共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown previously that insulin suppresses the expression of hepatitis B surface antigen (HBsAg) gene from an endogenous integrated viral genome in cultured human hepatoma Hep3B cells. In this study, we demonstrated that insulin suppresses the viral mRNA transcribed from transiently transfected tandem repeat hepatitis B virus (HBV) dimer DNA or DNA fragment that contains only the major HBsAg gene. Insulin treatment also resulted in a decrease in HBV viral particles produced by the HBV-DNA-transfected cells in a dose-dependent manner. Furthermore, when insulin was simultaneously added with glucocorticoid, which stimulates HBV gene expression, the stimulatory effect of glucocorticoid was completely abolished. Our results suggest that insulin has a dominant negative effect on the HBV gene expression in cultured human liver cells. 相似文献
2.
前基因组mRNA是HBV(Hepatitis Bvirus)基因表达和复制的重要中间产物,全长的前基因组mRNA分子具有复杂易变的二级结构,是设计抑制HBV的核酶时所必须考虑的因素。我们使用多个最新的计算机软件对HBV前基因组mRNA二级结构进行模拟、分析,在全面分析核酶的可作用位点的基础上设计三个针对不同基因靶位的锤头状核酶,并对它们在细胞中对HBV的抑制作用进行研究。结果表明在HBV前基因组mRNA上存在几个高度复杂二级结构的区域,可能对核酶完全不敏感,而S、C、X基因的编码区是合适的核酶作用位点,都可达到对HBV的有效抑制,而且X基因位点的核酶对HBV的各种mRNA的抑制作用最为明显,是设计针对HBV核酶时应该优先考虑的位点。 相似文献
3.
针对不同基因靶位的锤头状核酶对HBV的抑制作用研究 总被引:2,自引:0,他引:2
前基因组mRNA是HBV(Hepatitis B virus)基因表达和复制的重要中间产物,全长的前基因组mRNA分子具有复杂易变的二级结构,是设计抑制HBV的核酶时所必须考虑的因素.我们使用多个最新的计算机软件对HBV前基因组mRNA二级结构进行模拟、分析,在全面分析核酶的可作用位点的基础上设计三个针对不同基因靶位的锤头状核酶,并对它们在细胞中对HBV的抑制作用进行研究.结果表明在HBV前基因组mRNA上存在几个高度复杂二级结构的区域,可能对核酶完全不敏感,而S、C、X基因的编码区是合适的核酶作用位点,都可达到对HBV的有效抑制,而且X基因位点的核酶对HBV的各种mRNA的抑制作用最为明显,是设计针对HBV核酶时应该优先考虑的位点. 相似文献
4.
Expression of Hepatitis B Virus Surface Antigen Gene in Cultured Cells by Using Recombinant Plasmid Vectors 总被引:6,自引:4,他引:6 下载免费PDF全文
Aleem Siddiqui 《Molecular and cellular biology》1983,3(1):143-146
By using a new host-vector system, expression of the gene coding for hepatitis B surface antigen has been studied. A subgenomic fragment of cloned hepatitis B viral DNA was inserted into the plasmid vector pSV010. Transfection of COS cells with the recombinant plasmid vector containing hepatitis sequences leads to the synthesis of hepatitis B surface antigen, which is released in the culture medium in the form of 22-nm particles similar to those found in the sera of hepatitis carriers. 相似文献
5.
6.
7.
Ubiquitin conjugation to lysine residues regulates a variety of protein functions, including endosomal trafficking and degradation. While ubiquitin plays an important role in the release of many viruses, the requirement for direct ubiquitin conjugation to viral structural proteins is less well understood. Some viral structural proteins require ubiquitin ligase activity, but not ubiquitin conjugation, for efficient release. Recent evidence has shown that, like other viruses, hepatitis B virus (HBV) requires a ubiquitin ligase for release from the infected cell. The HBV core protein contains two lysine residues (K7 and K96), and K96 has been suggested to function as a potential ubiquitin acceptor site based on the fact that previous studies have shown that mutation of this amino acid to alanine blocks HBV release. We therefore reexamined the potential connection between core lysine ubiquitination and HBV replication, protein trafficking, and virion release. In contrast to alanine substitution, we found that mutation of K96 to arginine, which compared to alanine is more conserved but also cannot mediate ubiquitin conjugation, does not affect either virus replication or virion release. We also found that the core lysine mutants display wild-type sensitivity to the antiviral activity of interferon, which demonstrates that ubiquitination of core lysines does not mediate the interferon-induced disruption of HBV capsids. However, mutation of K96 to arginine alters the nuclear-cytoplasmic distribution of core, leading to an accumulation in the nucleolus. In summary, these studies demonstrate that although ubiquitin may regulate the HBV replication cycle, these mechanisms function independently of direct lysine ubiquitination of core protein.The hepatitis B virus (HBV) particle consists of an enveloped nucleocapsid that contains the viral polymerase (Pol) and an incomplete 3.2-kb double-stranded DNA genome (9). In the cytoplasm, the viral core structural proteins interact to form homodimers, which further self-assemble into capsid particles that package Pol and the viral pregenomic RNA. Encapsidated Pol subsequently reverse transcribes pregenomic RNA to give rise to mature double-stranded relaxed circular DNA-containing capsids. HBV DNA-containing capsids are released from the cell as mature virions after acquiring an envelope consisting of cellular membrane lipids and the viral small, middle, and large envelope proteins (4, 9, 41). Due to the directed insertion of the envelope proteins in the endoplasmic reticulum and Golgi membrane, and the requirement of the large envelope protein for virion release, nucleocapsids are hypothesized to bud at intracellular membranes for release through the constitutive secretory pathway (5). Although the mechanism and site of HBV nucleocapsid envelopment and release remain poorly understood, emerging evidence indicates that the cellular ubiquitin pathway may play a role in this process.Structural proteins of some enveloped RNA viruses contain highly conserved sequences [PPXY, P(T/S)AP, and YPXL] termed late (L) domains that mediate interactions with proteins of the endocytic pathway to facilitate virus budding and release (1). The P(T/S)AP motif binds Tsg101 (8, 10, 19, 27, 47), a key ESCRT (for endosomal sorting complex required for transport) component for the recognition and sorting of ubiquitinated proteins to internal vesicles of the multivesicular body (MVB), while the YPXL motif binds Alix, an ESCRT-associated protein (26, 44, 48). The PPXY motif binds proteins of the Nedd4 family ubiquitin ligases, which are responsible for ubiquitination of proteins targeted for endocytosis and sorting to the MVB (20), suggesting a link between ubiquitin and viral budding (3, 16, 17, 22, 43, 55). The observation that proteasome inhibition, which depletes free cellular ubiquitin by interfering with ubiquitin recycling, results in a viral budding defect similar to that seen in virus L domain mutants further supports the implication that ubiquitin plays a role in mediating virion release (15, 31, 40, 43). Furthermore, fusion of ubiquitin to the Rous sarcoma virus (RSV) PPPY-containing Gag protein and the equine infectious anemia virus (EIAV) Gag protein containing a heterologous PTAP or PPPY motif rescues the virus-like particle release defect induced by proteasome inhibition (18, 31). While the role of L domains in mediating virion release is relatively well established, it remains unclear whether direct ubiquitination of viral structural proteins is generally required for virion release. Mutation of ubiquitin acceptor lysine residues in the RSV Gag protein inhibits virus budding, but such mutations in human immunodeficiency virus type 1 (HIV-1) or murine leukemia virus Gag protein exert no effect on virus release (29, 42). Recently, a retroviral (i.e., prototypic foamy virus) Gag protein engineered to lack ubiquitin acceptor lysines and encoding either the PSAP or PPXY motif of the L domain displayed no defect in viruslike particle release (58). Altogether, these results suggest that recruitment of host proteins to the L domain and ubiquitination of interacting proteins, but not the viral structural proteins, is required for ubiquitin-dependent virion release, at least for some viruses.The HBV core structural protein contains two potential ubiquitin acceptor lysine residues (K7 and K96) and an L-domain-like PPAY motif (Fig. (Fig.1A).1A). Structural studies indicate that residue K96 and the PPAY motif may be exposed on the surface of HBV capsid particles, at least transiently (4, 32, 37). Studies aimed at identifying interaction factors important for HBV particle release demonstrated a number of interesting findings. First, γ2-adaptin, a cellular trafficking adaptor that contains a ubiquitin-interacting motif (UIM), interacts with both the viral large envelope protein and HBV core, and disruption of the HBV/γ2-adaptin interaction inhibits virus secretion (14, 39). Second, core protein interacts with the Nedd4 ubiquitin ligase through the PPAY motif in core (39). Mutation of the tyrosine in the PPAY motif results in disrupted binding of Nedd4, and overexpression of a catalytically inactive Nedd4 mutant inhibits HBV particle secretion (39). Third, mutation of core K96, but not K7, to alanine results in a defective release phenotype, suggesting that K96 may serve as a ubiquitin conjugation site that aids virion release (32, 39). Recently, overexpression of dominant-negative proteins of the MVB machinery, such as the Vps4 ATPases and the ESCRT-III complex-forming CHMP proteins, were also shown to disrupt HBV budding and virion release, while subviral particles comprised only of envelope proteins were released efficiently (21, 24, 49). This suggests that nucleocapsids may release from the cell by a mechanism distinct from constitutive secretion. These studies show that similar to RNA viruses, HBV utilizes components of the cellular protein trafficking machinery to mediate virion release.Open in a separate windowFIG. 1.Generation of core lysine mutants. (A) The 21-kDa HBV core structural protein contains two lysine residues at positions 7 and 96 that serve as potential ubiquitin conjugation sites. These residues are highly conserved among the four major HBV genotypes (6). Core contains a late-domain-like PPXY motif that serves as a binding site for the Nedd4 E3 ubiquitin ligase. Core additionally contains a potential noncanonical SUMOylation motif at position 96. (B) Lysine mutations were generated by site-directed mutagenesis in the core gene contained within the HBV genome under the control of a CMV promoter. K7R contains a lysine-to-arginine mutation at position 7, K96R contains a lysine-to-arginine mutation at position 96, K96A contains a lysine-to-alanine mutation at position 96, and K7R/K96R contains arginine substituted at position 7 and position 96.Although these findings imply that core ubiquitination may be necessary for HBV particle release, direct evidence of core ubiquitination has been elusive (33, 39; unpublished results). As suggested by previous Gag lysine mutagenesis studies, however, ubiquitin may instead indirectly be required through conjugation to an interacting protein that is essential for mediating HBV release (29, 58). Although core K7 and K96 have been previously assayed in the context of virion release by mutation of the lysine residues to alanine (32, 39), we expanded these studies by assaying core mutants with an arginine substitution at position K7 (K7R) and K96 (K96R), as well as a double lysine-to-arginine mutation (K7R/K96R). Compared to alanine, arginine serves as a more conserved mutation for lysine while still abolishing the potential ubiquitin conjugation site. In the present study, we utilized these mutants to comprehensively examine the role of the core lysines in HBV virus release, the formation of replication intermediates, intracellular localization of core, and the interferon (IFN)-mediated antiviral response. 相似文献
8.
9.
本文应用细胞培养、免疫荧光及电镜技术研究了B淋巴母细胞对EHF病毒的易感性。结果表明EHF病毒可在该细胞中增殖。感染细胞无明显细胞病变,在形态上与对照组无差别。虽然大部分感染细胞呈现明亮病毒抗原荧光,但在电镜下却难以找到完整的病毒颗粒,仅在扩张的囊泡中发现一些性质待定的微丝样物质。人B淋巴母细胞持续感染的建立,提示患者外周血中大量出现的异型淋巴细胞可能允许EHF病毒在其中复制。 相似文献
10.
反义寡聚脱氧核苷酸(ODN)衍生物抑制乙肝病毒抗原表达的研究 总被引:2,自引:0,他引:2
为比较针对中不同基因的ODN硫代衍生物阻断乙型肝炎病毒(HBV)的抗原表达,合成了与核心蛋白编码基因起始码上游序列,多聚酶蛋白编码基因起码上游及内部序列3.5kbRNA3'端起始负链DNA合成序列互补的寡聚脱氧核苷酸硫代衍生物,分别在HBV短暂表达和稳定表达细胞培养系统中观察其抑制HBV抗原表达的作用。结果发现,当培养液中ODN浓度为20μmol/LJF ,四种ODN均能抑HepG2.2.15细胞 相似文献
11.
目的:构建含有天然完整的乙型肝炎病毒(HBV)X基因序列的真核表达载体,观察其在肝癌细胞株中的表达。方法:设计并合成HBV X基因的引物,用PCR方法从含完整HBV全基因的HepG2细胞中扩增X基因序列,并将其连接到真核表达载体pVAX-1上,酶切、PCR鉴定;用Triton X-114去除质粒内毒素后,采用电穿孔法将重组质粒pVAX-HBV X和空质粒pVAX-1分别转染SMMC-7721细胞,RT-PCR法检测HBV X基因mRNA的表达,Western印迹鉴定HBV X蛋白(HBx)的表达。结果:酶切和PCR鉴定证实pVAX-HBV X载体中包含完整的HBVX基因片段,该重组质粒转染的SMMC-7721细胞中HBV X基因mRNA及HBx蛋白的表达稳定。结论:构建了HBV X基因的真核表达载体,为X基因及其编码蛋白的生物学功能的研究提供了可靠的基因材料。 相似文献
12.
Ge Yu Xiumei Chi Ruihong Wu Xiaomei Wang Xiuzhu Gao Fei Kong Xiangwei Feng Yuanda Gao Xinxing Huang Jinglan Jin Yue Qi Zhengkun Tu Bing Sun Jin Zhong Yu Pan Junqi Niu 《PloS one》2015,10(9)
Background
Hepatitis B virus (HBV) and hepatitis C virus (HCV) co-infections contributes to a substantial proportion of liver disease worldwide. The aim of this study was to assess the clinical and virological features of HBV-HCV co-infection.Methods
Demographic data were collected for 3238 high-risk people from an HCV-endemic region in China. Laboratory tests included HCV antibody and HBV serological markers, liver function tests, and routine blood analysis. Anti-HCV positive samples were analyzed for HCV RNA levels and subgenotypes. HBsAg-positive samples were tested for HBV DNA.Results
A total of 1468 patients had chronic HCV and/or HBV infections. Among them, 1200 individuals were classified as HCV mono-infected, 161 were classified as HBV mono-infected, and 107 were classified as co-infected. The HBV-HCV co-infected patients not only had a lower HBV DNA positive rate compared to HBV mono-infected patients (84.1% versus 94.4%, respectively; P<0.001). The median HCV RNA levels in HBV-HCV co-infected patients were significantly lower than those in the HCV mono-infected patients (1.18[Interquartile range (IQR) 0–5.57] versus 5.87[IQR, 3.54–6.71] Log10 IU/mL, respectively; P<0.001). Furthermore, co-infected patients were less likely to have detectable HCV RNA levels than HCV mono-infected patients (23.4% versus 56.5%, respectively; P<0.001). Those HBV-HCV co-infected patients had significantly lower median HBV DNA levels than those mono-infected with HBV (1.97[IQR, 1.3–3.43] versus 3.06[IQR, 2–4.28] Log10 IU/mL, respectively; P<0.001). The HBV-HCV co-infection group had higher ALT, AST, ALP, GGT, APRI and FIB-4 levels, but lower ALB and total platelet compared to the HBV mono-infection group, and similar to that of the HCV mono-infected group.Conclusion
These results suggest that co-infection with HCV and HBV inhibits the replication of both viruses. The serologic results of HBV-HCV co-infection in patients suggests more liver injury compared to HBV mono-infected patients, but is similar to HCV mono-infection. 相似文献13.
目的:探讨体外针对乙型肝炎病毒(HBV)X基因的小干扰RNA(siRNA)对HBV复制和抗原表达的抵制作用。方法:利用siRNA表达框架法设计针对HBVX基因的siRNA,转染HepG2.2.15细胞,RT-PCR半定量检测转染前后X基因的表达;ELISA法测定各组24、48、72hHBsAg和HBeAg的含量;荧光定量PCR检测48h时HBVDNA的变化。结果:制备了HBVX基因的siRNA,转染后24、48和72h,HBVX基因mRNA的量分别减少了57%、78%和40%;siRNA能抑制HBsAg和HbeAg的分泌,抑制高峰在48h,抑制率分别为42%和43%;荧光定量PCR证实HBVDNA的复制亦受到抑制。结论:针对HBVX基因的siRNA在体外具有抑制HBV复制和抗原表达的作用。 相似文献
14.
15.
乙肝病毒增强子对其基因表达的调控 总被引:5,自引:0,他引:5
本文构字线性化的含有从核心抗原启动子Cp起始的HBV完整转录单元的基因组隆,以此为模型,通过增强子I和增强子II的缺失或点突变分析,研究了ENI和ENII对HBV基因组基因宾调控。结果用ENII对S基因表达均有增强作用,且相互协同。 相似文献
16.
乙肝病毒表面抗原preS1与人肿瘤坏死因子α融合基因的表达 总被引:6,自引:0,他引:6
用PCR法获得了HBsAgpreS1(1-65)肽段基因,将该基因融合在肿瘤坏死因子(hTNFα)之后,插入表达载体PSB-92中,使融合基因的5′端直接置于大肠肝菌PL启动子下游,采用30℃培养,42℃诱导,获得了TNF与preS1(1-65)融合蛋白的表达产物。SDS-PAGE电泳显示表达产物为25kD,约占细菌总蛋白的35%。表达产物经Westernblot验证,能分别特异地与hTNFα抗体与preS1抗体结合,稀释复性后,该融合蛋白还具有TNF的生理功能(对L929细胞的细胞毒活性)。经DNA序列测定,preS1(1-65)肽基因正确地融合在hTNFα基因之后。该结果提供了一种制备preS1的新方法,为进一步开展治疗肝癌和乙肝的导向药物打下基础。 相似文献
17.
庚型肝炎病毒包膜糖蛋白E2基因在昆虫细胞中的表达 总被引:2,自引:0,他引:2
用PCR扩增出HGVE2全基因,克隆进杆状病毒表达载体pFASTBACHTa中,构建成重组转座载体pFASTBACE2,转化DH10BAC大肠杆菌感受态细胞,筛选阳性菌落,抽提大分子质粒DNA,获得含HGVE2基因的重组杆状病毒穿梭载体,转染昆虫草地夜蛾Sf9细胞,出现细胞病变后,收集含有重组病毒颗粒的培养上清,重新感染草地夜蛾Sf9单层细胞及甜菜夜蛾幼虫,分别收集Sf9细胞和甜菜夜蛾幼虫体内的血淋巴细胞,进行12%SDS聚丙烯酰胺凝胶电泳,可见表达的融合蛋白带,经亲和层析进行蛋白纯化,用ELISA方法检测各类血清标本,初步研究HGVE2糖蛋白的抗原性 相似文献
18.
庚型肝炎病毒包膜糖蛋白E2基因在昆虫细胞中的表达 总被引:2,自引:0,他引:2
用PCR扩增出HGV E2全基因,克隆进杆状病毒表达载体pFASTBACHTa中,构建成重组转座载体pFASTBAC-E2,转化DH10BAC大肠杆菌感受态细胞,筛选阳性菌落,抽提大分子质粒DNA,获得含HGV E2基因的重组杆状病毒穿梭载体,转染昆虫草地夜蛾Sf9细胞,出现细胞病变后,收集含有重组病毒颗粒的培养上清,重新感染草地夜蛾Sf9单层细胞及甜菜夜蛾幼虫,分别收集Sf9细胞和甜菜夜蛾幼虫体内的血淋巴细胞,进行12%SDS-聚丙烯酰胺凝胶电泳,可见表达的融合蛋白带,经亲和层析进行蛋白纯化,用ELISA方法检测各类血清标本,初步研究HGV E2糖蛋白的抗原性. 相似文献
19.
The ubiquitin-like ISG15 protein, as well as its conjugating enzymes, is induced by type I interferons (IFNs). Experiments using ISG15 knockout (ISG15−/−) mice established that ISG15 and/or its conjugation inhibits the replication of influenza A virus. However, in contrast to the virus inhibition results for mice, the rates of virus replication in ISG15+/+ and ISG15−/− mouse embryo fibroblasts in tissue culture were similar. Here we focus on human tissue culture cells and on the effect of ISG15 and/or its conjugation on influenza A virus gene expression and replication in such cells. We demonstrate that IFN-induced antiviral activity against influenza A virus in human cells is significantly alleviated by inhibiting ISG15 conjugation using small interfering RNAs directed against ISG15-conjugating enzymes. IFN-induced antiviral activity against influenza A virus protein synthesis was reduced 5- to 20-fold by suppressing ISG15 conjugation. The amounts of the viral proteins that were restored by these siRNA treatments were approximately 40 to 50% of the amounts produced in cells that were not pretreated with IFN. Further, we show that ISG15 conjugation inhibits influenza A virus replication 10- to 20-fold at early times after infection in human cells. These results show that ISG15 conjugation plays a substantial role in the antiviral state induced by IFN in human cells. In contrast, we show that in mouse embryo fibroblasts ISG15 conjugation not only does not affect influenza A virus replication but also does not contribute to the IFN-induced antiviral activity against influenza A virus gene expression.Virus infection activates the synthesis of type I interferons (IFN-α and IFN-β), which induce the synthesis of a large array of proteins, many of which play crucial roles in the antiviral response (1). One of the most strongly induced proteins is ISG15, a 15-kDa ubiquitin-like protein that becomes conjugated to many cellular proteins (6, 8, 9, 12, 18, 22, 26, 30). Three of the human enzymes that catalyze this conjugation, the UbE1L E1 enzyme, the UbcH8 E2 enzyme, and the Herc5 E3 enzyme, are also induced by IFN-β (4, 10, 26, 27, 29). Although it had been reported that UbcH8 functions in both ISG15 and ubiquitin conjugation (3, 10, 13, 25, 28, 29), a recent study demonstrated that UbcH8 is unlikely to function in ubiquitin conjugation in vivo for two reasons: Km measurements revealed that the E1 ubiquitin-activating enzyme, unlike UbE1L, exhibits very low affinity for UbcH8, and UbcH8 is poorly, if not at all, expressed in the absence of IFN treatment, indicating that UbcH8 functions only during the IFN response (5). A large number of human proteins that are targets for ISG15 conjugation have been identified (22, 26, 30). Most of these targets are constitutively expressed proteins that function in diverse cellular pathways, but several of the targets are IFN-α/-β-induced antiviral proteins.Because the NS1 protein of influenza B virus (NS1B) was shown to bind ISG15 and inhibit its conjugation to target proteins, it was proposed that ISG15 and/or its conjugation is inhibitory to the replication of influenza B virus (27). Subsequently, experiments using ISG15 knockout (ISG15−/−) mice established that ISG15 and/or its conjugation inhibits the replication of not only influenza B virus but also influenza A virus (16). For example, at one of the inoculum levels employed for influenza A virus, 52% of the ISG15−/− mice died, whereas a significantly smaller percentage, 23%, of the ISG15+/+ mice died. However, the effect of ISG15 and/or its conjugation on influenza A virus replication was not detected in mouse embryo fibroblasts (MEFs) in tissue culture. MEFs supported only very limited replication of influenza A virus, and there was no significant difference in virus replication between ISG15+/+ and ISG15−/− MEFs (16). These investigators postulated that influenza A virus replication was probably selectively spared in other cell types of the ISG15−/− mouse. A subsequent study showed that ISG15 conjugation exerts its antiviral action against influenza B virus (and presumably against influenza A virus) in radioresistant stromal cells of the mouse (14). However, an antiviral effect of ISG15 conjugation against influenza A virus has not yet been demonstrated in mouse cells in tissue culture.In the present study we focus on human tissue culture cells and on the effect of ISG15 and/or its conjugation on the replication of influenza A virus in such cells. We show that IFN-induced antiviral activity against influenza A virus in human cells is significantly alleviated by inhibiting ISG15 conjugation using small interfering RNAs (siRNAs) against ISG15-conjugating enzymes. Our results show that both the synthesis of viral proteins and the early rate of virus replication are inhibited by ISG15 conjugation. In contrast, we show that in MEFs ISG15 conjugation not only does not affect influenza A virus replication but also does not contribute to IFN-induced antiviral activity against influenza A virus gene expression. 相似文献
20.
为了研究由pRNA携带的siRNA(HBVsi18-42)所介导的RNAi过程能有效地抑制HBV的基因表达和病毒复制,我们利用细胞模型和高压注射小鼠模型评价HBVsi18-42对HBV复制和基因表达的抑制作用。通过Western印迹检测细胞内的HBsAg含量,用ELISA检测细胞培养上清和小鼠血清中的HBsAg水平,采用Southern印迹检测HBV的复制中间体,通过免疫组织化学检测肝组织切片中HBcAg的表达情况。试验结果显示,HBVsi18-42能以剂量依赖的方式在293T细胞中抑制HBsAg的表达以及在HepG2细胞中下调病毒HBsAg和HBeAg的表达和病毒复制中间体的水平。在小鼠模型中,注射后的3d内HBVsi18-42使小鼠血清中HBsAg的水平分别下降了98.98%、77.07%和60.73%,免疫组织化学检测显示,在注射后的第3天小鼠肝组织内HBcAg阳性细胞数减少了79.1%。初步结果显示HBVsi18-42无论是在细胞或是在小鼠模型中都能下调HBV的复制和基因的表达。本研究为我们下一步实现由pRNA介导的靶向RNAi及基因治疗提供了理论和技术支持。 相似文献