative/secretory field as a different unit of cellular renewal in nongermative epithelia where luminal structures predominate.  相似文献   

10.

Background

Autophagy is a bulk degradation pathway for long-lived proteins, protein aggregates, and damaged organelles. ULK1 protein kinase and Vps34 lipid kinase are two key autophagy regulators that are critical for autophagosome biogenesis. However, it isn’t fully understood how ULK1 regulates Vps34, especially in the context of disease. Polyglutamine expansion in huntingtin (Htt) causes aberrant accumulation of the aggregated protein and disrupts various cellular pathways including autophagy, a lysosomal degradation pathway, underlying the pathogenesis of Huntington’s disease (HD). Although autophagic clearance of Htt aggregates is under investigation as therapeutic strategy for HD, the precise mechanism of autophagy impairment remains poorly understood. Moreover, in-vivo assays of autophagy have been particularly challenging due to lack of reliable and robust molecular biomarkers.

Method

We generated anti-phosphorylated ATG14 antibody to determine ATG14-mediated autophagy regulation; we employed Huntington’s disease (HD) genetic cell models and animal models as well as autophagy reporter animal model to understand autophagy signaling and regulation in vivo. We applied biochemical analysis and molecular biology approaches to dissect the alteration of autophagy kinase activity and regulation.

Results

Here, we demonstrate that ULK1 phosphorylates ATG14 at serine 29 in an mTOR-dependent manner. This phosphorylation critically regulates ATG14-Vps34 lipid kinase activity to control autophagy level. We also show that ATG14-associated Vps34 activity and ULK1-mediated phosphorylation of ATG14 and Beclin 1 are compromised in the Q175 mouse model of Huntington’s disease. Finally, we show that ATG14 phosphorylation is decreased during general proteotoxic stress caused by proteasomal inhibition. This reduction of the specific phosphorylation of ATG14 and Beclin 1 is mediated, in part, by p62-induced sequestration of ULK1 to an insoluble cellular fraction. We show that increased ULK1 levels and phosphor-mimetic mutant ATG14 facilitate the clearance of polyQ mutant in cells.

Conclusion

Our study identifies a new regulatory mechanism for ATG14-Vps34 kinase activity by ULK1, which can be used as valuable molecular markers for in-vivo autophagic activity as well as potential therapeutic target for the clearance of polyglutamine disease protein.
  相似文献   

11.
Autophagosome formation requires multiple autophagy‐related (ATG) factors. However, we find that a subset of autophagy substrates remains robustly targeted to the lysosome in the absence of several core ATGs, including the LC3 lipidation machinery. To address this unexpected result, we performed genome‐wide CRISPR screens identifying genes required for NBR1 flux in ATG7KO cells. We find that ATG7‐independent autophagy still requires canonical ATG factors including FIP200. However, in the absence of LC3 lipidation, additional factors are required including TAX1BP1 and TBK1. TAX1BP1''s ability to cluster FIP200 around NBR1 cargo and induce local autophagosome formation enforces cargo specificity and replaces the requirement for lipidated LC3. In support of this model, we define a ubiquitin‐independent mode of TAX1BP1 recruitment to NBR1 puncta, highlighting that TAX1BP1 recruitment and clustering, rather than ubiquitin binding per se, is critical for function. Collectively, our data provide a mechanistic basis for reports of selective autophagy in cells lacking the lipidation machinery, wherein receptor‐mediated clustering of upstream autophagy factors drives continued autophagosome formation.  相似文献   

12.
Huntington's disease (HD) is an inherited progressive neurodegenerative disorder associated with involuntary abnormal movements (chorea), cognitive deficits and psychiatric disturbances. The disease is caused by an abnormal expansion of a CAG repeat located in exon 1 of the gene encoding the huntingtin protein (Htt) that confers a toxic function to the protein. The most striking neuropathological change in HD is the preferential loss of medium spiny GABAergic neurons in the striatum. The mechanisms underlying striatal vulnerability in HD are unknown, but compelling evidence suggests that mitochondrial defects may play a central role. Here we review recent findings supporting this hypothesis. Studies investigating the toxic effects of mutant Htt in cell culture or animal models reveal mitochondrial changes including reduction of Ca2+ buffering capacity, loss of membrane potential, and decreased expression of oxidative phosphorylation (OXPHOS) enzymes. Striatal neurons may be particularly vulnerable to these defects. One hypothesis is that neurotransmission systems such as dopamine and glutamate exacerbate mitochondrial defects in the striatum. In particular, mitochondrial dysfunction facilitates impaired Ca2+ homeostasis linked to the glutamate receptor-mediated excitotoxicity. Also dopamine receptors modulate mutant Htt toxicity, at least in part through regulation of the expression of mitochondrial complex II. All these observations support the hypothesis that mitochondria, acting as “sensors” of the neurochemical environment, play a central role in striatal degeneration in HD.  相似文献   

13.
14.
Throughout the body, the epithelial Na+ channel (ENaC) plays a critical role in salt and liquid homeostasis. In cystic fibrosis airways, for instance, improper regulation of ENaC results in hyperabsorption of sodium that causes dehydration of airway surface liquid. This dysregulation then contributes to mucus stasis and chronic lung infections. ENaC is known to undergo proteolytic cleavage, which is required for its ability to conduct Na+ ions. We have previously shown that the short, palate lung and nasal epithelial clone (SPLUNC1) binds to and inhibits ENaC in both airway epithelia and in Xenopus laevis oocytes. In this study, we found that SPLUNC1 was more potent at inhibiting ENaC than either SPLUNC2 or long PLUNC1 (LPLUNC1), two other PLUNC family proteins that are also expressed in airway epithelia. Furthermore, we were able to shed light on the potential mechanism of SPLUNC1''s inhibition of ENaC. While SPLUNC1 did not inhibit proteolytic activity of trypsin, it significantly reduced ENaC currents by reducing the number of ENaCs in the plasma membrane. A better understanding of ENaC''s regulation by endogenous inhibitors may aid in the development of novel therapies designed to inhibit hyperactive ENaC in cystic fibrosis epithelia.Key words: mucociliary clearance, chronic airway disease, cystic fibrosis, protease, airway surface liquid, Na+ absorption  相似文献   

15.
Cell surface heparan sulfate (HS) proteoglycans are carbohydrate-rich regulators of cell migratory, mitogenic, secretory, and inflammatory activity that bind and present soluble heparin-binding growth factors (e.g., fibroblast growth factor, Wnt, Hh, transforming growth factor beta, amphiregulin, and hepatocyte growth factor) to their respective signaling receptors. We demonstrate that the deglycanated core protein of syndecan-1 (SDC1) and not HS chains nor SDC2 or -4, appears to target the epithelial selective prosecretory mitogen lacritin. An important and novel step in this mechanism is that binding necessitates prior partial or complete removal of HS chains by endogenous heparanase. This limits lacritin activity to sites where heparanase appears to predominate, such as sites of exocrine cell migration, secretion, renewal, and inflammation. Binding is mutually specified by lacritin's C-terminal mitogenic domain and SDC1's N terminus. Heparanase modification of the latter transforms a widely expressed HS proteoglycan into a highly selective surface-binding protein. This novel example of cell specification through extracellular modification of an HS proteoglycan has broad implications in development, homeostasis, and disease.  相似文献   

16.
Over recent years, accumulated evidence suggests that autophagy induction is protective in animal models of a number of neurodegenerative diseases. Intense research in the field has elucidated different pathways through which autophagy can be upregulated and it is important to establish how modulation of these pathways impacts upon disease progression in vivo and therefore which, if any, may have further therapeutic relevance. In addition, it is important to understand how alterations in these target pathways may affect normal physiology when constitutively modulated over a long time period, as would be required for treatment of neurodegenerative diseases. Here we evaluate the potential protective effect of downregulation of calpains. We demonstrate, in Drosophila, that calpain knockdown protects against the aggregation and toxicity of proteins, like mutant huntingtin, in an autophagy-dependent fashion. Furthermore, we demonstrate that, overexpression of the calpain inhibitor, calpastatin, increases autophagosome levels and is protective in a mouse model of Huntington''s disease, improving motor signs and delaying the onset of tremors. Importantly, long-term inhibition of calpains did not result in any overt deleterious phenotypes in mice. Thus, calpain inhibition, or activation of autophagy pathways downstream of calpains, may be suitable therapeutic targets for diseases like Huntington''s disease.Huntington''s disease (HD) is a currently incurable, autosomal dominant neurodegenerative disease resulting from the expansion of the trinucleotide (CAG) repeat region of the huntingtin (HTT) IT15 gene, encoding huntingtin protein (Htt). In mutant Htt, the polyglutamine tract encoded by this region contains over 35 glutamines and the length of the tract correlates inversely with the age of disease onset, with longer tracts resulting in earlier onset (reviewed in Imarisio et al.1). HD is one of the 10 trinucleotide repeat disorders resulting from expansions of polyglutamine tracts in different proteins. These expansions cause disease by conferring toxic gain-of-function properties onto the mutant proteins. Hence, one strategy that has been considered for HD and related diseases is to find ways of decreasing the levels of the mutant protein, for instance by harnessing the cell''s capacity to degrade such aggregate-prone proteins via (macro)autophagy.2, 3, 4, 5 Autophagy involves the engulfment of cytoplasmic contents by double-membraned autophagosomes, which then traffic to lysosomes where their contents are degraded. Mutant huntingtin, some other polyglutamine expanded proteins like mutant ataxin 3, and proteins like tau (which mediates toxicity in Alzheimer''s disease and related dementias) are autophagy substrates and their clearance can be enhanced in Drosophila and mouse models by autophagy upregulation, which also reduces their toxicity.2, 3, 4,6Calpains are a family of calcium-activated cysteine proteases (reviewed in Ono and Sorimachi7) that inhibit autophagy. Strategies that reduce calpain activity in cell culture increase autophagy and decrease levels of autophagy substrates, like mutant Htt. These effects are likely to be mediated by Gsα, a heterotrimeric G-protein subunit which is activated by calpain cleavage. Similar to calpain inhibition, siRNA knockdown of Gsα, or chemical inhibition by NF449, induces autophagy and decreases the number of aggregates resulting from the overexpression of exon-1 Htt with an expanded polyglutamine repeat region (HttQ74) in cell culture models.8 In addition to this mechanism of autophagy upregulation by calpains, the core autophagy protein ATG5 has also been demonstrated to be cleaved and inactivated by calpains,9,10 suggesting that calpains may act on a number of substrates to negatively regulate autophagy.In mammals, the two most abundantly expressed calpains are μ-calpain and m-calpain, which differ in their affinity for calcium and therefore the calcium concentration required for their activation. As well as being regulated by calcium, they are also controlled by an endogenous inhibitor, calpastatin (CAST). Drosophila have four forms of calpain:11 CalpA and CalpB are the conventional calpains formed by a recent duplication in the Drosophila insect lineage, CalpC is also an evolutionarily recent, but not highly conserved duplication (data not shown) and is thought to be catalytically inactive,11 and CalpD (SOL) is a member of the unconventional family of calpains. Drosophila does not appear to have any obvious orthologs of CAST.A role for calpains in HD has been investigated previously. Following observations that shorter Htt fragments are more toxic than full-length Htt,12 it was demonstrated that Htt can be cleaved by both caspases13 and calpains14 to generate these toxic, short fragments. Blocking Htt cleavage by calpains by mutating their calpain cleavage sites decreases Htt aggregation and toxicity.15 In addition, calpain activation has been shown to be increased in HD patients compared with controls.14In this study, we have investigated a role for calpain activity as a modulator of autophagy in both Drosophila and mouse models of HD. To avoid confounding effects from alterations in cleavage of Htt by calpain, we have used models expressing short fragments of Htt, which do not contain calpain cleavage sites and correspond to the shortest fragments of huntingtin seen in patients.16 We demonstrate that knockdown of CalpA in Drosophila is sufficient to both reduce the number of Htt aggregates and the toxicity associated with the expression of the mutant protein. Importantly, we show that these effects are autophagy-dependent. Furthermore, we show that overexpression of CAST in mice results in enhanced autophagy and improves locomotor function and delays tremor onset in a mouse model of HD, as well as decreasing the number of Htt aggregates seen in the brain. We extended the analysis of CAST overexpressing mice to investigate the possible adverse effects from long-term calpain inhibition or autophagy upregulation but did not observe any obvious deleterious effects.  相似文献   

17.
Papillary thyroid carcinoma (PTC) is the main type of thyroid carcinoma. Despite the good prognosis, some PTC patients may deteriorate into more aggressive diseases, leading to poor survival. Molecular technology has been increasingly used in the diagnosis and treatment of thyroid carcinoma. In this study, we identified that RNA Binding Motif Protein 47 (RBM47) was downregulated in PTC tissues and cells, and overexpression of RBM47 could activate autophagy and inhibit proliferation in PTC cells. RBM47 promotes but can not bind directly to Forkhead Box O3 (FOXO3). FOXO3 activates Autophagy Related Gene 3 (ATG3), ATG5, and RBM47 to form a loop and promote autophagy. RBM47 can bind directly to and stabilized lncRNA Small Nucleolar RNA Host Gene 5 (SNHG5) to inhibit PTC cells proliferation and activate autophagy in vitro and in vivo. SNHG5 inhibits ubiquitination and degradation of FOXO3 by recruiting Ubiquitin Specific Peptidase 21 (USP21), then promotes the translocation of FOXO3 from cytoplasm to nucleus. Our study revealed the regulatory mechanism of RBM47/SNHG5/FOXO3 axis on cell proliferation and autophagy in PTC, which may provide valuable insight for the treatment of PTC.Subject terms: Oncogenes, Head and neck cancer  相似文献   

18.
Calmodulin (CaM) is a highly conserved calcium (Ca2+) binding protein that transduces Ca2+ signals into downstream effects influencing a range of cellular processes, including Ca2+ homeostasis. The present study explores CaM expression when Ca2+ homeostasis is challenged during the mineralization cycle of the freshwater crayfish (Procambarus clarkii). In this paper we report the cloning of a CaM gene from axial abdominal crayfish muscle (referred to as pcCaM). The pcCaM mRNA is ubiquitously expressed but is far more abundant in excitable tissue (muscle, nerve) than in any epithelia (gill, antennal gland, digestive) suggesting that it plays a greater role in the biology of excitation than in epithelial ion transport. In muscle cells the pcCaM was colocalized on the plasma membrane with the Ca2+ ATPase (PMCA) known to regulate intracellular Ca2+ through basolateral efflux. While PMCA exhibits a greater upregulation in epithelia (than in non-epithelial tissues) during molting stages requiring transcellular Ca2+ flux (pre- and postmolt compared with intermolt), expression of pcCaM exhibited a uniform increase in epithelial and non-epithelial tissues alike. The common increase in expression of CaM in all tissues during pre- and postmolt stages (compared with intermolt) suggests that the upregulation is systemically (hormonally) mediated. Colocalization of CaM with PMCA confirms physiological findings that their regulation is linked.  相似文献   

19.
Presynaptic terminals are metabolically active and accrue damage through continuous vesicle cycling. How synapses locally regulate protein homeostasis is poorly understood. We show that the presynaptic lipid phosphatase synaptojanin is required for macroautophagy, and this role is inhibited by the Parkinson's disease mutation R258Q. Synaptojanin drives synaptic endocytosis by dephosphorylating PI(4,5)P2, but this function appears normal in SynaptojaninRQ knock‐in flies. Instead, R258Q affects the synaptojanin SAC1 domain that dephosphorylates PI(3)P and PI(3,5)P2, two lipids found in autophagosomal membranes. Using advanced imaging, we show that SynaptojaninRQ mutants accumulate the PI(3)P/PI(3,5)P2‐binding protein Atg18a on nascent synaptic autophagosomes, blocking autophagosome maturation at fly synapses and in neurites of human patient induced pluripotent stem cell‐derived neurons. Additionally, we observe neurodegeneration, including dopaminergic neuron loss, in SynaptojaninRQ flies. Thus, synaptojanin is essential for macroautophagy within presynaptic terminals, coupling protein turnover with synaptic vesicle cycling and linking presynaptic‐specific autophagy defects to Parkinson's disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号