共查询到20条相似文献,搜索用时 15 毫秒
1.
Jialin Li Nan Li Fuchao Li Tao Zou Shuxian Yu Yinchu Wang Song Qin Guangyi Wang 《PloS one》2014,9(11)
The South China Sea is one of the largest marginal seas, with relatively frequent passage of eddies and featuring distinct spatial variation in the western tropical Pacific Ocean. Here, we report a phylogenetic study of bacterial community structures in surface seawater of the northern South China Sea (nSCS). Samples collected from 31 sites across large environmental gradients were used to construct clone libraries and yielded 2,443 sequences grouped into 170 OTUs. Phylogenetic analysis revealed 23 bacterial classes with major components α-, β- and γ-Proteobacteria, as well as Cyanobacteria. At class and genus taxon levels, community structure of coastal waters was distinctively different from that of deep-sea waters and displayed a higher diversity index. Redundancy analyses revealed that bacterial community structures displayed a significant correlation with the water depth of individual sampling sites. Members of α-Proteobacteria were the principal component contributing to the differences of the clone libraries. Furthermore, the bacterial communities exhibited heterogeneity within zones of upwelling and anticyclonic eddies. Our results suggested that surface bacterial communities in nSCS had two-level patterns of spatial distribution structured by ecological types (coastal VS. oceanic zones) and mesoscale physical processes, and also provided evidence for bacterial phylogenetic phyla shaped by ecological preferences. 相似文献
2.
Choon Weng Lee Chui Wei Bong Yii Siang Hii 《Applied and environmental microbiology》2009,75(24):7594-7601
We investigated the temporal variation of bacterial production, respiration, and growth efficiency in the tropical coastal waters of Peninsular Malaysia. We selected five stations including two estuaries and three coastal water stations. The temperature was relatively stable (averaging around 29.5°C), whereas salinity was more variable in the estuaries. We also measured dissolved organic carbon and nitrogen (DOC and DON, respectively) concentrations. DOC generally ranged from 100 to 900 μM, whereas DON ranged from 0 to 32 μM. Bacterial respiration ranged from 0.5 to 3.2 μM O2 h−1, whereas bacterial production ranged from 0.05 to 0.51 μM C h−1. Bacterial growth efficiency was calculated as bacterial production/(bacterial production + respiration), and ranged from 0.02 to 0.40. Multiple correlation analyses revealed that bacterial production was dependent upon primary production (r2 = 0.169, df = 31, and P < 0.02) whereas bacterial respiration was dependent upon both substrate quality (i.e., DOC/DON ratio) (r2 = 0.137, df = 32, and P = 0.03) and temperature (r2 = 0.113, df = 36, and P = 0.04). Substrate quality was the most important factor (r2 = 0.119, df = 33, and P = 0.04) for the regulation of bacterial growth efficiency. Using bacterial growth efficiency values, the average bacterial carbon demand calculated was from 5.30 to 11.28 μM C h−1. When the bacterial carbon demand was compared with primary productivity, we found that net heterotrophy was established at only two stations. The ratio of bacterial carbon demand to net primary production correlated significantly with bacterial growth efficiency (r2 = 0.341, df = 35, and P < 0.001). From nonlinear regression analysis, we found that net heterotrophy was established when bacterial growth efficiency was <0.08. Our study showed the extent of net heterotrophy in these waters and illustrated the importance of heterotrophic microbial processes in coastal aquatic food webs.As our understanding of the marine food web evolves, we recognize the importance of microorganisms in aquatic ecosystems. Bacteria are the main respirers and recycle a large pool of dissolved organic matter to higher trophic levels (6, 13). Therefore, bacterial production is a key process in dissolved organic matter flux. However, the transfer of dissolved organic matter to bacteria is more accurately reflected by bacterial carbon demand (BCD) or carbon consumption (23). One way to obtain BCD from bacterial production is through bacterial growth efficiency (BGE) or growth yield. BGE is an important parameter to evaluate the fate of organic carbon inputs and to determine whether bacteria act as a link (recyclers) or sink (mineralizers). Therefore, understanding the patterns of variation in BGE is fundamental for our knowledge of carbon cycling (14).BGE is essentially the ratio of carbon converted to biomass relative to all the carbon consumed, where carbon consumption is either measured as the sum of bacterial production and respiration (5, 24), dissolved organic matter utilization (3), or both (12). Although bacterial production is frequently measured, bacterial respiration measurements are still scarce (23) and are often derived from production rates assuming constant growth efficiency (7, 30). The use of a constant growth efficiency is, however, not valid in some situations as studies have shown that BGE varies over both time and space (8, 27, 28, 32).From cross-system compilations (15, 38, 49) and a comprehensive study in a temperate salt marsh estuary (4, 5), we begin to understand the factors that affect bacterial growth efficiency. Although substrate quantity and quality affect growth efficiency (4, 15), temperature is also an important factor (49). However, the effect of temperature differs for both bacterial production and bacterial respiration (5) and is distorted by substrate limitation (38).Most of the above studies are from temperate regions where there is marked seasonality in temperature. In temperate regions, the effects of temperature are usually more apparent (5, 32) and can sometimes distort the effects of other factors (4). Although temperature plays a major role in controlling heterotrophic activity in temperate regions, it plays a lesser role in the tropics, where temperatures are more stable and relatively higher. Tropical oceans cover about 40% of the global ocean (37), and yet knowledge of the structure and function of this ecosystem remains limited, especially in the region of Southeast Asia (29). Only a few related studies are available, and those are from tropical coastal waters in Goa, India (45), and mangrove and estuarine waters in Peninsular Malaysia (27, 28). Substrate quality is often suggested as a more important factor than temperature (27, 28, 45).In this paper, we addressed the following question: What is the effect of substrate quality and temperature toward BGE in tropical coastal waters? We measured bacterial respiration, production, and growth efficiency in tropical coastal waters and related their variation to changes in temperature and dissolved organic nutrient concentrations. Here, we show that although both temperature and substrate quality affected respiration, BGE was related to substrate quality only. 相似文献
3.
Peng Wang Yuli Wei Tao Li Fuyan Li Jun Meng Chuanlun L. Zhang 《Geomicrobiology journal》2014,31(1):1-11
Archaea represent a significant portion of biomass in the marine sediments and may play an important role in global carbon cycle. However, the identity and composition of deep sea sediment Archaea are unclear. Here, we used the archaeal 16S rRNA gene primers to determine the diversity and community structure of Archaea from shallow water (<100 m) and deep water (>1500 m) sediments in the South China Sea. Phylogenetically the archaeal community is separated between the shallow- and deep sea sediments, with the former being dominated by the Thaumarchaeota and the latter by the Marine Benthic Group B, E and the South African GoldMine Euryarchaeotal Group as well as Thaumarchaeota. Sand content showed significant correlation with Thaumarchaeota, suggesting that the porous media may create an oxic environment that allowed these aerobic organisms to thrive in the surface sediments. The carbon isotope composition of total organic carbon was significantly correlated to the distribution of archaeal groups, suggesting that Archaea overall may be constrained by the availability or sources of organic carbon in the sediments of the South China Sea. 相似文献
4.
Journal of Ichthyology - The photographs of Hemitaurichthys polylepis in the natural environment of the coastal waters of Vietnam (Hon Noi) are given for the first time. The feeding of the... 相似文献
5.
Diurnal Variation of Cell Proliferation in Three Bacterial Taxa from Coastal North Sea Waters 总被引:3,自引:1,他引:3
下载免费PDF全文

Pulse-labeling with bromodeoxyuridine (BrdU) in combination with fluorescence in situ hybridization was applied to quantify the percentage of proliferating cells in coastal North Sea waters. In order to assess diurnal variability, we sampled eight or nine times, respectively, within 3 consecutive days at two seasons. Bacteria affiliated with the Roseobacter, SAR86, and NOR5 lineages constituted on average 19% ± 3%, 8% ± 2%, and 6% ± 1% of all cells in May 2002 and 17% ± 3%, 10% ± 2%, and 11% ± 3% in August. The relative abundances of the three populations either remained stable, or they changed very gradually during the observation periods. On average, 38 and 39% of all Bacteria exhibited DNA de novo synthesis in May and August, respectively. The fractions of proliferating cells in bacteria of the SAR86 (May, 59%; August, 72%) and the Roseobacter (48 and 53%) lineages were significantly above the community average. A substantial cell proliferation of population NOR5 (34%) was only encountered in August, concomitant with a dinoflagellate bloom. Significant short-term fluctuations of DNA-synthesizing cells were observed in Roseobacter during May and in NOR5 during August, hinting at a pronounced (temporal or spatial) mesoscale patchiness of growth rates in these populations. Since the BrdU proliferation assay is susceptible to misinterpretation, we also modeled the expected number of labeled cells at increasing BrdU incubation times in a slowly growing bacterial population. We suggest that the absence of visible DNA synthesis in marine bacterioplankton cells after DNA pulse-labeling must not be interpreted as an indication of cell “inactivity.” 相似文献
6.
Genetic Diversity and Temporal Variation in the Cyanophage Community Infecting Marine Synechococcus Species in Rhode Island's Coastal Waters 总被引:1,自引:0,他引:1
下载免费PDF全文

The cyanophage community in Rhode Island's coastal waters is genetically diverse and dynamic. Cyanophage abundance ranged from over 104 phage ml−1 in the summer months to less then 102 phage ml−1 during the winter months. Thirty-six distinct cyanomyovirus g20 genotypes were identified over a 3-year sampling period; however, only one to nine g20 genotypes were detected at any one sampling date. Phylogenetic analyses of g20 sequences revealed that the Rhode Island cyanomyoviral isolates fall into three main clades and are closely related to other known viral isolates of Synechococcus spp. Extinction dilution enrichment followed by host range tests and PCR restriction fragment length polymorphism analysis was used to detect changes in the relative abundance of cyanophage types in June, July, and August 2002. Temporal changes in both the overall composition of the cyanophage community and the relative abundance of specific cyanophage g20 genotypes were observed. In some seawater samples, the g20 gene from over 50% of isolated cyanophages could not be amplified by using the PCR primer pairs specific for cyanomyoviruses, which suggested that cyanophages in other viral families (e.g., Podoviridae or Siphoviridae) may be important components of the Rhode Island cyanophage community. 相似文献
7.
Seasonal and Spatial Variability of Bacterial and Archaeal Assemblages in the Coastal Waters near Anvers Island, Antarctica 总被引:16,自引:12,他引:16
下载免费PDF全文

A. E. Murray C. M. Preston R. Massana L. T. Taylor A. Blakis K. Wu E. F. DeLong 《Applied microbiology》1998,64(7):2585-2595
A previous report of high levels of members of the domain Archaea in Antarctic coastal waters prompted us to investigate the ecology of Antarctic planktonic prokaryotes. rRNA hybridization techniques and denaturing gradient gel electrophoresis (DGGE) analysis of the bacterial V3 region were used to study variation in Antarctic picoplankton assemblages. In Anvers Island nearshore waters during late winter to early spring, the amounts of archaeal rRNA ranged from 17.1 to 3.6% of the total picoplankton rRNA in 1996 and from 16.0 to 1.0% of the total rRNA in 1995. Offshore in the Palmer Basin, the levels of archaeal rRNA throughout the water column were higher (average, 24% of the total rRNA) during the same period in 1996. The archaeal rRNA levels in nearshore waters followed a highly seasonal pattern and markedly decreased during the austral summer at two stations. There was a significant negative correlation between archaeal rRNA levels and phytoplankton levels (as inferred from chlorophyll a concentrations) in nearshore surface waters during the early spring of 1995 and during an 8-month period in 1996 and 1997. In situ hybridization experiments revealed that 5 to 14% of DAPI (4′,6-diamidino-2-phenylindole)-stained cells were archaeal, corresponding to 0.9 × 104 to 2.7 × 104 archaeal cells per ml, in late winter 1996 samples. Analysis of bacterial ribosomal DNA fragments by DGGE revealed that the assemblage composition may reflect changes in water column stability, depth, or season. The data indicate that changes in Antarctic seasons are accompanied by significant shifts in the species composition of bacterioplankton assemblages and by large decreases in the relative proportion of archaeal rRNA in the nearshore water column. 相似文献
8.
Predictable patterns of species number have been observed in relation to habitat size, habitat heterogeneity and environmental conditions, while patterns in relative abundance of species have been examined for few communities and no assembly rules have been established. We studied communities of attached macroalgae in 61 individual sites located in four different areas; the inner, middle and outer parts of three neighbouring low-tidal estuaries and the adjacent open waters of the Kattegat, Denmark. The objectives were to determine (1) the relationships of species number and rank-abundance to the environmental conditions, and (2) the importance of scale and the consistency of species rank number at the sites for these relationships. We found that species number increased significantly from the inner estuaries to the open coastal waters along with decreasing nutrient concentrations. Turnover (β) diversity was lowest in the open waters suggesting that species composition was more similar among samples there than in the estuaries. Rank-abundance curves did not differ between depth intervals and individual sites across the environmental gradients. However, the summed rank-abundance patterns for two sites showed significantly steeper initial slopes and dominance of few species (i.e., low evenness) in the inner estuaries than in open waters. This pattern was due to high rank consistency of dominant species among sites in the inner estuaries. In open waters rank consistency was low, and the summed abundance across sites showed an even abundance of species. The results imply that the scale of the study and the community variability observed at that particular scale, is the main determinant of abundance patterns. 相似文献
9.
Temporal Variation and Co-occurrence Patterns of Bacterial Communities in Eutrophic Lake Taihu,China
To understand the long-term and local variations of bacteria under the influence of annually re-occurred water bloom, bacterial community composition (BCC) was investigated monthly for 3 years (2009–2011) at four different sites located across Lake Taihu. The bacterial community composition was analyzed by 16S rRNA gene clone libraries and terminal restriction fragment length polymorphism. Co-occurrence patterns among bacterial taxa and environmental variables were determined through network analysis. Overall, strong seasonal variation patterns of BCC were observed whilst the spatial variations of BCC were slight in the long-term observation. However, core species bacteria persisted throughout the annual variations. Network analysis showed that the highly connected operational taxonomic units in bacteria-environment network included both the numerically dominant taxa and some functional groups with low abundance, such as Methylophilaceae and Nitrospira. Co-occurrence networks further revealed that the correlations of bacteria-bacteria could be more critical than those between environment and bacteria in structuring microbial communities, and would be a crucial driving factor of BCC in Lake Taihu. 相似文献
10.
We examined temporal changes in macrofaunal α- and β-diversity over several spatial scales (within patches, among patches, across landscapes and across regions) in Long Island Sound on the northeast USA coast. Regional ε-diversity was estimated at 144 taxa, however γ-diversity fluctuated over time as did α- and β-diversity components. Based on additive partitioning, patch- and region-scale β-diversity components generally had the highest contributions to γ-diversity; lower percentages were found at within-patch and landscape scales. Multiplicative diversity partitioning indicated highest species turnover at within- and among patch scales. For all partition results, within-patch and patch-scale β-diversity increased sharply when hypoxia impacted benthic communities. Spatial variation in diversity components can be attributed to the collection of different patch types at varying spatial scales and their associated habitats across the benthic landscapes, as well as gradients in depth and other estuarine-scale characteristics. Temporal variation in diversity components across spatial scales may be related to seasonal changes in habitat heterogeneity, species population dynamics, and seasonal disturbances. Rare species were significant and temporally consistent components of macrofaunal diversity patterns over different spatial scales. Our findings agree with other marine and terrestrial studies that show diversity components vary significantly over different spatial scales and the importance of habitat/landscape heterogeneity in supporting diversity. However, our results indicate that the relative contributions of scale-specific β-diversity components can also change significantly over time. Thus, studies of diversity patterns across patches and landscapes based on data collected at one time, or assembled into a single data set from different times, may not capture the full suite of diversity patterns that occur over varying spatial scales and any time-specific determinants of those patterns. Many factors that shape and maintain sedimentary communities vary temporally, and appear to play an important role in determining and maintaining macrofaunal diversity over different spatial scales. 相似文献
11.
Diversity and Abundance of Nitrate Assimilation Genes in the Northern South China Sea 总被引:1,自引:0,他引:1
Marine heterotrophic microorganisms that assimilate nitrate play an important role in nitrogen and carbon cycling in the water
column. The nasA gene, encoding the nitrate assimilation enzyme, was selected as a functional marker to examine the nitrate assimilation community
in the South China Sea (SCS). PCR amplification, restriction fragment length polymorphism (RFLP) screening, and phylogenetic
analysis of nasA gene sequences were performed to characterize in situ nitrate assimilatory bacteria. Furthermore, the effects of nutrients and other environmental factors on the genetic heterogeneity
of nasA fragments from the SCS were evaluated at the surface in three stations, and at two other depths in one of these stations.
The diversity indices and rarefaction curves indicated that the nasA gene was more diverse in offshore waters than in the Pearl River estuary. The phylotype rank abundance curve showed an abundant
and unique RFLP pattern in all five libraries, indicating that a high diversity but low abundance of nasA existed in the study areas. Phylogenetic analysis of environmental nasA gene sequences further revealed that the nasA gene fragments came from several common aquatic microbial groups, including the Proteobacteria, Cytophaga–Flavobacteria (CF), and Cyanobacteria. In addition to the direct PCR/sequence analysis of environmental samples, we also cultured a number of nitrate assimilatory
bacteria isolated from the field. Comparison of nasA genes from these isolates and from the field samples indicated the existence of horizontal nasA gene transfer. Application of real-time quantitative PCR to these nasA genes revealed a great variation in their abundance at different investigation sites and water depths. 相似文献
12.
M. Korlevi? P. Pop Ristova R. Gari? R. Amann S. Orli? 《Applied and environmental microbiology》2015,81(5):1715-1726
The South Adriatic Sea is the deepest part of the Adriatic Sea and represents a key area for both the Adriatic Sea and the deep eastern Mediterranean. It has a role in dense water formation for the eastern Mediterranean deep circulation cell, and it represents an entry point for water masses originating from the Ionian Sea. The biodiversity and seasonality of bacterial picoplankton before, during, and after deep winter convection in the oligotrophic South Adriatic waters were assessed by combining comparative 16S rRNA sequence analysis and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The picoplankton communities reached their maximum abundance in the spring euphotic zone when the maximum value of the chlorophyll a in response to deep winter convection was recorded. The communities were dominated by Bacteria, while Archaea were a minor constituent. A seasonality of bacterial richness and diversity was observed, with minimum values occurring during the winter convection and spring postconvection periods and maximum values occurring under summer stratified conditions. The SAR11 clade was the main constituent of the bacterial communities and reached the maximum abundance in the euphotic zone in spring after the convection episode. Cyanobacteria were the second most abundant group, and their abundance strongly depended on the convection event, when minimal cyanobacterial abundance was observed. In spring and autumn, the euphotic zone was characterized by Bacteroidetes and Gammaproteobacteria. Bacteroidetes clades NS2b, NS4, and NS5 and the gammaproteobacterial SAR86 clade were detected to co-occur with phytoplankton blooms. The SAR324, SAR202, and SAR406 clades were present in the deep layer, exhibiting different seasonal variations in abundance. Overall, our data demonstrate that the abundances of particular bacterial clades and the overall bacterial richness and diversity are greatly impacted by strong winter convection. 相似文献
13.
Bacterial community dynamics in South End tidal creek, Sapelo Island, GA, were studied over a 74-h, five-tidal-cycle period. Observations were made hourly for the first consecutive 24 hours, every 3 hours on the second day, and every 6 hours on the third day. Tide most strongly influenced bacterial community composition (high-tide versus low-tide community analysis of similarities, R = 0.41, P < 0.03). Dissolved oxygen concentration and conductivity were important proximate drivers. However, after accounting for tide and environmental variables colinear with tide, cumulative time became more important in describing community variation. In-stream physical processes, including particulate suspension and sedimentation, may explain tide-associated trends in the bacterial community composition observed. 相似文献
14.
Maritime Security in the South China Sea: Coordinating Coastal and User State Priorities 总被引:2,自引:0,他引:2
Maritime security concerns in the South China Sea are increasing for several reasons: higher volumes of shipping traffic, protection of exclusive economic zone resources, piracy, terrorist threats, greater international scrutiny of ports and shipping, and the modernization of regional naval and coast guard forces. Coastal states and international user states have many overlapping interests in the South China Sea, for example, in promoting safe navigation through its busy sea-lanes. On other issues, in particular, antipiracy or anti-maritime terrorism measures, they have different views about the seriousness of the threats and the responses necessary to address them. This article examines the convergent and divergent maritime security interests of coastal states (China, Indonesia, Malaysia, and Singapore) and international user states (Australia, India, Japan, and the United States) in the South China Sea. It finds that multiple stakeholders pursuing diverse interests have yet to close the gap between goals and means of achieving maritime security. 相似文献
15.
We investigated the bacterial diversity of microbial communities in water-filled, human-made and natural container habitats
of the mosquitoes Aedes aegypti and Aedes albopictus in suburban landscapes of New Orleans, Louisiana in 2003. We collected water samples from three classes of containers, including
tires (n = 12), cemetery urns (n = 23), and miscellaneous containers that included two tree holes (n = 19). Total genomic DNA was extracted from water samples, and 16S ribosomal DNA fragments (operational taxonomic units,
OTUs) were amplified by PCR and separated by denaturing gradient gel electrophoresis (DGGE). The bacterial communities in
containers represented diverse DGGE-DNA banding patterns that were not related to the class of container or to the local spatial
distribution of containers. Mean richness and evenness of OTUs were highest in water samples from tires. Bacterial phylotypes
were identified by comparative sequence analysis of 90 16S rDNA DGGE band amplicons. The majority of sequences were placed
in five major taxa: Alpha-, Beta- and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and an unclassified group; Proteobacteria and Bacteroidetes were the predominant heterotrophic bacteria in containers. The bacterial communities in human-made containers consisted mainly
of undescribed species, and a phylogenetic analysis based on 16S rRNA sequences suggested that species composition was independent
of both container type and the spatial distribution of containers. Comparative PCR-based, cultivation-independent rRNA surveys
of microbial communities associated with mosquito habitats can provide significant insight into community organization and
dynamics of bacterial species.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
16.
C. C. P. Hardoim R. Costa F. V. Araújo E. Hajdu R. Peixoto U. Lins A. S. Rosado J. D. van Elsas 《Applied and environmental microbiology》2009,75(10):3331-3343
Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To address this question, we assessed the composition of specific bacterial communities associated with Aplysina fulva, one of the prevalent sponge species inhabiting Brazilian waters. Specimens of A. fulva and surrounding seawater were collected in triplicate in shallow water at two sites, Caboclo Island and Tartaruga beach, Búzios, Brazil. Total community DNA was extracted from the samples using “direct” and “indirect” approaches. 16S rRNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses of the total bacterial community and of specific bacterial groups—Pseudomonas and Actinobacteria—revealed that the structure of these assemblages in A. fulva differed drastically from that observed in seawater. The DNA extraction methodology and sampling site were determinative for the composition of actinobacterial communities in A. fulva. However, no such effects could be gleaned from total bacterial and Pseudomonas PCR-DGGE profiles. Bacterial 16S rRNA gene clone libraries constructed from directly and indirectly extracted DNA did not differ significantly with respect to diversity and composition. Altogether, the libraries encompassed 15 bacterial phyla and the candidate division TM7. Clone sequences affiliated with the Cyanobacteria, Chloroflexi, Gamma- and Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were, in this order, most abundant. The bacterial communities associated with the A. fulva specimens were distinct and differed from those described in studies of sponge-associated microbiota performed with other sponge species.The phylum Porifera (sponges) consists of benthic (sessile) organisms that occur primarily in marine environments at different depths (26). Sponges are classified into three groups, namely, the Calcarea (calcareous sponges), Hexactinellida (glass sponges), and Demospongiae (5, 26). The group Demospongiae, also called demosponges, encompasses 95% of the ca. 5,500 living sponge species described thus far (5). As typical filter feeders, demosponges are the prime bacterial filters of the sea. They are capable of pumping thousands of liters of water per day (23), using prokaryotic microorganisms as the main source of food (1, 43, 47). In addition to demosponges feeding on microorganisms, the presence of bacteria in high density in internal sponge layers (mesohyl) indicates that a selective process favoring particular prokaryotes, involving microbe-sponge interactions, is likely to occur (64). Furthermore, the dawn of the interactions between Prokarya and higher organisms may actually lie in the demosponges, whose origin is estimated to date back to 550 million years ago (5, 33).Putative interactions between demosponges and microorganisms, presumably mostly consisting of Bacteria and Archaea, were first demonstrated by transmission electron microscopy (TEM), where high amounts of microorganisms were observed in the mesohyl (1, 14, 16, 64). Hence, these bacterium-rich sponges have been termed “bacteriosponges” (46). While investigating 11 taxonomically different demosponges using TEM, Vacelet and Donadey (64) identified two different sponge types in respect of their association with bacteria. Sponges with thick mesohyl contained abundant, dense, and morphologically diverse microbial communities (i.e., bacteriosponge), while those with a well-developed aquiferous system and low-density mesohyl contained few bacterial cells and typically only single bacterial morphotypes. The two types have recently been called “high-microbial-abundance” (HMA) and “low-microbial-abundance” (LMA) sponges, respectively (23). In HMA sponges, bacterial densities may reach 108 to 1010 bacterial cells per g (wet weight) of sponge, exceeding seawater concentrations by 2 to 4 orders of magnitude (15, 23). Based on the analysis of 16S rRNA genes, over 15 bacterial phyla have thus far been reported to occur in association with marine sponges (11, 23, 56). Among these are typical sponge-associated bacteria such as members of the Cyanobacteria, Chloroflexi, Proteobacteria, Acidobacteria, Verrucomicrobia, and the candidate phyla “Poribacteria” and TM6 (14, 30, 51, 56, 60, 68).Increasing research interest in the sponge-associated microbiota has emerged in the past few years, mainly due to the in spongium production of an enormous diversity of biologically active secondary metabolites (56). Recent studies suggest that certain bioactive compounds retrieved from marine sponges—such as complex polypeptides and nonribosomal peptides—are likely to be synthesized by the symbiont bacteria (27, 41, 42). Such bioactive secondary metabolites offer great promise for use in biotechnology and medicine (3, 22, 27, 41, 42, 51, 59). In particular, cytotoxic compounds, i.e., antitumoral substances and polyketides, may find application in anticancer therapies (13, 42, 51). Recent investigations revealed the presence of dibromotyrosine-derived metabolites in Aplysina fulva (Pallas, 1766) specimens collected along the Brazilian shore (39). However, a putative role of microbial symbionts in the production of such metabolites, commonly found to display biological activity, remains to be evaluated.Despite the global-scale occurrence of sponges in Earth''s marine ecosystems, the investigation of their associated bacterial communities has thus far been restricted only to certain areas (1, 11, 13, 14, 27, 54, 58, 68). To our knowledge, no studies have been conducted, to date, on sponge-associated microbes in subtropical, South Atlantic open shore waters. In the present study, we assess the diversity and composition of the bacterial community associated with the demosponge A. fulva collected at two different sites at the Brazilian shore. A suite of tools, ranging from plate count estimations and TEM to sponge DNA-based analyses of bacterial 16S rRNA genes, was used. We hypothesized that a distinct bacterial community occurs in A. fulva, which is different from that in the surrounding bulk water, as well as from those in other sponge species. 相似文献
17.
On On Lee Jiangke Yang Salim Bougouffa Yong Wang Zenon Batang Renmao Tian Abdulaziz Al-Suwailem Pei-Yuan Qian 《Applied and environmental microbiology》2012,78(20):7173-7184
Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals. 相似文献
18.
Spatial distribution, diversity and composition of eukaryotic ultraplankton community of the northern South China Sea (nSCS) surface water and the relationship with the in situ water environment were investigated by the method of polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). A total of 18 DGGE intensive bands were detected and the sequence analysis of these DGGE bands revealed that Alveolata was the dominant eukaryotic ultraplankton group of surface water in the nSCS (50%). Other species belonged to Bicoecea, Bolidophyceae, Polycystinea and Chlorophyta, which accounted for less proportion of eukaryotic ultraplankton in the study area. Unweighted pair group method with arithmetic averages clustering of the sampling stations indicated that all stations were classified mainly based on geographical proximity. Redundancy analysis (RDA) was employed to further investigate the relationships between DGGE band pattern and the environmental variables. Based on the RDA analysis, temperature, salinity, phosphorus and silicate were the important factors to shape the eukaryotic ultraplankton community composition in the nSCS. 相似文献
19.
20.
Coral harbor diverse and specific bacteria play significant roles in coral holobiont function. Bacteria associated with three of the common and phylogenetically divergent reef-building corals in the South China Sea, Porites lutea, Galaxea fascicularis and Acropora millepora, were investigated using 454 barcoded-pyrosequencing. Three colonies of each species were sampled, and 16S rRNA gene libraries were constructed individually. Analysis of pyrosequencing libraries showed that bacterial communities associated with the three coral species were more diverse than previous estimates based on corals from the Caribbean Sea, Indo-Pacific reefs and the Red Sea. Three candidate phyla, including BRC1, OD1 and SR1, were found for the first time in corals. Bacterial communities were separated into three groups: P. lutea and G. fascicular, A. millepora and seawater. P. lutea and G. fascicular displayed more similar bacterial communities, and bacterial communities associated with A. millepora differed from the other two coral species. The three coral species shared only 22 OTUs, which were distributed in Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Chloroflexi, Actinobacteria, Acidobacteria and an unclassified bacterial group. The composition of bacterial communities within each colony of each coral species also showed variation. The relatively small common and large specific bacterial communities in these corals implies that bacterial associations may be structured by multiple factors at different scales and that corals may associate with microbes in terms of similar function, rather than identical species. 相似文献