首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Birth weight is the earliest available growth trait with considerable impacts on lamb survivability and growth performance traits. This study was conducted to perform a genome-wide association study of birth weight in a meat-type sheep. A total of 132 Lori-Bakhtiari sheep were selected based on estimated of breeding values (EBVs) for BW analyses. The selected animals were genotyped using Illumina Ovine SNP50 Bead Chip. After quality control, a total of 41 323 single-nucleotide polymorphisms (SNPs) and 130 sheep were used for subsequent analyses. Plink 1.90 beta software was used for the analyses. Seven SNPs on chromosomes 1, 16, 19 and 22 were detected based on genome-wide unadjusted P-values (P <10−6), which jointly accounted for 1.2% of total genetic variation. However, based on Bonferroni-adjusted P-values, only three SNPs on chromosome 1 had significant associations with EBVs for birth weight (P <0.05), which jointly explained 0.8% of total genetic variation. A total of seven genes were found in 50 kb intervals from the three significant SNPs on chromosome 1, but only three genes, including RAB6B (a member of RAS oncogene family), Tf serotransferrin and GIGYF2 (a GRB10 interacting GYF protein 2), could be considered as candidate genes for birth weight in future studies. The results of this study may facilitate potential use of the genes involving in growth and production traits for genetic improvement of productivity in sheep.  相似文献   

2.

Maximizing the number of offspring born per female is a key functionality trait in commercial- and/or subsistence-oriented livestock enterprises. Although the number of offspring born is closely associated with female fertility and reproductive success, the genetic control of these traits remains poorly understood in sub-Saharan Africa livestock. Using selection signature analysis performed on Ovine HD BeadChip data from the prolific Bonga sheep in Ethiopia, 41 candidate regions under selection were identified. The analysis revealed one strong selection signature on a candidate region on chromosome X spanning BMP15, suggesting this to be the primary candidate prolificacy gene in the breed. The analysis also identified several candidate regions spanning genes not reported before in prolific sheep but underlying fertility and reproduction in other species. The genes associated with female reproduction traits included SPOCK1 (age at first oestrus), GPR173 (mediator of ovarian cyclicity), HB-EGF (signalling early pregnancy success) and SMARCAL1 and HMGN3a (regulate gene expression during embryogenesis). The genes involved in male reproduction were FOXJ1 (sperm function and successful fertilization) and NME5 (spermatogenesis). We also observed genes such as PKD2L2, MAGED1 and KDM3B, which have been associated with diverse fertility traits in both sexes of other species. The results confirm the complexity of the genetic mechanisms underlying reproduction while suggesting that prolificacy in the Bonga sheep, and possibly African indigenous sheep is partly under the control of BMP15 while other genes that enhance male and female fertility are essential for reproductive fitness.

  相似文献   

3.
4.
Entropion is an inward rolling of the eyelid allowing contact between the eyelashes and cornea that may lead to blindness if not corrected. Although many mammalian species, including humans and dogs, are afflicted by congenital entropion, no specific genes or gene regions related to development of entropion have been reported in any mammalian species to date. Entropion in domestic sheep is known to have a genetic component therefore, we used domestic sheep as a model system to identify genomic regions containing genes associated with entropion. A genome-wide association was conducted with congenital entropion in 998 Columbia, Polypay, and Rambouillet sheep genotyped with 50,000 SNP markers. Prevalence of entropion was 6.01%, with all breeds represented. Logistic regression was performed in PLINK with additive allelic, recessive, dominant, and genotypic inheritance models. Two genome-wide significant (empirical P<0.05) SNP were identified, specifically markers in SLC2A9 (empirical P = 0.007; genotypic model) and near NLN (empirical P = 0.026; dominance model). Six additional genome-wide suggestive SNP (nominal P<1x10-5) were identified including markers in or near PIK3CB (P = 2.22x10-6; additive model), KCNB1 (P = 2.93x10-6; dominance model), ZC3H12C (P = 3.25x10-6; genotypic model), JPH1 (P = 4.68x20-6; genotypic model), and MYO3B (P = 5.74x10-6; recessive model). This is the first report of specific gene regions associated with congenital entropion in any mammalian species, to our knowledge. Further, none of these genes have previously been associated with any eyelid traits. These results represent the first genome-wide analysis of gene regions associated with entropion and provide target regions for the development of sheep genetic markers for marker-assisted selection.  相似文献   

5.

Background

Growth and meat production traits are significant economic traits in sheep. The aim of the study is to identify candidate genes affecting growth and meat production traits at genome level with high throughput single nucleotide polymorphisms (SNP) genotyping technologies.

Methodology and Results

Using Illumina OvineSNP50 BeadChip, we performed a GWA study in 329 purebred sheep for 11 growth and meat production traits (birth weight, weaning weight, 6-month weight, eye muscle area, fat thickness, pre-weaning gain, post-weaning gain, daily weight gain, height at withers, chest girth, and shin circumference). After quality control, 319 sheep and 48,198 SNPs were analyzed by TASSEL program in a mixed linear model (MLM). 36 significant SNPs were identified for 7 traits, and 10 of them reached genome-wise significance level for post-weaning gain. Gene annotation was implemented with the latest sheep genome Ovis_aries_v3.1 (released October 2012). More than one-third SNPs (14 out of 36) were located within ovine genes, others were located close to ovine genes (878bp-398,165bp apart). The strongest new finding is 5 genes were thought to be the most crucial candidate genes associated with post-weaning gain: s58995.1 was located within the ovine genes MEF2B and RFXANK, OAR3_84073899.1, OAR3_115712045.1 and OAR9_91721507.1 were located within CAMKMT, TRHDE, and RIPK2 respectively. GRM1, POL, MBD5, UBR2, RPL7 and SMC2 were thought to be the important candidate genes affecting post-weaning gain too. Additionally, 25 genes at chromosome-wise significance level were also forecasted to be the promising genes that influencing sheep growth and meat production traits.

Conclusions

The results will contribute to the similar studies and facilitate the potential utilization of genes involved in growth and meat production traits in sheep in future.  相似文献   

6.
Genome-wide association studies (GWAS) provide a powerful approach for identifying quantitative trait loci without prior knowledge of location or function. To identify loci associated with wool production traits, we performed a genome-wide association study on a total of 765 Chinese Merino sheep (JunKen type) genotyped with 50 K single nucleotide polymorphisms (SNPs). In the present study, five wool production traits were examined: fiber diameter, fiber diameter coefficient of variation, fineness dispersion, staple length and crimp. We detected 28 genome-wide significant SNPs for fiber diameter, fiber diameter coefficient of variation, fineness dispersion, and crimp trait in the Chinese Merino sheep. About 43% of the significant SNP markers were located within known or predicted genes, including YWHAZ, KRTCAP3, TSPEAR, PIK3R4, KIF16B, PTPN3, GPRC5A, DDX47, TCF9, TPTE2, EPHA5 and NBEA genes. Our results not only confirm the results of previous reports, but also provide a suite of novel SNP markers and candidate genes associated with wool traits. Our findings will be useful for exploring the genetic control of wool traits in sheep.  相似文献   

7.
Most reproductive traits have low heritability and are greatly affected by environmental factors. Teat number and litter size are traits related to the reproduction ability of pigs. To identify quantitative trait loci (QTLs) for teat number traits, a genome-wide association study (GWAS) was conducted using an F2 intercross between Landrace and Korean native pigs. Genotype analysis was performed using the porcine SNP 60 K beadchip. The GWAS was performed using a mixed-effects model and linear regression approach. When a genome-wide threshold was determined using the Bonferroni method (P = 1.61 × 10?6), 38 single nucleotide polymorphism (SNP) markers in pig chromosome 7 (SSC7) were significantly associated with three teat number traits (total teat number, left teat number, and right teat number). Among these, SNPs in 5 genes (HDDC3, LOC100156276, LOC100155863, ANPEP, SCAMP2) were selected for further study based primarily on their statistical significance. A significant association was detected in SCAMP2 g.25280 G>A for total teat number (P = 2.0 × 10?12), HDDC3 g.1319 G>A SNP for left teat number (P = 2.3 × 10?7), and SCAMP2 g.14198 G>A for right teat number (P = 4.7 × 10?12). These results provide valuable information about the selective breeding for desirable teat numbers in pigs.  相似文献   

8.
Litter traits are critical economic variables in the pig industry as they represent a production indicator that can serve to determine sow fertility. In this study, a genome-wide association study on litter traits, including total number born (TNB), number born alive (NBA), litter birth weight (LBW), average birth weight (ABW), and piglet uniformity (PU), was carried out on two pig breeds (Yorkshire and Landrace). A total of 3 637 pigs of both breeds were genotyped using the GeneSeek GGP Porcine 50K SNP BeadChip. A mixed linear model (MLM) and fixed and random model circulating probability unification (FarmCPU) were employed in the genome-wide association studies for litter traits using combined data from the two pig breeds and data from each breed separately. Additionally, the heritability of traits was estimated using three methods—pedigree-based best linear unbiased prediction (PBLUP), genomic best linear unbiased prediction (GBLUP), and single-step best linear unbiased prediction (ssGBLUP)—and was found to lie between 0.065 and 0.1289, 0.0478 and 0.0938, 0.0793 and 0.0935, 0.1862 and 0.2163, and 0.0327 and 0.0419 for TNB, NBA, LBW, ABW, and PU, respectively. We also compared the genomic prediction accuracies and unbiasedness for litter traits of the three BLUP models. Our results indicated that the ssGBLUP method provided higher predictive accuracies and more rational unbiasedness compared with the PBLUP and GBLUP methodologies. Furthermore, based on their possible roles, eight candidate genes (INHBA, LEPR, HDHD2, CTNND2, RNF216, HMX1, PAPPA2, and NTN1) were identified as being linked with litter traits. In the middle of the test, these genes were found to be connected with pig metabolism and ovulation rate. Our results provide the insights into the genetic architecture of litter traits in pigs, and the potential single nucleotide polymorphisms (SNPs) and candidate genes identified may benefit economic profits in pig-breeding industry and contribute to improve litter traits.  相似文献   

9.
Muscle fiber characteristics comprise a set of complex traits that influence the mea quality and lean meat production of livestock. However, the genetic and biological mechanisms regulating muscle fiber characteristics are largely unknown in pigs. Based on a genome-wide association study (GWAS) performed on 421 Large White × Min pig F2 individuals presenting well-characterized phenotypes, this work aimed to detect genome variations and candidate genes for five muscle fiber characteristics: percentage of type I fibers (FIB1P), percentage of type IIA fibers (FIB2AP), percentage of type IIB fibers (FIB2BP), diameter of muscle fibers (DIAMF) and number of muscle fibers per unit area (NUMMF). The GWAS used the Illumina Porcine SNP60K genotypic data, which were analyzed by a mixed model. Seven and 10 single nucleotide polymorphisms (SNPs) were significantly associated with DIAMF and NUMMF, respectively (P < 1.10E-06); no SNP was significantly associated with FIB1P, FIB2AP or FIB2B. For DIAMF, the significant SNPs on chromosome 4 were located in the previously reported quantitative trait loci (QTL) interval. Because the significant SNPs on chromosome 6 were not mapped in the previously reported QTL interval, a putative novel QTL was suggested for this locus. None of the previously reported QTL intervals on chromosomes 6 and 14 harbored significant SNPs for NUMMF; thus, new potential QTLs on these two chromosomes are suggested in the present work. The most significant SNPs associated with DIAMF (ALGA0025682) and NUMMF (MARC0046984) explained 12.02% and 11.59% of the phenotypic variation of these traits, respectively. In addition, both SNPs were validated as associated with DIAMF and NUMMF in Beijing Black pigs (P < 0.01). Some candidate genes or non-coding RNAs, such as solute carrier family 44 member 5 and miR-124a-1 for DIAMF, and coiled-coil serine rich protein 2 for NUMMF, were identified based on their close location to the significant SNPs. This study revealed some genome-wide association variants for muscle fiber characteristics, and it provides valuable information to discover the genetic mechanisms controlling these traits in pigs.  相似文献   

10.

Background

Body weight (BW) is an important trait for meat production in sheep. Although over the past few years, numerous quantitative trait loci (QTL) have been detected for production traits in cattle, few QTL studies have been reported for sheep, with even fewer on meat production traits. Our objective was to perform a genome-wide association study (GWAS) with the medium-density Illumina Ovine SNP50 BeadChip to identify genomic regions and corresponding haplotypes associated with BW in Australian Merino sheep.

Methods

A total of 1781 Australian Merino sheep were genotyped using the medium-density Illumina Ovine SNP50 BeadChip. Among the 53 862 single nucleotide polymorphisms (SNPs) on this array, 48 640 were used to perform a GWAS using a linear mixed model approach. Genotypes were phased with hsphase; to estimate SNP haplotype effects, linkage disequilibrium blocks were identified in the detected QTL region.

Results

Thirty-nine SNPs were associated with BW at a Bonferroni-corrected genome-wide significance threshold of 1 %. One region on sheep (Ovis aries) chromosome 6 (OAR6) between 36.15 and 38.56 Mb, included 13 significant SNPs that were associated with BW; the most significant SNP was OAR6_41936490.1 (P = 2.37 × 10−16) at 37.69 Mb with an allele substitution effect of 2.12 kg, which corresponds to 0.248 phenotypic standard deviations for BW. The region that surrounds this association signal on OAR6 contains three genes: leucine aminopeptidase 3 (LAP3), which is involved in the processing of the oxytocin precursor; NCAPG non-SMC condensin I complex, subunit G (NCAPG), which is associated with foetal growth and carcass size in cattle; and ligand dependent nuclear receptor corepressor-like (LCORL), which is associated with height in humans and cattle.

Conclusions

The GWAS analysis detected 39 SNPs associated with BW in sheep and a major QTL region was identified on OAR6. In several other mammalian species, regions that are syntenic with this region have been found to be associated with body size traits, which may reflect that the underlying biological mechanisms share a common ancestry. These findings should facilitate the discovery of causative variants for BW and contribute to marker-assisted selection.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0142-4) contains supplementary material, which is available to authorized users.  相似文献   

11.
Goats and sheep are versatile domesticates that have been integrated into diverse environments and production systems. Natural and artificial selection have shaped the variation in the two species, but natural selection has played the major role among indigenous flocks. To investigate signals of natural selection, we analyzed genotype data generated using the caprine and ovine 50K SNP BeadChips from Barki goats and sheep that are indigenous to a hot arid environment in Egypt''s Coastal Zone of the Western Desert. We identify several candidate regions under selection that spanned 119 genes. A majority of the genes were involved in multiple signaling and signal transduction pathways in a wide variety of cellular and biochemical processes. In particular, selection signatures spanning several genes that directly or indirectly influenced traits for adaptation to hot arid environments, such as thermo-tolerance (melanogenesis) (FGF2, GNAI3, PLCB1), body size and development (BMP2, BMP4, GJA3, GJB2), energy and digestive metabolism (MYH, TRHDE, ALDH1A3), and nervous and autoimmune response (GRIA1, IL2, IL7, IL21, IL1R1) were identified. We also identified eight common candidate genes under selection in the two species and a shared selection signature that spanned a conserved syntenic segment to bovine chromosome 12 on caprine and ovine chromosomes 12 and 10, respectively, providing, most likely, the evidence for selection in a common environment in two different but closely related species. Our study highlights the importance of indigenous livestock as model organisms for investigating selection sweeps and genome-wide association mapping.  相似文献   

12.
A genome-wide association study (GWAS) was performed to investigate seven red blood cell (RBC) phenotypes in over 500 domestic sheep (Ovis aries) from three breeds (Columbia, Polypay, and Rambouillet). A single nucleotide polymorphism (SNP) showed genome-wide significant association with increased mean corpuscular hemoglobin concentration (MCHC, P = 6.2×10−14) and genome-wide suggestive association with decreased mean corpuscular volume (MCV, P = 2.5×10−6). The ovine HapMap project found the same genomic region and the same peak SNP has been under extreme historical selective pressure, demonstrating the importance of this region for survival, reproduction, and/or artificially selected traits. We observed a large (>50 kb) variant haplotype sequence containing a full-length divergent artiodactyl MYADM-like repeat in strong linkage disequilibrium with the associated SNP. MYADM gene family members play roles in membrane organization and formation in myeloid cells. However, to our knowledge, no member of the MYADM gene family has been identified in development of morphologically variant RBCs. The specific RBC differences may be indicative of alterations in morphology. Additionally, erythrocytes with altered morphological structure often exhibit increased structural fragility, leading to increased RBC turnover and energy expenditure. The divergent artiodactyl MYADM-like repeat was also associated with increased ewe lifetime kilograms of lamb weaned (P = 2×10−4). This suggests selection for normal RBCs might increase lamb weights, although further validation is required before implementation in marker-assisted selection. These results provide clues to explain the strong selection on the artiodactyl MYADM-like repeat locus in sheep, and suggest MYADM family members may be important for RBC morphology in other mammals.  相似文献   

13.
Young-onset hypertension has a stronger genetic component than late-onset counterpart; thus, the identification of genes related to its susceptibility is a critical issue for the prevention and management of this disease. We carried out a two-stage association scan to map young-onset hypertension susceptibility genes. The first-stage analysis, a genome-wide association study, analyzed 175 matched case-control pairs; the second-stage analysis, a confirmatory association study, verified the results at the first stage based on a total of 1,008 patients and 1,008 controls. Single-locus association tests, multilocus association tests and pair-wise gene-gene interaction tests were performed to identify young-onset hypertension susceptibility genes. After considering stringent adjustments of multiple testing, gene annotation and single-nucleotide polymorphism (SNP) quality, four SNPs from two SNP triplets with strong association signals (−log10(p)>7) and 13 SNPs from 8 interactive SNP pairs with strong interactive signals (−log10(p)>8) were carefully re-examined. The confirmatory study verified the association for a SNP quartet 219 kb and 495 kb downstream of LOC344371 (a hypothetical gene) and RASGRP3 on chromosome 2p22.3, respectively. The latter has been implicated in the abnormal vascular responsiveness to endothelin-1 and angiotensin II in diabetic-hypertensive rats. Intrinsic synergy involving IMPG1 on chromosome 6q14.2-q15 was also verified. IMPG1 encodes interphotoreceptor matrix proteoglycan 1 which has cation binding capacity. The genes are novel hypertension targets identified in this first genome-wide hypertension association study of the Han Chinese population.  相似文献   

14.
The present study was undertaken to explore the genetic basis of caprine prolificacy and to screen indigenous goats for prolificacy associated markers of sheep in BMPR1B, GDF9 and BMP15 genes. To detect the associated mutations and identify novel allelic variants in the candidate genes, representative samples were collected from the breeding tract of indigenous goat breeds varying in prolificacy and geographic distribution. DNA was extracted and PCR amplification was done using primers designed or available in literature for the coding DNA sequence of candidate genes. Direct sequencing was done to identify the genetic variations. Mutations in the candidate genes associated with fecundity in sheep were not detected in Indian goats. Three non-synonymous SNPs (C818T, A959C and G1189A) were identified in exon 2 of GDF9 gene out of which mutation A959C has been associated with prolificacy in exotic goats. Two novel SNPs (G735A and C808G) were observed in exon 2 of BMP15 gene.  相似文献   

15.

Background

Commercial sheep raised for mutton grow faster than traditional Chinese sheep breeds. Here, we aimed to evaluate genetic selection among three different types of sheep breed: two well-known commercial mutton breeds and one indigenous Chinese breed.

Results

We first combined locus-specific branch lengths and di statistical methods to detect candidate regions targeted by selection in the three different populations. The results showed that the genetic distances reached at least medium divergence for each pairwise combination. We found these two methods were highly correlated, and identified many growth-related candidate genes undergoing artificial selection. For production traits, APOBR and FTO are associated with body mass index. For meat traits, ALDOA, STK32B and FAM190A are related to marbling. For reproduction traits, CCNB2 and SLC8A3 affect oocyte development. We also found two well-known genes, GHR (which affects meat production and quality) and EDAR (associated with hair thickness) were associated with German mutton merino sheep. Furthermore, four genes (POL, RPL7, MSL1 and SHISA9) were associated with pre-weaning gain in our previous genome-wide association study.

Conclusions

Our results indicated that combine locus-specific branch lengths and di statistical approaches can reduce the searching ranges for specific selection. And we got many credible candidate genes which not only confirm the results of previous reports, but also provide a suite of novel candidate genes in defined breeds to guide hybridization breeding.  相似文献   

16.
《Genomics》2020,112(1):199-206
Reproductive performance is a complex quantitative trait, that is determined by multiple genes, regulatory pathways and environmental factors. A list of major genes with large effect have been detected, although multiple QTLs are identified. To identify candidate genes for pig prolificacy, whole genome variants from five high- and five low-prolificacy Yorkshire sows were collected using whole-genome resequencing. A total of 13,955,609 SNPs and 2,666,366 indels were detected across the genome. Common differential SNPs and indels were identified between the two groups of sows. Genes encoding components of the TGF-beta signaling pathway were enriched with the variations, including BMP5, BMP6, BMP7, ACVR1, INHBA, ZFYVE9, TGFBR2, DCN, ID4, BAMBI, and ACVR2A. Several differential variants within these genes related to reproductive traits were identified to be associated with litter size. A comparison of selective regions and published QTL data suggests that NEDD9, SLC39A11, SNCA, and UNC5D are candidate genes for reproduction traits.  相似文献   

17.
A rapid high-resolution genome-wide strategy for molecular mapping of major QTL(s)/gene(s) regulating important agronomic traits is vital for in-depth dissection of complex quantitative traits and genetic enhancement in chickpea. The present study for the first time employed a NGS-based whole-genome QTL-seq strategy to identify one major genomic region harbouring a robust 100-seed weight QTL using an intra-specific 221 chickpea mapping population (desi cv. ICC 7184 × desi cv. ICC 15061). The QTL-seq-derived major SW QTL (CaqSW1.1) was further validated by single-nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker-based traditional QTL mapping (47.6% R2 at higher LOD >19). This reflects the reliability and efficacy of QTL-seq as a strategy for rapid genome-wide scanning and fine mapping of major trait regulatory QTLs in chickpea. The use of QTL-seq and classical QTL mapping in combination narrowed down the 1.37 Mb (comprising 177 genes) major SW QTL (CaqSW1.1) region into a 35 kb genomic interval on desi chickpea chromosome 1 containing six genes. One coding SNP (G/A)-carrying constitutive photomorphogenic9 (COP9) signalosome complex subunit 8 (CSN8) gene of these exhibited seed-specific expression, including pronounced differential up-/down-regulation in low and high seed weight mapping parents and homozygous individuals during seed development. The coding SNP mined in this potential seed weight-governing candidate CSN8 gene was found to be present exclusively in all cultivated species/genotypes, but not in any wild species/genotypes of primary, secondary and tertiary gene pools. This indicates the effect of strong artificial and/or natural selection pressure on target SW locus during chickpea domestication. The proposed QTL-seq-driven integrated genome-wide strategy has potential to delineate major candidate gene(s) harbouring a robust trait regulatory QTL rapidly with optimal use of resources. This will further assist us to extrapolate the molecular mechanism underlying complex quantitative traits at a genome-wide scale leading to fast-paced marker-assisted genetic improvement in diverse crop plants, including chickpea.  相似文献   

18.
Body composition and meat quality traits are important economic traits of chickens. The development of high-throughput genotyping platforms and relevant statistical methods have enabled genome-wide association studies in chickens. In order to identify molecular markers and candidate genes associated with body composition and meat quality traits, genome-wide association studies were conducted using the Illumina 60 K SNP Beadchip to genotype 724 Beijing-You chickens. For each bird, a total of 16 traits were measured, including carcass weight (CW), eviscerated weight (EW), dressing percentage, breast muscle weight (BrW) and percentage (BrP), thigh muscle weight and percentage, abdominal fat weight and percentage, dry matter and intramuscular fat contents of breast and thigh muscle, ultimate pH, and shear force of the pectoralis major muscle at 100 d of age. The SNPs that were significantly associated with the phenotypic traits were identified using both simple (GLM) and compressed mixed linear (MLM) models. For nine of ten body composition traits studied, SNPs showing genome wide significance (P<2.59E−6) have been identified. A consistent region on chicken (Gallus gallus) chromosome 4 (GGA4), including seven significant SNPs and four candidate genes (LCORL, LAP3, LDB2, TAPT1), were found to be associated with CW and EW. Another 0.65 Mb region on GGA3 for BrW and BrP was identified. After measuring the mRNA content in beast muscle for five genes located in this region, the changes in GJA1 expression were found to be consistent with that of breast muscle weight across development. It is highly possible that GJA1 is a functional gene for breast muscle development in chickens. For meat quality traits, several SNPs reaching suggestive association were identified and possible candidate genes with their functions were discussed.  相似文献   

19.
Sperm quality traits routinely collected by artificial insemination (AI) center for rams progeny test are related with the capacity to produce sperm doses for AI and, in more or less grade, with males' fertility. Low-quality ejaculates are unuseful to perform AI sperm doses, which suppose high economic loses for the AI center. Moreover, sperm quality traits have low heritability values which make traditional genetic selection little efficient to its improvement. In this work, a genome-wide association study (GWAS) was conducted by using sperm quality traits data and 50 K Affymetrix custom chip genotypes of 429 rams of Assaf breed from OVIGEN AI centre. Furthermore, 47 of these rams were also genotyped with the Illumina HD Ovine BeadChip, and therefore HD genotypes were imputed for all rams with phenotype data. Previous to the GWAS, a linear regression model was fitted including sperm traits as dependent variables; the flock of origin, date of sperm collection, and jump number as fixed effects; rams age at collection in months as covariate; and ram permanent effect as random. Pseudo-phenotypes obtained from this model were used as input for GWAS. Associations at the chromosome-wise level (FDR 10%) of 76 single-nucleotide polymorphisms (SNPs) in 4 chromosomes for ejaculate concentration (CON), 20 SNPs in 3 chromosomes for ejaculate volume (VOL), 32 SNPs in 1 chromosome for ejaculate number of spermatozoa (SPZ), and 23 SNPs for spermatozoa mass motility (MOT) in 17 chromosomes were found. Only SNPs associated with MOT overcame the genome-wide significance level. Some candidate genes for sperm traits variability were SLC9C1 (OAR1), TSN (OAR2), and FUT10 (OAR26) for MOT;. DOCK2, CPLANE1, SPEF2, and RAI14 (OAR16) for CON; SCAPER and PSMA4 (OAR18) for VOL; and PARM1 and LOC101110593 (OAR6) for SPZ. SNPs associated with sperm traits were not found to be correlated with milk production genetic variation; however, the high frequencies of some SNPs with negative effect over sperm traits found in animals at the top milk yield estimated breeding values (EBVs) ranking would allow to exert some selective presure to improve rams sperm performances. Effects and frequencies of some of the SNPs detected over sperm quality traits make these variants good candidates to be used in marker-assisted selection to improve sperm characteristics of Assaf rams and AI center efficiency to produce sperm doses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号