首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By transmitting major human diseases such as malaria, dengue fever and filariasis, mosquito species represent a serious threat worldwide in terms of public health, and pose a significant economic burden for the African continent and developing tropical regions. Most vector control programmes aiming at controlling life-threatening mosquitoes rely on the use of chemical insecticides, mainly belonging to the pyrethroid class. However, resistance of mosquito populations to pyrethroids is increasing at a dramatic rate, threatening the efficacy of control programmes throughout insecticide-treated areas, where mosquito-borne diseases are still prevalent. In the absence of new insecticides and efficient alternative vector control methods, resistance management strategies are therefore critical, but these require a deep understanding of adaptive mechanisms underlying resistance. Although insecticide resistance mechanisms are intensively studied in mosquitoes, such adaptation is often considered as the unique result of the selection pressure caused by insecticides used for vector control. Indeed, additional environmental parameters, such as insecticides/pesticides usage in agriculture, the presence of anthropogenic or natural xenobiotics, and biotic interactions between vectors and other organisms, may affect both the overall mosquito responses to pyrethroids and the selection of resistance mechanisms. In this context, the present work aims at updating current knowledge on pyrethroid resistance mechanisms in mosquitoes and compiling available data, often from different research fields, on the impact of the environment on mosquito response to pyrethroids. Key environmental factors, such as the presence of urban or agricultural pollutants and biotic interactions between mosquitoes and their microbiome are discussed, and research perspectives to fill in knowledge gaps are suggested.  相似文献   

2.
Malaria is a mosquito-borne infectious disease caused by Plasmodium parasites transmitted by the infectious bite of Anopheles mosquitoes. Vector control of malaria has predominantly focused on targeting the adult mosquito through insecticides and bed nets. However, current vector control methods are often not sustainable for long periods so alternative methods are needed. A novel biocontrol approach for mosquito-borne diseases has recently been proposed, it uses maternally inherited endosymbiotic Wolbachia bacteria transinfected into mosquitoes in order to interfere with pathogen transmission. Transinfected Wolbachia strains in Aedes aegypti mosquitoes, the primary vector of dengue fever, directly inhibit pathogen replication, including Plasmodium gallinaceum, and also affect mosquito reproduction to allow Wolbachia to spread through mosquito populations. In addition, transient Wolbachia infections in Anopheles gambiae significantly reduce Plasmodium levels. Here we review the prospects of using a Wolbachia-based approach to reduce human malaria transmission through transinfection of Anopheles mosquitoes.  相似文献   

3.
BackgroundThere is a global need for cost-effective and environmentally friendly tools for control of mosquitoes and mosquito-borne diseases. One potential way to achieve this is to combine already available tools to gain synergistic effects to reduce vector mosquito populations. Another possible way to improve mosquito control is to extend the active period of a given control agent, enabling less frequent applications and consequently, more efficient and longer lasting vector population suppression.Conclusions/significanceCollectively, our data demonstrate the potential for the effective use of wax emulsions as slow release matrices for mosquito attractants and control agents. The results indicate that the combination of an oviposition attractant with larvicides could synergize the control of mosquito disease vectors, specifically Cx. quinquefasciatus, a nuisance pest and circumtropical vector of lymphatic filariasis and encephalitis.  相似文献   

4.
Potential applications for reducing transmission of mosquito-borne diseases by releasing genetically modified mosquitoes have been proposed, and mosquitoes are being created with such an application in mind in several laboratories. The use of the sterile insect technique (SIT) provides a safe programme in which production, release and mating competitiveness questions related to mass-reared genetically modified mosquitoes could be answered. It also provides a reversible effect that would be difficult to accomplish with gene introgression approaches. Could new technologies, including recombinant DNA techniques, have improved the success of previous mosquito releases? Criteria for an acceptable transgenic sterile mosquito are described, and the characteristics of radiation-induced sterility are compared with that of current transgenic approaches. We argue that SIT using transgenic material would provide an essentially safe and efficacious foundation for other possible approaches that are more ambitious.  相似文献   

5.
Diseases transmitted by mosquitoes impose enormous burden towards human morbidity and mortality. Over the last three decades, Brazil has suffered from severe Dengue epidemics. In September 2014, this situation is further complicated by the introduction of two other viruses, Zika and Chikungunya, placing Brazil in a triple epidemic. In this article, we discuss the biology of Aedes aegypti Linnaeus, and the principal initiatives currently used to control mosquito populations and the diseases they transmit. Aedes aegypti has broad global distribution and is involved in the transmission of various arboviral diseases such as Dengue, Zika, and Chikungunya. Several factors contribute to the success of the species, particularly behavioral plasticity, rapid development, desiccation-resistant eggs, resistance to the principle insecticide classes currently available on the market, preference for the urban environment, and proximity to humans. Vector control programs are the best way to reduce the burden of mosquito-borne diseases. Chemical control is most commonly used in recent times, and unfortunately, the results have not been satisfactory but instead, there is increased vector dispersal and, subsequently, the spread of disease epidemics. Investigations of alternative control methods such as release of Wolbachia-infected mosquitoes for blocking vector-borne pathogens, release of transgenic mosquitoes carrying a lethal gene for offspring, and the use of insecticide-dispersing mosquitoes are under way in Brazil, and some have shown promising results. Special emphasis should be placed on integrated management of all available tactics, so as to maximize efforts towards mosquito control. Finally, we emphasize that continuous actions and community participation control initiatives are critically important for success.  相似文献   

6.
Pyrethroid resistance in mosquitoes   总被引:3,自引:0,他引:3  
Repeated blood feedings throughout their life span have made mosquitoes ideal transmitters of a wide variety of disease agents. Vector control is a very important part of the current global strategy for the control of mosquito-associated diseases and insecticide application is the most important component in this effort. Pyrethroids, which account for 25% of the world insecticide market, are currently the most widely used insecticides for the indoor control of mosquitoes and are the only chemical recommended for the treatment of mosquito nets, the main tool for preventing malaria in Africa. However, mosquito-borne diseases are now resurgent, largely because of insecticide resistance that has developed in mosquito vectors and the anti-parasite drug resistance of parasites. This paper reviews our current knowledge of the molecular mechanisms governing metabolic detoxification and the development of target site insensitivity that leads to pyrethroid resistance in mosquitoes.  相似文献   

7.
Leisnham PT  Juliano SA 《EcoHealth》2012,9(2):217-228
Arthropod-borne viruses (arboviruses) cause many diseases worldwide and their transmission is likely to change with land use and climate changes. La Crosse virus (LACV) is historically transmitted by the native mosquito Aedes triseriatus (Say) in the upper Midwestern US, but the invasive congeners Aedes albopictus (Skuse) and A. japonicus (Theobald), which co-occur with A. triseriatus in water-holding containers, may be important accessory vectors in the Appalachian region where La Crosse encephalitis is an emerging disease. This review focuses on evidence for how climate, land use, and biological invasions may have direct abiotic and indirect community-level impacts on immature developmental stages (eggs and larvae) of Aedes mosquitoes. Because vector-borne diseases usually vary in space and time and are related to the ecology of the vector species, we propose that the ecology of its mosquito vectors, particularly at their immature stages, has played an important role in the emergence of La Crosse encephalitis in the Appalachian region and represents a model for investigating the effects of environmental changes on other vector-borne diseases. We summarize the health effects of LACV and associated socioeconomic costs that make it the most important native mosquito-borne disease in the US. We review of the transmission of LACV, and present evidence for the impacts of climate, land use, and biological invasions on Aedes mosquito communities. Finally, we discuss important questions about the ecology of LACV mosquito vectors that may improve our understanding of the impacts of environmental changes on LACV and other arboviruses.  相似文献   

8.
Genetics of Mosquito Vector Competence   总被引:9,自引:0,他引:9       下载免费PDF全文
Mosquito-borne diseases are responsible for significant human morbidity and mortality throughout the world. Efforts to control mosquito-borne diseases have been impeded, in part, by the development of drug-resistant parasites, insecticide-resistant mosquitoes, and environmental concerns over the application of insecticides. Therefore, there is a need to develop novel disease control strategies that can complement or replace existing control methods. One such strategy is to generate pathogen-resistant mosquitoes from those that are susceptible. To this end, efforts have focused on isolating and characterizing genes that influence mosquito vector competence. It has been known for over 70 years that there is a genetic basis for the susceptibility of mosquitoes to parasites, but until the advent of powerful molecular biological tools and protocols, it was difficult to assess the interactions of pathogens with their host tissues within the mosquito at a molecular level. Moreover, it has been only recently that the molecular mechanisms responsible for pathogen destruction, such as melanotic encapsulation and immune peptide production, have been investigated. The molecular characterization of genes that influence vector competence is becoming routine, and with the development of the Sindbis virus transducing system, potential antipathogen genes now can be introduced into the mosquito and their effect on parasite development can be assessed in vivo. With the recent successes in the field of mosquito germ line transformation, it seems likely that the generation of a pathogen-resistant mosquito population from a susceptible population soon will become a reality.  相似文献   

9.
Genetics of mosquito vector competence.   总被引:9,自引:0,他引:9  
Mosquito-borne diseases are responsible for significant human morbidity and mortality throughout the world. Efforts to control mosquito-borne diseases have been impeded, in part, by the development of drug-resistant parasites, insecticide-resistant mosquitoes, and environmental concerns over the application of insecticides. Therefore, there is a need to develop novel disease control strategies that can complement or replace existing control methods. One such strategy is to generate pathogen-resistant mosquitoes from those that are susceptible. To this end, efforts have focused on isolating and characterizing genes that influence mosquito vector competence. It has been known for over 70 years that there is a genetic basis for the susceptibility of mosquitoes to parasites, but until the advent of powerful molecular biological tools and protocols, it was difficult to assess the interactions of pathogens with their host tissues within the mosquito at a molecular level. Moreover, it has been only recently that the molecular mechanisms responsible for pathogen destruction, such as melanotic encapsulation and immune peptide production, have been investigated. The molecular characterization of genes that influence vector competence is becoming routine, and with the development of the Sindbis virus transducing system, potential antipathogen genes now can be introduced into the mosquito and their effect on parasite development can be assessed in vivo. With the recent successes in the field of mosquito germ line transformation, it seems likely that the generation of a pathogen-resistant mosquito population from a susceptible population soon will become a reality.  相似文献   

10.
The binary toxin is the major active component of Bacillus sphaericus, a microbial larvicide used for controlling some vector mosquito-borne diseases. B. sphaericus resistance has been reported in many part of the world, leading to a growing concern for the usefulness of this environmental friendly insecticide. Here we characterize a novel mechanism of resistance to the binary toxin in a natural population of the West Nile virus vector, Culex pipiens. We show that the insertion of a transposable element-like DNA into the coding sequence of the midgut toxin receptor induces a new mRNA splicing event, unmasking cryptic donor and acceptor sites located in the host gene. The creation of the new intron causes the expression of an altered membrane protein, which is incapable of interacting with the toxin, thus providing the host mosquito with an advantageous phenotype. As a large portion of insect genomes is composed of transposable elements or transposable elements-related sequences, this new mechanism may be of general importance to appreciate their significance as potent agents for insect resistance to the microbial insecticides.  相似文献   

11.
50年来我国的蚊类研究   总被引:5,自引:0,他引:5  
新中国成立50年以来,在疟疾等蚊媒病防治和爱国卫生运动的推动下,我国蚊虫研究受到极大重视,生物系统学、生态习性、媒介关系以及综合治理等研究,都取得了很大的进展,为我国蚊类研究的持续发展,打下了良好的基础。该文择要介绍了这4个方面的主要成就。  相似文献   

12.
Every year about one million people die due to diseases transmitted by mosquitoes. The infection is transmitted to a person when an infected mosquito stings, injecting the saliva into the human body. The best possible way to prevent a mosquito-borne infection till date is to save the humans from exposure to mosquito bites. This study proposes a Machine Learning (ML) and Deep Learning based system to detect the presence of two critical disease spreading classes of mosquitoes such as the Aedes and Culex. The proposed system will effectively aid in epidemiology to design evidence-based policies and decisions by analyzing the risks and transmission. The study proposes an effective methodology for the classification of mosquitoes using ML and CNN models. The novel RIFS has been introduced which integrates two types of feature selection techniques – the ROI-based image filtering and the wrappers-based FFS technique. Comparative analysis of various ML and deep learning models has been performed to determine the most appropriate model applicable based on their performance metrics as well as computational needs. Results prove that ETC outperformed among the all applied ML model by providing 0.992 accuracy while VVG16 has outperformed other CNN models by giving 0.986 of accuracy.  相似文献   

13.
The genetic manipulation of the microbial community associated with hematophagus insects is particularly relevant for public health applications. Within mosquito populations, this relationship has been overlooked until recently. New advances in molecular biotechnology propose the genetic manipulation of mosquito symbionts to prevent the transmission of pathogens to humans by interfering with the obligatory life cycle stages within the insect through the use of effector molecules. This approach, defined as 'paratransgenesis', has opened the way for the investigation and characterization of microbes residing in the mosquito body, particularly those localised within the gut. Some interesting bacteria have been identified as candidates for genetic modification, however, endosymbiotic yeasts remain largely unexplored with little information on the symbiotic relationships to date. Here we review the recent report of symbiotic relationship between Wickerhamomyces anomalus (Pichia anomala) and several mosquito vector species as promising methods to implement control of mosquito-borne diseases.  相似文献   

14.
This study aims at evaluating the larvicidal efficacy of slow-release formulations of bacterial insecticide Spinosad blended with two insect growth regulators (IGRs), Altosid XR–briquets and Dudim DT tablets against mosquito larvae of Aedes aegypti. This insect is the cause of dengue arthropod-borne viral disease. Treatment based on vector control using chemicals poses risks to human and environment, while the strategy based on the use of natural products poses lower risks. The results of the present study indicated that the mixture of Spinosad plus Dudim or Altosid tablets continued their fatal activity against the 3rd instar larvae for a longer period than the treatment with Spinosad, Altosid or Dudim tablets alone. The treatment of Spinosad plus either Altosid or Dudim has given effect to female mosquitoes in laying eggs in egg cups containing the treated pond water compared to the control egg cups. The results also showed that the treatment of Spinosad plus Altosid did not affect the egg hatching rate in the treated pond water, while the treatment of Spinosad combination with Dudim showed a significant decrease in the percentage of egg hatching. Use of natural products with larvicidal activities offers better approaches to integrated pest management and insecticide resistance management.  相似文献   

15.
Mosquito-borne diseases are a major burden on human health worldwide and their eradication through vector control methods remains challenging. In particular, the success of vector control interventions for targeting diseases such as malaria is under threat, in part due to the evolution of insecticide resistance, while for other diseases effective control solutions are still lacking. The rate at which mosquitoes encounter and bite humans is a key determinant of their capacity for disease transmission. Future progress is strongly reliant on improving our understanding of the mechanisms leading to a mosquito bite. Here, we review the biological factors known to influence the attractiveness of mosquitoes to humans, such as body odour, the skin microbiome, genetics and infection by parasites. We identify the knowledge gaps around the relative contribution of each factor, and the potential links between them, as well as the role of natural selection in shaping vector–host–parasite interactions. Finally, we argue that addressing these questions will contribute to improving current tools and the development of novel interventions for the future.This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases''.  相似文献   

16.
BackgroundAedes albopictus is one of the most invasive species in the world as well as the important vector for mosquito-borne diseases such as dengue fever, chikungunya fever and zika virus disease. Chemical control of mosquitoes is an effective method to control mosquito-borne diseases, however, the wide and improper application of insecticides for vector control has led to serious resistance problems. At present, there have been many reports on the resistance to pyrethroid insecticides in vector mosquitoes including deltamethrin to Aedes albopictus. However, the fitness cost and vector competence of deltamethrin resistant Aedes albopictus remain unknown. To understand the impact of insecticide resistant mosquito is of great significance for the prevention and control mosquitoes and mosquito-borne diseases.Methodology/Principal findingsA laboratory resistant strain (Lab-R) of Aedes albopictus was established by deltamethrin insecticide selecting from the laboratory susceptible strain (Lab-S). The life table between the two strains were comparatively analyzed. The average development time of Lab-R and Lab-S in larvae was 9.7 days and 8.2 days (P < 0.005), and in pupae was 2.0 days and 1.8 days respectively (P > 0.05), indicating that deltamethrin resistance prolongs the larval development time of resistant mosquitoes. The average survival time of resistant adults was significantly shorter than that of susceptible adults, while the body weight of resistant female adults was significantly higher than that of the susceptible females. We also compared the vector competence for dengue virus type-2 (DENV-2) between the two strains via RT-qPCR. Considering the results of infection rate (IR) and virus load, there was no difference between the two strains during the early period of infection (4, 7, 10 day post infection (dpi)). However, in the later period of infection (14 dpi), IR and virus load in heads, salivary glands and ovaries of the resistant mosquitoes were significantly lower than those of the susceptible strain (IR of heads, salivary glands and ovaries: P < 0.05; virus load in heads and salivary glands: P < 0.05; virus load in ovaries: P < 0.001). And then, fourteen days after the DENV-2-infectious blood meal, females of the susceptible and resistant strains were allow to bite 5-day-old suckling mice. Both stains of mosquito can transmit DENV-2 to mice, but the onset of viremia was later in the mice biting by resistant group as well as lower virus copies in serum and brains, suggesting that the horizontal transmission of the resistant strain is lower than the susceptible strain. Meanwhile, we also detected IR of egg pools of the two strains on 14 dpi and found that the resistant strain were less capable of vertical transmission than susceptible mosquitoes. In addition, the average survival time of the resistant females infected with DENV-2 was 16 days, which was the shortest among the four groups of female mosquitoes, suggesting that deltamethrin resistance would shorten the life span of female Aedes albopictus infected with DENV-2.Conclusions/SignificanceAs Aedes albopictus developing high resistance to deltamethrin, the resistance prolonged the growth and development of larvae, shorten the life span of adults, as well as reduced the vector competence of resistant Aedes albopictus for DENV-2. It can be concluded that the resistance to deltamethrin in Aedes albopictus is a double-edged sword, which not only endow the mosquito survive under the pressure of insecticide, but also increase the fitness cost and decrease its vector competence. However, Aedes albopictus resistant to deltamethrin can still complete the external incubation period and transmit dengue virus, which remains a potential vector for dengue virus transmission and becomes a threat to public health. Therefore, we should pay high attention for the problem of insecticide resistance so that to better prevent and control mosquito-borne diseases.  相似文献   

17.
In Brazil, insecticide resistance in Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) populations to pyrethroids and to the organophosphate (OP) temephos is disseminated. Currently, insect growth regulators (IGRs) and the OP malathion are employed against larvae and adults, respectively. Bioassays with mosquitoes from two northeast municipalities, Crato and Aracaju, revealed, in both populations, susceptibility to IGRs and malathion (RR95 ≤ 2.0), confirming the effectiveness of these compounds. By contrast, temephos and deltamethrin (pyrethroid) resistance levels were high (RR95 > 10), which is consistent with the use of intense chemical control. In Crato, RR95 values were > 50 for both compounds. Knock‐down‐resistant (kdr) mutants in the voltage‐gated sodium channel, the pyrethroid target site, were found in 43 and 32%, respectively, of Aracaju and Crato mosquitoes. Biochemical assays revealed higher metabolic resistance activity (esterases, mixed function oxidases and glutathione‐S‐transferases) at Aracaju. With respect to fitness aspects, mating effectiveness was equivalently impaired in both populations, but Aracaju mosquitoes showed more damaging effects in terms of longer larval development, decreased bloodmeal acceptance, reduced engorgement and lower numbers of eggs laid per female. Compared with mosquitoes in Crato, Aracaju mosquitoes exhibited lower OP and pyrethroid RR95, increased activity of detoxifying enzymes and greater effect on fitness. The potential relationship between insecticide resistance mechanisms and mosquito viability is discussed.  相似文献   

18.
Isolated wetlands are ideal model systems to examine linkages between environmental change, complex food webs, and the ecology of mosquito-borne diseases. Through long-term studies, we have evaluated the diversity among plant, invertebrate, and amphibian species of relatively undisturbed isolated wetlands. Based on preliminary evidence from impaired wetlands, we have developed a conceptual model to examine how human land use and climate change may affect wetland ecosystem functions that ultimately link to the proliferation of mosquito-borne diseases through the alteration of food webs and mosquito habitat. Our research framework initially requires the development of a wetland condition ranking system for a large group of isolated wetlands based on potential habitat for mosquitoes that vector disease. Secondly, it identifies potential changes in ecosystem function that specifically address the role of aquatic fauna in mediating mosquito-borne infectious diseases. Ultimately, understanding ecological functions and services will help focus the need for better management practices and potential regulation of impacts to isolated wetland habitats in the USA.  相似文献   

19.
Chikungunya virus (CHIKV) is a reemerging mosquito-borne pathogen that has recently caused devastating urban epidemics of severe and sometimes chronic arthralgia. As with most other mosquito-borne viral diseases, control relies on reducing mosquito populations and their contact with people, which has been ineffective in most locations. Therefore, vaccines remain the best strategy to prevent most vector-borne diseases. Ideally, vaccines for diseases of resource-limited countries should combine low cost and single dose efficacy, yet induce rapid and long-lived immunity with negligible risk of serious adverse reactions. To develop such a vaccine to protect against chikungunya fever, we employed a rational attenuation mechanism that also prevents the infection of mosquito vectors. The internal ribosome entry site (IRES) from encephalomyocarditis virus replaced the subgenomic promoter in a cDNA CHIKV clone, thus altering the levels and host-specific mechanism of structural protein gene expression. Testing in both normal outbred and interferon response-defective mice indicated that the new vaccine candidate is highly attenuated, immunogenic and efficacious after a single dose. Furthermore, it is incapable of replicating in mosquito cells or infecting mosquitoes in vivo. This IRES-based attenuation platform technology may be useful for the predictable attenuation of any alphavirus.  相似文献   

20.
The recent global Zika epidemics have revealed the significant threat that mosquito-borne viruses pose. There are currently no effective vaccines or prophylactics to prevent Zika virus (ZIKV) infection. Limiting exposure to infected mosquitoes is the best way to reduce disease incidence. Recent studies have focused on targeting mosquito reproduction and immune responses to reduce transmission. Previous work has evaluated the effect of insulin signaling on antiviral JAK/STAT and RNAi in vector mosquitoes. Specifically, insulin-fed mosquitoes resulted in reduced virus replication in an RNAi-independent, ERK-mediated JAK/STAT-dependent mechanism. In this work, we demonstrate that targeting insulin signaling through the repurposing of small molecule drugs results in the activation of both RNAi and JAK/STAT antiviral pathways. ZIKV-infected Aedes aegypti were fed blood containing demethylasterriquinone B1 (DMAQ-B1), a potent insulin mimetic, in combination with AKT inhibitor VIII. Activation of this coordinated response additively reduced ZIKV levels in Aedes aegypti. This effect included a quantitatively greater reduction in salivary gland ZIKV levels up to 11 d post-bloodmeal ingestion, relative to single pathway activation. Together, our study indicates the potential for field delivery of these small molecules to substantially reduce virus transmission from mosquito to human. As infections like Zika virus are becoming more burdensome and prevalent, understanding how to control this family of viruses in the insect vector is an important issue in public health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号