首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Biochar derived from agricultural biomass waste is increasingly recognized as a multifunctional material for various applications according to its characteristics. In this study, rice straw–derived biochars were produced at different temperatures (550, 650, 750°C), then they were modified by using different oxidizing agents, including KOH, HNO3, H2SO4, H2O2, and KMnO4. The influence of carbonization temperature and the oxidizing agent's nature on the surface chemistry was investigated. Fourier transform infrared (FTIR) analysis detected lactone, carbonyl, quinone or conjugated quinone, carboxyl-carbonate structure, and alcohol groups in most of the oxidized samples. Modified biochars have low pH values compared with their parent biochars. This is due to the fact that most treatments of biochar increase the acidic functional groups on the surface. Modified biochars presented greater capacities for adsorption of organic species of different molecular sizes such as iodine, phenol, and methylene blue from solutions. Such behavior proves that the most important surface properties of these biochars affecting their solution adsorption behavior are their acidity/alkalinity and hydrophilicity.  相似文献   

2.
Poplars and their hybrids are widely planted in both plantation forestry and agroforestry systems of the world. Along with the utilization and plantation management processes, a large amount of biomass residues are produced, but the relationship between biochar properties and soil CO2 emissions is largely unknown. Here, a laboratory incubation study was conducted to assess the effects of different biochars and their corresponding biomass residues on soil CO2 emissions during the 180 days of incubation. Poplar residue-derived biochars were larger in the surface area and total pore volume but lower in nutrients and pH values than the rice straw-derived biochar. Increasing pyrolysis temperature led to a decrease in the total nitrogen (TN) content of poplar leaf- and rice straw-derived biochars, but enhanced the TN in the poplar twig- and poplar bark-derived biochars. After 180-day incubation, the total cumulative CO2 emission decreased by 33.1%–73.8% in the biochar amendments compared to their corresponding biomass residue addition, whereas the biochars derived from poplar twig and bark residues had more positive effects on reducing soil CO2 emissions, but depended on the pyrolysis temperature. Correlation analysis showed a significant and positive correlation between the CO2 emissions and TN content of bio-based materials but the negative relationships to total carbon content and C/N ratio. Meanwhile the positive correlations of CO2 emissions to the surface area, t-plot micropore area, and volume of the biochars were detected. Our results suggest that application of poplar twig- and poplar bark-derived biochars has a great potential for mitigating global warming.  相似文献   

3.
Lignocellulosic feedstocks are utilized for the production of fuel ethanol and butanol through dilute acid/enzymatic hydrolysis and fermentation. Hydrolysis residue, a major by-product of biomass hydrolysis, is rich in recalcitrant carbon as majority of cellulosic and hemicellulosic components are released during pretreatment. With the intention of their effective utilization, hydrolysis residues from forestry (pinewood), energy crop system (timothy grass), and agriculture (wheat straw) were pyrolysed in a fixed-bed reactor at 600 °C with slow heating rate of 5 °C/min for 4 h. In order to understand the product (biochar, bio-oil, and gases) properties and advocate their energy and environmental values, chemical characterizations such as carbon–hydrogen–nitrogen–sulfur analysis, inductively coupled plasma-mass spectrometry, pH, electrical conductivity, scanning electron microscopy, porosity analysis, thermogravimetric analysis, X-ray diffraction, Fourier transform infrared (FTIR) and Raman spectroscopy, nuclear magnetic resonance (NMR) and gas chromatography–mass spectrometry (GC-MS) were employed. The yield of biochar, bio-oil and gases was 38.9–41.7, 18.6–22.3, and 24.9–28.8 wt%, respectively. The high pH and electrical conductivity of biochars with substantial amounts of Na, Mg, K, and Ca indicated their alkaline and saline nature, which would necessitate proper agronomical soil applications. Variable intensities of C–C, C–H, C–O, O–H, and C–N functional groups were detected in the FTIR spectra of residues, biochars, and bio-oils. Raman spectroscopy showed the development of graphite (1,580–1,610 cm?1) and defect (1,325–1,380 cm?1) carbon structures in biochars. 1H NMR of bio-oils indicated aromatics, olefinics, and aliphatics, whereas 13C NMR indicated carbonyls, aromatics, carbohydrates, alkyls, methoxy, and hydroxy carbon. GC studies of pyrolysis gases identified chiefly H2 and CO with traces of CH4, CO2, and C2+ components.  相似文献   

4.
One factor limiting the understanding and evaluation of biochar for soil amendment and carbon sequestration applications is the scarcity of long-term, large-scale field studies. Limited land, time, and material resources require that biochars for field trials be carefully selected. In this study, 17 biochars from the fast pyrolysis, slow pyrolysis, and gasification of corn stover, switchgrass, and wood were thoroughly characterized and subjected to an 8-week soil incubation as a way to select the most promising biochars for a field trial. The methods used to characterize the biochars included proximate analysis, CHNS elemental analysis, Brunauer?CEmmett?CTeller surface (BET) area, photo-acoustic Fourier transform infrared spectroscopy, and quantitative 13?C solid-state nuclear magnetic resonance (NMR) spectroscopy. The soil incubation study was used to relate biochar properties to three soil responses: pH, cation exchange capacity (CEC), and water leachate electrical conductivity (EC). Characterization results suggest that biochars made in a kiln process where some oxygen was present in the reaction atmosphere have properties intermediate between slow pyrolysis and gasification and therefore, should be grouped separately. A close correlation was observed between aromaticity determined by NMR and fixed carbon fraction determined by proximate analysis, suggesting that the simpler, less expensive proximate analysis method can be used to gain aromaticity information. Of the 17 biochars originally assessed, four biochars were ultimately selected for their potential to improve soil properties and to provide soil data to refine the selection scheme: corn stover low-temperature fast pyrolysis (highest amended soil CEC, information on high volatile matter/O?CC ratio biochar), switchgrass O2/steam gasification (relatively high BET surface area, and amended soil pH, EC, and CEC), switchgrass slow pyrolysis (higher-amended soil pH and EC), and hardwood kiln carbonization (information on slow pyrolysis, gasification and kiln-produced differences).  相似文献   

5.
Sun K  Ro K  Guo M  Novak J  Mashayekhi H  Xing B 《Bioresource technology》2011,102(10):5757-5763
Thermal and hydrothermal biochars were characterized, and adsorption of bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and phenanthrene (Phen) was determined to investigate the sorption characteristic difference between the two types of biochars. Thermal biochars were composed mostly of aromatic moieties, with low H/C and O/C ratios as compared to hydrothermal ones having diverse functional groups. Single-point organic carbon-normalized distribution coefficients (logKOC) of EE2 and BPA of hydrothermal biochars were higher than thermal biochars, while Phen logKOC values were comparable among them. X-ray diffraction and solid state nuclear magnetic resonance results suggested that hydrothermal biochars consisted of more amorphous aliphatic-C, possibly being responsible for their high sorption capacity of Phen. This study demonstrated that hydrothermal biochars could adsorb a wider spectrum of both polar and nonpolar organic contaminants than thermally produced biochars, suggesting that hydrothermal biochar derived from poultry and animal waste is a potential sorbent for agricultural and environmental applications.  相似文献   

6.
Cadmium contamination in croplands is recognized one of the major threat, seriously affecting soil health and sustainable agriculture around the globe. Cd mobility in wastewater irrigated soils can be curtailed through eco-friendly and cost effective organic soil amendments (biochars) that eventually minimizes its translocation from soil to plant. This study explored the possible effects of various types of plants straw biochar as soil amendments on cadmium (Cd) phytoavailability in wastewater degraded soil and its subsequent accumulation in sunflower tissues. The studied biochars including rice straw (RS), wheat straw (WS), acacia (AC) and sugarcane bagasse (SB) to wastewater irrigated soil containing Cd. Sunflower plant was grown as a test plant and Cd accumulation was recorded in its tissues, antioxidant enzymatic activity chlorophyll contents, plant biomass, yield and soil properties (pH, NPK, OM and Soluble Cd) were also examined. Results revealed that addition of biochar significantly minimized Cd mobility in soil by 53.4%, 44%, 41% and 36% when RS, WS, AC and SB were added at 2% over control. Comparing the control soil, biochar amended soil effectively reduced Cd uptake via plants shoots by 71.7%, 60.6%, 59% and 36.6%, when RS, WS, AC and SB. Among all the biochar, rice husk induced biochar significantly reduced oxidative stress and reduced SOD, POD and CAT activity by 49%, 40.5% and 46.5% respectively over control. In addition, NPK were significantly increased among all the added biochars in soil–plant system as well as improved chlorophyll contents relative to non-bioachar amended soil. Thus, among all the amendments, rice husk and wheat straw biochar performed well and might be considered the suitable approach for sunflower growth in polluted soil.  相似文献   

7.
The amendment of two agricultural soils with two biochars derived from the slow pyrolysis of papermill waste was assessed in a glasshouse study. Characterisation of both biochars revealed high surface area (115 m2 g?1) and zones of calcium mineral agglomeration. The biochars differed slightly in their liming values (33% and 29%), and carbon content (50% and 52%). Molar H/C ratios of 0.3 in the biochars suggested aromatic stability. At application rates of 10 t ha?1 in a ferrosol both biochars significantly increased pH, CEC, exchangeable Ca and total C, while in a calcarosol both biochars increased C while biochar 2 also increased exchangeable K. Biochars reduced Al availability (ca. 2 cmol (+) kg?1 to <0.1 cmol (+) kg?1) in the ferrosol. The analysis of biomass production revealed a range of responses, due to both biochar characteristics and soil type. Both biochars significantly increased N uptake in wheat grown in fertiliser amended ferrosol. Concomitant increase in biomass production (250% times that of control) therefore suggested improved fertiliser use efficiency. Likewise, biochar amendment significantly increased biomass in soybean and radish in the ferrosol with fertiliser. The calcarosol amended with fertiliser and biochar however gave varied crop responses: Increased soybean biomass, but reduced wheat and radish biomass. No significant effects of biochar were shown in the absence of fertiliser for wheat and soybean, while radish biomass increased significantly. Earthworms showed preference for biochar-amended ferrosol over control soils with no significant difference recorded for the calcarosol. The results from this work demonstrate that the agronomic benefits of papermill biochars have to be verified for different soil types and crops.  相似文献   

8.
Yuan JH  Xu RK  Zhang H 《Bioresource technology》2011,102(3):3488-3497
The forms of alkalis of the biochars produced from the straws of canola, corn, soybean and peanut at different temperatures (300, 500 and 700°C) were studied by means of oxygen-limited pyrolysis. The alkalinity and pH of the biochars increased with increased pyrolysis temperature. The X-ray diffraction spectra and the content of carbonates of the biochars suggested that carbonates were the major alkaline components in the biochars generated at the high temperature; they were also responsible for the strong buffer plateau-regions on the acid-base titration curves at 500 and 700°C. The data of FTIR-PAS and zeta potentials indicated that the functional groups such as -COO(-) (-COOH) and -O(-) (-OH) contained by the biochars contributed greatly to the alkalinity of the biochar samples tested, especially for those generated at the lower temperature. These functional groups were also responsible for the negative charges of the biochars.  相似文献   

9.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.  相似文献   

10.
Two biochars were produced from anaerobically digested and undigested sugar beet tailings through slow-pyrolysis at 600 °C. The digested sugar beet tailing biochar (DSTC) and raw sugar beet tailing biochar (STC) yields were around 45.5% and 36.3% of initial dry weight, respectively. Compared to STC, DSTC had similar pH and surface functional groups, but higher surface area, and its surface was less negatively charged. SEM-EDS and XRD analyses showed that colloidal and nano-sized periclase (MgO) was presented on the surface of DSTC. Laboratory adsorption experiments were conducted to assess the phosphate removal ability of the two biochars, an activated carbon (AC), and three Fe-modified biochar/AC adsorbents. The DSTC showed the highest phosphate removal ability with a removal rate around 73%. Our results suggest that anaerobically digested sugar beet tailings can be used as feedstock materials to produce high quality biochars, which could be used as adsorbents to reclaim phosphate.  相似文献   

11.
The biochar is an important carbon-rich product that is generated from biomass sources through pyrolysis. Biochar (charcoal) can be both used directly as a potential source of solid biofuels and as soil amendments for barren lands. The aim of this study was investigate influence of pyrolysis temperature on the physicochemical properties and structure of biochar. The biochars were produced by pyrolysis of rapeseed (Brassica napus L.) using a fixed-bed reactor at different pyrolysis temperatures (400–700°C). The produced biochars were characterized by proximate and elemental analysis, Brunauer–Emmett–Teller (BET) surface area, particle size distributions, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy. The results showed that both chemical and surface properties of the biochars were significantly affected by the pyrolysis temperature. Aromatic hydrocarbons, hydroxyl and carbonyl compounds were the majority components of the biochar. The biochar obtained at 700°C had a high fixed carbon content (66.16%) as well as a high heating value, and therefore it could be used as solid fuel, precursor in the activated carbons manufacture (specific surface area until 25.38 m2 g?1), or to obtain category-A briquettes.  相似文献   

12.
Biochar as a carbon‐rich coproduct of pyrolyzing biomass, its amendment has been advocated as a potential strategy to soil carbon (C) sequestration. Updated data derived from 50 papers with 395 paired observations were reviewed using meta‐analysis procedures to examine responses of soil carbon dioxide (CO2) fluxes, soil organic C (SOC), and soil microbial biomass C (MBC) contents to biochar amendment. When averaged across all studies, biochar amendment had no significant effect on soil CO2 fluxes, but it significantly enhanced SOC content by 40% and MBC content by 18%. A positive response of soil CO2 fluxes to biochar amendment was found in rice paddies, laboratory incubation studies, soils without vegetation, and unfertilized soils. Biochar amendment significantly increased soil MBC content in field studies, N‐fertilized soils, and soils with vegetation. Enhancement of SOC content following biochar amendment was the greatest in rice paddies among different land‐use types. Responses of soil CO2 fluxes and MBC to biochar amendment varied with soil texture and pH. The use of biochar in combination with synthetic N fertilizer and waste compost fertilizer led to the greatest increases in soil CO2 fluxes and MBC content, respectively. Both soil CO2 fluxes and MBC responses to biochar amendment decreased with biochar application rate, pyrolysis temperature, or C/N ratio of biochar, while each increased SOC content enhancement. Among different biochar feedstock sources, positive responses of soil CO2 fluxes and MBC were the highest for manure and crop residue feedstock sources, respectively. Soil CO2 flux responses to biochar amendment decreased with pH of biochar, while biochars with pH of 8.1–9.0 had the greatest enhancement of SOC and MBC contents. Therefore, soil properties, land‐use type, agricultural practice, and biochar characteristics should be taken into account to assess the practical potential of biochar for mitigating climate change.  相似文献   

13.
Natural organic biomass burning creates black carbon which forms a considerable proportion of the soil’s organic carbon. Due to black carbon’s aromatic structure it is recalcitrant and has the potential for long-term carbon sequestration in soil. Soils within the Amazon-basin contain numerous sites where the ‘dark earth of the Indians’ (Terra preta de Indio, or Amazonian Dark Earths (ADE)) exist and are composed of variable quantities of highly stable organic black carbon waste (‘biochar’). The apparent high agronomic fertility of these sites, relative to tropical soils in general, has attracted interest. Biochars can be produced by ‘baking’ organic matter under low oxygen (‘pyrolysis’). The quantities of key mineral elements within these biochars can be directly related to the levels of these components in the feedstock prior to burning. Their incorporation in soils influences soil structure, texture, porosity, particle size distribution and density. The molecular structure of biochars shows a high degree of chemical and microbial stability. A key physical feature of most biochars is their highly porous structure and large surface area. This structure can provide refugia for beneficial soil micro-organisms such as mycorrhizae and bacteria, and influences the binding of important nutritive cations and anions. This binding can enhance the availability of macro-nutrients such as N and P. Other biochar soil changes include alkalisation of soil pH and increases in electrical conductivity (EC) and cation exchange capacity (CEC). Ammonium leaching has been shown to be reduced, along with N2O soil emissions. There may also be reductions in soil mechanical impedance. Terra preta soils contain a higher number of ‘operational taxonomic units’ and have highly distinctive microbial communities relative to neighbouring soils. The potential importance of biochar soil incorporation on mycorrhizal fungi has also been noted with biochar providing a physical niche devoid of fungal grazers. Improvements in soil field capacity have been recorded upon biochar additions. Evidence shows that bioavailability and plant uptake of key nutrients increases in response to biochar application, particularly when in the presence of added nutrients. Depending on the quantity of biochar added to soil significant improvements in plant productivity have been achieved, but these reports derive predominantly from studies in the tropics. As yet there is limited critical analysis of possible agricultural impacts of biochar application in temperate regions, nor on the likelihood of utilising such soils as long-term sites for carbon sequestration. This review aims to determine the extent to which inferences of experience mostly from tropical regions could be extrapolated to temperate soils and to suggest areas requiring study.  相似文献   

14.

Aims

In this study, a chicken manure biochar (CM biochar) and a paper sludge biochar (PS biochar), prepared under similar treatment conditions, were amended into ferrosol as part of an agronomic field trial. The aim of this study is to investigate interactions between these biochars and the soil after a 3 month trial.

Methods

Soil samples following field trials were taken and biochar was separated from the soil, and studied for both surface oxidation and the degree of interaction with surrounding soil by X-ray photoelectron spectroscopy (XPS), SEM and TEM equipped with EDS for elemental analysis.

Results

Following incubation in field soil, both biochars showed that soil mineral incorporation on to their surfaces occurred within the first year, although the attachment was localized at specific sites on the surface. A relatively high concentration of Al was found at the interface between the biochar and mineral phases in both aged biochars, indicating a binding role of Al. For the CM biochar, a soil-iron redox reaction may be associated with the formation of biochar-mineral complexes due to the relatively higher labile carbon content and higher pH value of this biochar.

Conclusions

Soil mineral attachment may occur directly on to the biochar surface because of the formation of carboxylic and phenolic functional groups on the aged CM biochar surface by an oxidation reaction. For the PS biochar, adsorption of organic matter from the soil facilitated interactions between the biochar and mineral phases in the soil. Calcium is believed to be important in this process.  相似文献   

15.
以蚕丝被废弃物为原料,在300、500和700 ℃高温缺氧条件下热解炭化制备成3种生物炭(BC300、BC500和BC700).利用扫描电镜(SEM)、傅里叶红外光谱仪(FT-IR)、X-射线衍射仪(XRD)、比表面积分析仪等对其理化性质进行表征,并研究了不同温度下制备的生物炭对溶液中Cd2+的吸附特性.结果表明: 随着炭化温度上升,BET比表面积、pH、灰分均增大,生物炭表面形态结构越来越不规则.XRD结果显示:不同温度下获得的生物炭中均含有一定量的方解石,FT-IR光谱图上的峰主要为-OH和方解石典型的吸收峰;pH对生物炭吸附Cd2+的影响不大;Langmuir方程能更好地拟合3种生物炭对Cd2+的吸附等温过程,其最大吸附量分别为25.61、52.41和91.07 mg·g-1.3种生物炭对Cd2+吸附过程均更符合准二级动力学方程,且BC700对Cd2+的吸附效果最佳.进一步研究离子浓度及阳离子共存对BC700吸附Cd2+的影响,结果显示: NaCl浓度越高,对Cd2+的吸附抑制越明显;共存阳离子中,Ca2+和Mg2+对Cd2+的吸附抑制更明显,而K+几乎无影响.因此,以蚕丝被废弃物制备的生物炭作为去除水体中Cd2+的吸附剂具有较强的应用潜力.  相似文献   

16.
Red pepper (Capsicum annuum L.) is one of the most commonly cultivated vegetable in the Mediterranean region. This study evaluated the effects of biochar derived from corncob and poultry litter on growth of red pepper (Capsicum annuum L.) and some chemical properties of a silty clay soil. The experiment consisted of two factors, i.e., biochar doses (0, 0.5, 1.0 and 2%) and poultry litter doses (0, 0.5, 1.0 and 2%). The number of days to 50% flowering, plant height, stem diameter, total number of leaves per plant, the number of main branches per plant, fresh root weight, root length, dry shoot weight, macro (P and K) and micro (Fe, Zn, Cu and Mn) nutrient concentrations of leaves were determined to compare the efficiency biochar and poultry litter. Moreover, post-harvest soil analysis was conducted to measure pH, organic matter, and macro and micronutrient contents. Biochar had varying impact on plant growth parameters, whereas poultry litter alone or in combination with biochar increased macro and micronutrient concentrations of soil and improved most of the growth parameters of red pepper. In contrast, sole biochar application had no significant impact on most of the growth parameters. Wider C/N ratio (107.7) of corncob derived biochar restricted the nitrogen supply for plant growth. The combination of 0.5% biochar and 2% poultry litter resulted in the highest plant height (36.7 cm) and stem diameter (0.69 cm). The results revealed that application of single biochar derived from corncob is insufficient to supply adequate nutrients for optimal plant growth. The application of biochar alone enhances carbon sequestration in soils, however most biochars like cornconb biochar do not contain sufficient available plant nutrients. Therefore, biochars should be applied along with mineral fertilizers or organic materials such as poultry manure which is rich in available plant nutrients.  相似文献   

17.
《Bioresource technology》2000,71(2):113-123
Representative samples of soft, low density, group 1 (rice straw, rice hulls, sugarcane bagasse) and hard, high density, group 2 agricultural by-products (pecan shells) were converted into granular activated carbons (GACs). GACs were produced from group 1 and 2 materials by physical activation or from group 2 materials by chemical activation. Carbons were evaluated for their physical (hardness, bulk density), chemical (ash, conductivity, pH), surface (total surface area), and adsorption properties (molasses color removal, sugar decolorization) and compared with two commercial reference carbons. The results show that the type of by-product, binder, and activation method determine the properties of GACs. Regardless of the binder, sugarcane bagasse showed a better potential than rice straw or rice hulls as precursor of GACs with the desirable properties of a sugar decolorizing carbon. Pecan shells produced GACs that were closest to the reference carbons in terms of all the properties investigated.  相似文献   

18.
Biochars vary widely in pH, surface area, nutrient concentration, porosity, and metal binding capacity due to the assortment of feedstock materials and thermal conversion conditions under which it is formed. The wide variety of chemical and physical characteristics have resulted in biochar being used as an amendment to rebuild soil health, improve crop yields, increase soil water storage, and restore soils/spoils impacted by mining. Meta-analysis of the biochar literature has shown mixed results when using biochar as a soil amendment to improve crop productivity. For example, in one meta-analysis, biochar increased crop yield by approximately 10 %, while in another, approximately 50 % of the studies reported minimal to no crop yield increases. In spite of the mixed crop yield reports, biochars have properties that can improve soil health characteristics, by increasing carbon (C) sequestration and nutrient and water retention. Biochars also have the ability to bind enteric microbes and enhance metal binding in soils impacted by mining. In this review, we present examples of both effective and ineffective uses of biochar to improve soil health for agricultural functions and reclamation of degraded mine spoils. Biochars are expensive to manufacture and cannot be purged from soil after application, so for efficient use, they should be targeted for specific uses in agricultural and environmental sectors. Thus, we introduce the designer biochar concept as an alternate paradigm stating that biochars should be designed with properties that are tailored to specific soil deficiencies or problems. We then demonstrate how careful selection of biochars can increase their effectiveness as a soil amendment.  相似文献   

19.
The study investigated the preparation and characterization of biochars from water hyacinth at 300°C to 700°C for cadmium (Cd) removal from aqueous solutions. The adsorption process was dominated by oxygen-containing functional groups with irregular surfaces via esterification reactions. Furthermore, the mineral components in the biochars also contributed to Cd absorption through precipitation. Parameters such as the effects of solution pH, contact time, and initial concentration were studied. The optimum pH value was observed at 5.0, in which nearly 90% of Cd was removed. The maximum Cd adsorption capacities based on the Langmuir isotherm were calculated at 49.837, 36.899, and 25.826 mg g−1. The adsorption processes of the biochars followed the pseudo-second-order kinetics, with the equilibrium achieved around 5 h. The biochar from E. crassipes is a promising adsorbent for the treatment of wastewater, which can in turn convert one environmental problem to a new cleaning Technology.  相似文献   

20.
Four biochars were made via pyrolysis at 500?°C using different waste plant materials, including tree branches from Cinnamonum campora (L.) Pres (CCP), Eriobotrya japonica (Thunb.) Lindl (EJL), Rohdea roth (RR) and bamboo shoots (Phyllostachys sulphurea) (PS). Phosphorus sorption capacities of the biochars were studied by isothermal experiments on their sorption kinetics. Results show that P sorption to the three wood biochars (CCP, EJL, and RR) fitted well with Lagergren pseudo second order model. However, P release was found in the PS biochar and sand amended with the PS biochar treatments during the isothermal sorption experiment. Phosphorus sorption capacity of the CCP biochar, EJL biochar and RR biochar was 4,762.0, 2, 439.0 and 1, 639.3?mg/kg, respectively. The CCP biochar showed the highest P sorption capacity due to its higher pH, lower dissolved P content, larger surface area (23.067 m2/g) and pore volume (0.058?cm3/g). The PS biochar showed the lowest P sorption due to its higher dissolved P content, more carboxyl groups, and smaller surface area (2.982 m2/g) and pore volume (0.017?cm3/g). Results suggest that the CCP biochar could be a potential alternative adsorbent for P sorption, such as removing P in wastewater treatment by constructed wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号