首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Su  Jia  Zhou  Lei  He  Bicheng  Zhang  Xinhui  Ge  Xinna  Han  Jun  Guo  Xin  Yang  Hanchun 《中国病毒学》2019,34(6):631-640
Porcine reproductive and respiratory syndrome virus(PRRSV) is characterized by its genetic variation and limited cross protection among heterologous strains. Even though several viral structural proteins have been regarded as inducers of neutralizing antibodies(NAs) against PRRSV, the mechanism underlying limited cross-neutralization among heterologous strains is still controversial. In the present study, examinations of NA cross reaction between a highly pathogenic PRRSV(HP-PRRSV) strain, JXwn06, and a low pathogenic PRRSV(LP-PRRSV) strain, HB-1/3.9, were conducted with viral neutralization assays in MARC-145 cells. None of the JXwn06-hyperimmuned pigs' sera could neutralize HB-1/3.9 in vitro and vice versa. To address the genetic variation between these two viruses that are associated with limited crossneutralization, chimeric viruses with coding regions swapped between these two strains were constructed. Viral neutralization assays indicated that variations in nonstructural protein 2(nsp2) and structural proteins together contribute to weak cross-neutralization activity between JXwn06 and HB-1/3.9. Furthermore, we substituted the nsp2-, glycoprotein2(GP2)-,GP3-, and GP4-coding regions together, or nsp2-, GP5-, and membrane(M) protein-coding regions simultaneously between these two viruses to construct chimeric viruses to test cross-neutralization reactivity with hyperimmunized sera induced by their parental viruses. The results indicated that the swapped nsp2 and GP5-M viruses increased the neutralization reactivity with the donor strain antisera in MARC-145 cells. Taken together, these results show that variations in nsp2 and GP5-M correlate with the limited neutralization reactivity between the heterologous strains HP-PRRSV JXwn06 and LP-PRRSV HB-1/3.9.  相似文献   

2.
NADC30-like猪繁殖与呼吸综合征病毒样颗粒的制备与鉴定   总被引:1,自引:1,他引:0  
【背景】猪繁殖和呼吸综合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)可以造成怀孕母猪的繁殖障碍及仔猪的呼吸系统疾病,近年来,NADC30-like谱系PRRSV已成为国内的优势流行毒株。【目的】研制针对NADC30-like谱系PRRSV的病毒样颗粒(virus-like particle,VLP)疫苗。【方法】将PRRSV NADC30-like毒株编码GP5蛋白开放阅读框5(open reading frame 5,ORF5)、ORF6(编码M蛋白)分别连接至pFastBacTMDual载体P10和PH启动子下游多克隆位点,获得穿梭质粒pFB-30-ORF5及pFB-30-ORF6,酶切鉴定后,将ORF6基因插入到穿梭质粒pFB-30-ORF5 PH启动子下游,构建穿梭质粒pFB-30-ORF5-OPF6。将上述3种穿梭质粒分别转化大肠杆菌DH10Bac感受态细胞,通过蓝白斑筛选及PCR鉴定重组杆粒。再将获得的重组杆粒转染至SF9昆虫细胞,发现细胞病变后收获病毒液,继续盲传3代,在透射电镜下观察是否有病毒样颗粒。用第3代病毒液感染SF9细胞后,分别用GP5蛋白、His-tag、Flag-tag单克隆抗体作为一抗,通过免疫电镜、间接免疫荧光(indirect immunofluorescence assay,IFA)、Western blotting鉴定重组蛋白。【结果】成功构建了3种穿梭质粒pFB-30-ORF5、pFB-30-ORF6和pFB-30-ORF5-OPF6,酶切鉴定正确。通过蓝白斑筛选及PCR验证后获得重组杆粒,分别命名为Bacmind-30-ORF5、Bacmind-30-ORF6和Bacmind-30-ORF5-ORF6。重组杆粒感染SF9细胞120h时出现明显的细胞病变,收获病毒液后,在透射电子显微镜可观察到大小为50nm左右呈现球形结构的VLPs。免疫电镜可以观察到胶体金颗粒结合在VLPs周围;IFA结果显示实验组均出现了明显绿色的特异性荧光灶;Western blotting结果表明,3种VLPs均出现特异性条带,并与预期大小一致。【结论】制备了3种NADC30-like谱系PRRSV的病毒样颗粒,为针对PRRSV新谱系流行株疫苗的研发奠定了基础。  相似文献   

3.
The objectives of this study were to compare the molecular and biological characteristics of recent porcine reproductive and respiratory syndrome virus (PRRSV) field isolates to those of a modified live virus (MLV) PRRS vaccine and its parent strain. One hundred seventeen, 4-week-old pigs were randomly assigned to six groups. Group 1 (n = 20) served as sham-inoculated negative controls, group 2 (n = 19) was inoculated with Ingelvac PRRS MLV vaccine, group 3 (n = 20) was inoculated with the parent strain of the vaccine (ATCC VR2332), group 4 (n = 19) was inoculated with vaccine-like PRRSV field isolate 98-38803, group 5 (n = 19) was inoculated with PRRSV field isolate 98-37120, and group 6 (n = 20) was inoculated with known high-virulence PRRSV isolate ATCC VR2385. The levels of severity of gross lung lesions (0 to 100%) among the groups were significantly different at both 10 (P < 0.0001) and 28 days postinoculation (p.i.) (P = 0.002). At 10 days p.i., VR2332 (26.5% +/- 4.64%) and VR2385 (36.4% +/- 6.51%) induced gross lesions of significantly greater severity than 98-38803 (0.0% +/- 0.0%), 98-37120 (0.8% +/- 0.42%), Ingelvac PRRS MLV (0.9% +/- 0.46%), and negative controls (2.3% +/- 1.26%). At 28 days p.i., 98-37120 (17.2% +/- 6.51%) induced gross lesions of significantly greater severity than any of the other viruses. Analyses of the microscopic-interstitial-pneumonia-lesion scores (0 to 6) revealed that VR2332 (2.9 +/- 0.23) and VR2385 (3.1 +/- 0.35) induced significantly more severe lesions at 10 days p.i. At 28 days p.i., VR2385 (2.5 +/- 0.27), VR2332 (2.3 +/- 0.21), 98-38803 (2.6 +/- 0.29), and 98-37120 (3.0 +/- 0.41) induced significantly more severe lesions than Ingelvac PRRS MLV (0.7 +/- 0.17) and controls (0.7 +/- 0.15). The molecular analyses and biological characterizations suggest that the vaccine-like isolate 98-38803 (99.5% amino acid homology based on the ORF5 gene) induces microscopic pneumonia lesions similar in type to, but different in severity and time of onset from, those observed with virulent strains VR2385 and the parent strain of the vaccine. Our data strongly suggest that isolate 98-38803 is a derivative of Ingelvac PRRS MLV and that the isolate is pneumovirulent.  相似文献   

4.

Background

Porcine reproductive and respiratory syndrome (PRRS) has now been widely recognized as an economically important disease. The objective of this study was to compare the molecular and biological characteristics of porcine reproductive and respiratory syndrome virus (PRRSV) field isolates in China to those of the modified live virus (MLV) PRRS vaccine and its parent strain (ATCC VR2332).

Results

Five genes (GP2, GP3, GP4, GP5 and NSP2) of seven isolates of PRRSV from China, designated LS-4, HM-1, HQ-5, HQ-6, GC-2, GCH-3 and ST-7/2008, were sequenced and analyzed. Phylogenetic analyses based on the nucleotide sequence of the ORF2-5 and NSP2 showed that the seven Chinese isolates belonged to the same genetic subgroup and were related to the North American PRRSV genotype. Comparative analysis with the relevant sequences of another Chinese isolate (BJ-4) and North American (VR2332 and MLV) viruses revealed that these isolates have 80.8-92.9% homology with VR-2332, and 81.3-98.8% identity with MLV and 80.7-92.9% with BJ-4. All Nsp2 nonstructural protein of these seven isolates exhibited variations (a 29 amino acids deletion) in comparison with other North American PRRSV isolates. Therefore, these isolates were novel strain with unique amino acid composition. However, they all share more than 97% identity with other highly pathogenic Chinese PRRSV strains. Additionally, there are extensive amino acid (aa) mutations in the GP5 protein and the Nsp2 protein when compared with the previous isolates.

Conclusions

These results might be useful to study the genetic diversity of PRRSV in China and to track the infection sources as well as for vaccines development.  相似文献   

5.
Plasma samples from individuals infected with human immunodeficiency virus type 1 (HIV-1) are known to be highly strain specific in their ability to neutralize HIV-1 infectivity. Such plasma samples exhibit significant neutralizing activity against autologous HIV-1 isolates but typically exhibit little or no activity against heterologous strains, although some cross-neutralizing activity can develop late in infection. Monkeys infected with the simian-human immunodeficiency virus (SHIV) clone DH12 generated antibodies that neutralized SHIV DH12, but not SHIV KB9. Conversely, antibodies from monkeys infected with the SHIV clone KB9 neutralized SHIV KB9, but not SHIV DH12. To investigate the role of the variable loops of the HIV-1 envelope glycoprotein gp120 in determining this strain specificity, variable loops 1 and 2 (V1/V2), V3, or V4 were exchanged individually or in combination between SHIV DH12 and SHIV KB9. Despite the fact that both parental viruses exhibited significant infectivity and good replication in the cell lines examined, 3 of the 10 variable-loop chimeras exhibited such poor infectivity that they could not be used further for neutralization assays. These results indicate that a variable loop that is functional in the context of one particular envelope background will not necessarily function within another. The remaining seven replication-competent chimeras allowed unambiguous assignment of the sequences principally responsible for the strain specificity of the neutralizing activity present in SHIV-positive plasma. Exchange of the V1/V2 loop sequences conferred a dominant loss of sensitivity to neutralization by autologous plasma and a gain of sensitivity to neutralization by heterologous plasma. Substitution of V3 or V4 had little or no effect on the sensitivity to neutralization. These data demonstrate that the V1/V2 region of HIV-1 gp120 is principally responsible for the strain specificity of the neutralizing antibody response in monkeys infected with these prototypic SHIVs.  相似文献   

6.
Encephalomyocarditis virus (EMCV) is capable of infecting a wide range of species and the infection can cause myocarditis and reproductive failure in pigs as well as febrile illness in human beings. In this study, we introduced the entire ORF5 of the porcine reproductive and respiratory syndrome virus (PRRSV) or the neutralization epitope regions in the E2 gene of the classical swine fever virus (CSFV), into the genome of a stably attenuated EMCV strain, T1100I. The resultant viable recombinant viruses, CvBJC3m/I-ΔGP5 and CvBJC3m/I-E2, respectively expressed partial PRRSV envelope protein GP5 or CSFV neutralization epitope A1A2 along with EMCV proteins. These heterologous proteins fused to the N-terminal of the nonstructural leader protein could be recognized by anti-GP5 or anti-E2 antibody. We also tested the immunogenicity of these fusion proteins by immunizing BALB/c mice with the recombinant viruses. The immunized animals elicited neutralizing antibodies against PRRSV and CSFV. Our results suggest that EMCV can be engineered as an expression vector and serve as a tool in the development of novel live vaccines in various animal species.  相似文献   

7.
The characterization of the cross-reactive, or heterologous, neutralizing antibody responses developed during human immunodeficiency virus type 1 (HIV-1) infection and the identification of factors associated with their generation are relevant to the development of an HIV vaccine. We report that in healthy HIV-positive, antiretroviral-naïve subjects, the breadth of plasma heterologous neutralizing antibody responses correlates with the time since infection, plasma viremia levels, and the binding avidity of anti-Env antibodies. Anti-CD4-binding site antibodies are responsible for the exceptionally broad cross-neutralizing antibody responses recorded only in rare plasma samples. However, in most cases examined, antibodies to the variable regions and to the CD4-binding site of Env modestly contributed in defining the overall breadth of these responses. Plasmas with broad cross-neutralizing antibody responses were identified that targeted the gp120 subunit, but their precise epitopes mapped outside the variable regions and the CD4-binding site. Finally, although several plasmas were identified with cross-neutralizing antibody responses that were not directed against gp120, only one plasma with a moderate breadth of heterologous neutralizing antibody responses contained cross-reactive neutralizing antibodies against the 4E10 epitope, which is within the gp41 transmembrane subunit. Overall, our study indicates that more than one pathway leads to the development of broad cross-reactive neutralizing antibodies during HIV infection and that the virus continuously escapes their action.  相似文献   

8.
Although a cure for HCV is on the near horizon, emerging drug cocktails will be expensive, associated with side-effects and resistance making a global vaccine an urgent priority given the estimated high incidence of infection around the world. Due to the highly heterogeneous nature of HCV, an effective HCV vaccine which could elicit broadly cross-neutralizing antibodies has represented a major challenge. In this study, we tested for the presence of cross-neutralizing antibodies in human volunteers who were immunized with recombinant glycoproteins gpE1/gpE2 derived from a single HCV strain (HCV1 of genotype 1a). Cross neutralization was tested in Huh-7.5 human hepatoma cell cultures using infectious recombinant HCV (HCVcc) expressing structural proteins of heterologous HCV strains from all known major genotypes, 1–7. Vaccination induced significant neutralizing antibodies against heterologous HCV genotype 1a virus which represents the most common genotype in North America. Of the 16 vaccinees tested, 3 were selected on the basis of strong 1a virus neutralization for testing of broad cross-neutralizing responses. At least 1 vaccinee was shown to elicit broad cross-neutralization against all HCV genotypes. Although observed in only a minority of vaccinees, our results prove the key concept that a vaccine derived from a single strain of HCV can elicit broad cross-neutralizing antibodies against all known major genotypes of HCV and provide considerable encouragement for the further development of a human vaccine against this common, global pathogen.  相似文献   

9.
为探讨共表达猪繁殖与呼吸综合征病毒(Porcinerep roductive and respiratory syndrome Virus,PRRSV)保护性抗原基因的重组改良型痘苗病毒安卡拉株(Modified Vaccinia Virus Ankala,MVA)的免疫效力,将PRRSVNJ-a株ORF4、ORF5和ORF6基因插入转移载体pⅡLR中,获得了三基因共表达的转移载体pⅡLR-ORF5/ORF6/ORF4,通过同源重组的方法获得重组病毒rMVA-GP5/M/GP4。以lacZ为报告基因进行噬斑筛选和重组病毒纯化后,PCR方法证明ORF4、ORF5和ORF6成功的插入MVA基因组中;经Western blot检测与间接免疫荧光试验证实,重组病毒感染细胞能正确表达PRRSVGP4、GP5与M蛋白。用rMVA-GP5/M/GP4免疫6周龄Babl/C小鼠,首免后3周可检测到特异性PRRSV中和抗体,8周后中和抗体效价可达25,并能继续维持4周;淋巴细胞增殖试验结果表明,重组病毒免疫小鼠产生强烈的特异性细胞增殖反应。上述研究结果表明rMVA-GP5/M/GP4具有良好的免疫原性,可作为预防PRRS的候选疫苗进一步研究。  相似文献   

10.
为了探讨猪繁殖与呼吸综合征病毒(PRRSV)ORF5基因编码的GP5蛋白和ORF6编码的M蛋白体外共表达特性,分别构建了PRRSV ORF5、ORF6单基因或双基因共表达的真核表达质粒pCI-ORF5、pCI-ORF6和pCI-ORF5/ORF6,转染BHK-21细胞,Western blot检测证实共表达的GP5和M蛋白能够形成异源二聚体。同时,以绿色荧光蛋白(EGFP)和红色荧光蛋白(RFP)为示踪,发现当ORF5-EGFP和ORF6-RFP共表达时,能促进GP5蛋白从内质网向高尔基体转运,提示GP5-M异源二聚体的形成可能与GP5蛋白的翻译后修饰、转运、定位有关。  相似文献   

11.
Porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 5 (GP5) is the most abundant envelope glycoprotein and a major inducer of neutralizing antibodies in vivo. Three putative N-linked glycosylation sites (N34, N44, and N51) are located on the GP5 ectodomain, where a major neutralization epitope also exists. To determine which of these putative sites are used for glycosylation and the role of the glycan moieties in the neutralizing antibody response, we generated a panel of GP5 mutants containing amino acid substitutions at these sites. Biochemical studies with expressed wild-type (wt) and mutant proteins revealed that the mature GP5 contains high-mannose-type sugar moieties at all three sites. These mutations were subsequently incorporated into a full-length cDNA clone. Our data demonstrate that mutations involving residue N44 did not result in infectious progeny production, indicating that N44 is the most critical amino acid residue for infectivity. Viruses carrying mutations at N34, N51, and N34/51 grew to lower titers than the wt PRRSV. In serum neutralization assays, the mutant viruses exhibited enhanced sensitivity to neutralization by wt PRRSV-specific antibodies. Furthermore, inoculation of pigs with the mutant viruses induced significantly higher levels of neutralizing antibodies against the mutant as well as the wt PRRSV, suggesting that the loss of glycan residues in the ectodomain of GP5 enhances both the sensitivity of these viruses to in vitro neutralization and the immunogenicity of the nearby neutralization epitope. These results should have great significance for development of PRRSV vaccines of enhanced protective efficacy.  相似文献   

12.

Background and Objectives

Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling) technology to create a panel of chimeric HA genes.

Methods and Results

Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129) was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129) and a A/swine/Texas/4199-2/98 backbone (TX98-129). When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates.

Conclusion

This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines.  相似文献   

13.
Passive administration of porcine reproductive and respiratory syndrome virus (PRRSV) neutralizing antibodies (NAbs) can effectively protect pigs against PRRSV infection. However, after PRRSV infection, pigs typically develop a weak and deferred NAb response. One major reason for such a meager NAb response is the phenomenon of glycan shielding involving GP5, a major glycoprotein carrying one major neutralizing epitope. We describe here a type II PRRSV field isolate (PRRSV-01) that is highly susceptible to neutralization and induces an atypically rapid, robust NAb response in vivo. Sequence analysis shows that PRRSV-01 lacks two N-glycosylation sites, normally present in wild-type (wt) PRRSV strains, in two of its envelope glycoproteins, one in GP3 (position 131) and the other in GP5 (position 51). To determine the influence of these missing N-glycosylation sites on the distinct neutralization phenotype of PRRSV-01, a chimeric virus (FL01) was generated by replacing the structural genes of type II PRRSV strain FL12 cDNA infectious clone with those from PRRSV-01. N-glycosylation sites were reintroduced into GP3 and GP5 of FL01, separately or in combination, by site-directed mutagenesis. Reintroduction of the N-glycosylation site in either GP3 or GP5 allowed recovery of in vivo and in vitro glycan shielding capacity, with an additive effect when these sites were reintroduced into both glycoproteins simultaneously. Although the loss of these glycosylation sites has seemingly occurred naturally (presumably by passage through cell cultures), PRRSV-01 virus quickly regains these glycosylation sites through replication in vivo, suggesting that a strong selective pressure is exerted at these sites. Collectively, our data demonstrate the involvement of an N-glycan moiety located in GP3 in glycan shield interference.  相似文献   

14.
为了提高表达GP5的猪繁殖与呼吸综合征病毒(PRRSV)DNA疫苗的免疫效应,将具有蛋白转导功能的牛疱疹病毒1型(BHV-1)VP22基因插入到经过修饰具有更好免疫原性的PRRSV修饰型ORF5基因(ORF5M)上游,构建VP22和ORF5M融合表达的真核表达质粒pCI-VP22-ORF5M。经间接免疫荧光试验(IFA)和Westernblot检测证实体外表达后,免疫BALB/c小鼠,检测小鼠免疫后的GP5特异性ELISA抗体、抗PRRSV中和抗体和脾淋巴细胞增殖反应,并与非融合的真核表达质粒pCI-ORF5M进行比较。结果显示,融合表达VP22-GP5的DNA疫苗 pCI-VP22ORF5M诱导的体液免疫和细胞免疫反应均明显高于非融合表达的DNA疫苗pCI-ORF5M,表明蛋白转导相关蛋白BHV-1 VP22能显著增强表达GP5的PRRSV DNA 疫苗的免疫效应,有效发挥了基因免疫佐剂效应;这为研制PRRSV高效DNA疫苗奠定了基础,同时也为其它疾病的高效新型疫苗研究提供了思路。  相似文献   

15.
Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped positive-strand RNA virus in the Arteiviridae family, is a major pathogen affecting pigs worldwide. The membrane (glyco)proteins GP5 and M form a disulfide-linked dimer, which is a major component of virions. GP5/M are required for virus budding, which occurs at membranes of the exocytic pathway. Both GP5 and M feature a short ectodomain, three transmembrane regions, and a long cytoplasmic tail, which contains three and two conserved cysteines, respectively, in close proximity to the transmembrane span. We report here that GP5 and M of PRRSV-1 and -2 strains are palmitoylated at the cysteines, regardless of whether the proteins are expressed individually or in PRRSV-infected cells. To completely prevent S-acylation, all cysteines in GP5 and M have to be exchanged. If individual cysteines in GP5 or M were substituted, palmitoylation was reduced, and some cysteines proved more important for efficient palmitoylation than others. Neither infectious virus nor genome-containing particles could be rescued if all three cysteines present in GP5 or both present in M were replaced in a PRRSV-2 strain, indicating that acylation is essential for virus growth. Viruses lacking one or two acylation sites in M or GP5 could be rescued but grew to significantly lower titers. GP5 and M lacking acylation sites form dimers and GP5 acquires Endo-H resistant carbohydrates in the Golgi apparatus suggesting that trafficking of the membrane proteins to budding sites is not disturbed. Likewise, GP5 lacking two acylation sites is efficiently incorporated into virus particles and these viruses exhibit no reduction in cell entry. We speculate that multiple fatty acids attached to GP5 and M in the endoplasmic reticulum are required for clustering of GP5/M dimers at Golgi membranes and constitute an essential prerequisite for virus assembly.  相似文献   

16.
猪伪狂犬病毒(PRV)是一种良好的兽用活病毒疫苗载体。但以PRV基因缺失疫苗株TK-/gE-/LacZ+为载体表达PRRSV GP5的重组病毒TK-/gE-/GP5+免疫实验动物后难以激发抗PRRSV的中和抗体。为了进一步增强这种重组病毒的免疫效力,用具有更好免疫原性的修饰的ORF5基因(ORF5m)代替天然ORF5基因,构建了表达PRRSV的修饰型GP5m蛋白的重组伪狂犬病毒TK-/gE-/GP5m+。经PCR、Southern blot、Western blot 证实构建正确,并能表达具有活性的GP5m蛋白。将TK-/gE-/GP5m+与TK-/gE-/GP5+分别免疫Balb/c小鼠,结果TK-/gE-/GP5m+免疫小鼠不仅产生了较高水平的抗PRRSV的中和抗体(3/6只达到了1∶16),而且在诱导PRRSV特异性细胞免疫方面也显著优于TK-/gE-/GP5+,表明TK-/gE-/GP5m+是一种极有希望的PRRSV和PRV二价基因工程候选疫苗。  相似文献   

17.
The targets of broadly cross-neutralizing (BCN) antibodies are of great interest in the HIV vaccine field. We have identified a subtype C HIV-1-superinfected individual, CAP256, with high-level BCN activity, and characterized the antibody specificity mediating breadth. CAP256 developed potent BCN activity peaking at 3 years postinfection, neutralizing 32 (76%) of 42 heterologous viruses, with titers of antibodies against some viruses exceeding 1:10,000. CAP256 showed a subtype bias, preferentially neutralizing subtype C and A viruses over subtype B viruses. CAP256 BCN serum targeted a quaternary epitope which included the V1V2 region. Further mapping identified residues F159, N160, L165, R166, D167, K169, and K171 (forming the FN/LRD-K-K motif) in the V2 region as crucial to the CAP256 epitope. However, the fine specificity of the BCN response varied over time and, while consistently dependent on R166 and K169, became gradually less dependent on D167 and K171, possibly contributing to the incremental increase in breadth over 4 years. The presence of an intact FN/LRD-K-K motif in heterologous viruses was associated with sensitivity, although the length of the adjacent V1 loop modulated the degree of sensitivity, with a shorter V1 region significantly associated with higher titers. Repair of the FN/LRD-K-K motif in resistant heterologous viruses conferred sensitivity, with titers sometimes exceeding 1:10,000. Comparison of the CAP256 epitope with that of the PG9/PG16 monoclonal antibodies suggested that these epitopes overlapped, adding to the mounting evidence that this may represent a common neutralization target that should be further investigated as a potential vaccine candidate.  相似文献   

18.
Chimeric versions of recombinant human metapneumovirus (HMPV) were generated by replacing the nucleoprotein (N) or phosphoprotein (P) open reading frame with its counterpart from the closely related avian metapneumovirus (AMPV) subgroup C. In Vero cells, AMPV replicated to an approximately 100-fold-higher titer than HMPV. Surprisingly, the N and P chimeric viruses replicated to a peak titer that was 11- and 25-fold higher, respectively, than that of parental HMPV. The basis for this effect is not known but was not due to obvious changes in the efficiency of gene expression. AMPV and the N and P chimeras were evaluated for replication, immunogenicity, and protective efficacy in hamsters. AMPV was attenuated compared to HMPV in this mammalian host on day 5 postinfection, but not on day 3, and only in the nasal turbinates. In contrast, the N and P chimeras were reduced approximately 100-fold in both the upper and lower respiratory tract on day 3 postinfection, although there was little difference by day 5. The N and P chimeras induced a high level of neutralizing serum antibodies and protective efficacy against HMPV; AMPV was only weakly immunogenic and protective against HMPV challenge, reflecting antigenic differences. In African green monkeys immunized intranasally and intratracheally, the mean peak titer of the P chimera was reduced 100- and 1,000-fold in the upper and lower respiratory tracts, whereas the N chimera was reduced only 10-fold in the lower respiratory tract. Both chimeras were comparable to wild-type HMPV in immunogenicity and protective efficacy. Thus, the P chimera is a promising live HMPV vaccine candidate that paradoxically combines improved growth in vitro with attenuation in vivo.  相似文献   

19.
20.
Porcine reproductive and respiratory syndrome is caused by the PRRS virus (PRRSV), which has six structural proteins (GP2, GP3, GP4, GP5, M and N). GP5 and N protein are important targets for serological detection by enzyme-linked immunosorbent assay (ELISA) and other methods. Toward this goal, we developed an indirect ELISA with recombinant GP5 antigens and this method was validated by comparison to the LSI PRRSV-Ab ELISA kit. The results indicated that the optimal concentration of coated recombinant antigen was 0.2 μg/well for a serum dilution of 1:40. The rate of agreement with the LSI PRRSV-Ab kit was 88.7% (266/300). These results support the potential use of recombinant GP5 as an antigen for indirect ELISA to detect PRRSV antibodies in pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号