共查询到20条相似文献,搜索用时 0 毫秒
1.
Zongzheng Zhao Chenyang Yi Lianzhong Zhao Shengyu Wang Lishan Zhou Yong Hu Wei Zou Huanchun Chen Meilin Jin 《Journal of virology》2014,88(4):2260-2267
The 2009 pandemic H1N1 influenza virus (pdm/09) is typically mildly virulent in mice. In a previous study, we identified four novel swine isolates of pdm/09 viruses that exhibited high lethality in mice. Comparing the consensus sequences of the PB2 subunit of human isolates of pdm/09 viruses with those of the four swine isolate viruses revealed one consensus mutation: T588I. In this study, we determined that 588T is an amino acid mutation conserved in pdm/09 viruses that was exceedingly rare in previous human influenza isolates. To investigate whether the PB2 with the T5581 mutation (PB2-T558I) has an effect on the increased pathogenicity, we rescued a variant containing PB2-588I (Mex_PB2-588I) in the pdm/09 virus, A/Mexico/4486/2009(H1N1), referred to as Mex_WT (where WT is wild type), and characterized the variant in vitro and in vivo. The results indicated that the mutation significantly enhanced polymerase activity in mammalian cells, and the variant exhibited increased growth properties and induced significant weight loss in a mouse model compared to the wild type. We determined that the mutation exacerbated PB2 inhibition of mitochondrial antiviral signaling protein (MAVS)-mediated beta interferon (IFN-β) expression, and PB2-588I was observed to bind to MAVS more efficiently than PB2-588T. The variant induced lower levels of host IFN-β expression than the WT strain during infection. These findings indicate that the pdm/09 influenza virus has increased pathogenicity upon the acquisition of the PB2-T588I mutation and highlight the need for the continued surveillance of the genetic variation of molecular markers in influenza viruses because of their potential effects on pathogenicity and threats to human health. 相似文献
2.
Zhang Y Zhang Q Gao Y He X Kong H Jiang Y Guan Y Xia X Shu Y Kawaoka Y Bu Z Chen H 《Journal of virology》2012,86(18):9666-9674
Animal influenza viruses pose a clear threat to public health. Transmissibility among humans is a prerequisite for a novel influenza virus to cause a human pandemic. A novel reassortant swine influenza virus acquired sustained human-to-human transmissibility and caused the 2009 influenza pandemic. However, the molecular aspects of influenza virus transmission remain poorly understood. Here, we show that an amino acid in hemagglutinin (HA) is important for the 2009 H1N1 influenza pandemic virus (2009/H1N1) to bind to human virus receptors and confer respiratory droplet transmissibility in mammals. We found that the change from glutamine (Q) to arginine (R) at position 226 of HA, which causes a switch in receptor-binding preference from human α-2,6 to avian α-2,3 sialic acid, resulted in a virus incapable of respiratory droplet transmission in guinea pigs and reduced the virus's ability to replicate in the lungs of ferrets. The change from alanine (A) to threonine (T) at position 271 of PB2 also abolished the virus's respiratory droplet transmission in guinea pigs, and this mutation, together with the HA Q226R mutation, abolished the virus's respiratory droplet transmission in ferrets. Furthermore, we found that amino acid 271A of PB2 plays a key role in virus acquisition of the mutation at position 226 of HA that confers human receptor recognition. Our results highlight the importance of both the PB2 and HA genes on the adaptation and transmission of influenza viruses in humans and provide important insights for monitoring and evaluating the pandemic potential of field influenza viruses. 相似文献
3.
Elodie Ghedin David E. Wentworth Rebecca A. Halpin Xudong Lin Jayati Bera Jay DePasse Adam Fitch Sara Griesemer Erin Hine Daniel A. Katzel Larry Overton Kathleen Proudfoot Jeffrey Sitz Bridget Szczypinski Kirsten StGeorge David J. Spiro Edward C. Holmes 《Journal of virology》2010,84(11):5715-5718
The initial wave of swine-origin influenza A virus (pandemic H1N1/09) in the United States during the spring and summer of 2009 also resulted in an increased vigilance and sampling of seasonal influenza viruses (H1N1 and H3N2), even though they are normally characterized by very low incidence outside of the winter months. To explore the nature of virus evolution during this influenza “off-season,” we conducted a phylogenetic analysis of H1N1 and H3N2 sequences sampled during April to June 2009 in New York State. Our analysis revealed that multiple lineages of both viruses were introduced and cocirculated during this time, as is typical of influenza virus during the winter. Strikingly, however, we also found strong evidence for the presence of a large transmission chain of H3N2 viruses centered on the south-east of New York State and which continued until at least 1 June 2009. These results suggest that the unseasonal transmission of influenza A viruses may be more widespread than is usually supposed.The recent emergence of swine-origin H1N1 influenza A virus (pandemic H1N1/09) in humans has heightened awareness of how the burden of morbidity and mortality due to influenza is associated with the appearance of new genetic variants (5) and of the genetic and epidemiological determinants of viral transmission (8). The emergence of pandemic H1N1/09 is also unprecedented in recorded history as it means that three antigenically distinct lineages of influenza A virus—pandemic H1N1/09 and the seasonal H1N1 and H3N2 viruses— currently cocirculate within human populations.Although the presence of multiple subtypes of influenza A virus may place an additional burden on public health resources, it also provides a unique opportunity to compare the patterns and dynamics of evolution in these viruses on a similar time scale. Indeed, one of the most interesting secondary effects of the current H1N1/09 pandemic has been an increased vigilance for cases of influenza-like illness and hence an intensified sampling of seasonal H1N1 and H3N2 viruses during the typical influenza “off-season” (i.e., spring-summer) in the northern hemisphere. Because the influenza season in the northern hemisphere generally runs from November through March, with a usual peak in January or February, influenza viruses sampled outside of this period are of special interest.The current model for the global spatiotemporal dynamics of influenza A virus is that the northern and southern hemispheres represent ecological “sinks” for this virus, with little ongoing viral transmission during the summer months (9). In contrast, more continual viral transmission occurs within the tropical “source” population (13) that is most likely centered on an intense transmission network in east and southeast Asia (10). However, the precise epidemiological and evolutionary reasons for this major geographic division, and for the seasonality of influenza A virus in general, remain uncertain (1, 4). Evidence for this “sink-source” ecological model is that viruses sampled from successive seasons in localities such as New York State do not usually form linked clusters on phylogenetic trees, indicating that they are not connected by direct transmission through the summer months (7). Similar conclusions can be drawn for the United States as a whole and point to multiple introductions of phylogenetically distinct lineages during the winter (6), followed by complex patterns of spatial diffusion (14). However, despite the growing epidemiological and phylogenetic data supporting this model, it is also evident that there is relatively little sequence data from seasonal influenza viruses that are sampled from April to October in the northern hemisphere. Hence, it is uncertain whether extended chains of transmission can occur during this time period, even though this may have an important bearing on our understanding of influenza seasonality.To address these issues, we examined the evolutionary behavior of seasonal H1N1 and H3N2 viruses as they cocirculated during a single time period—(late) April to June 2009—within a single locality (New York State). Not only are levels of influenza virus transmission in the northern hemisphere usually very low during this time period, but in this particular season the human host population was also experiencing the emerging epidemic of pandemic H1N1/09. 相似文献
4.
Sharon M. Brookes Alejandro Nú?ez Bhudipa Choudhury Mikhail Matrosovich Stephen C. Essen Derek Clifford Marek J. Slomka Ga?lle Kuntz-Simon Fanny Garcon Bethany Nash Amanda Hanna Peter M. H. Heegaard Stéphane Quéguiner Chiara Chiapponi Michel Bublot Jaime Maldonado Garcia Rebecca Gardner Emanuela Foni Willie Loeffen Lars Larsen Kristien Van Reeth Jill Banks Richard M. Irvine Ian H. Brown 《PloS one》2010,5(2)
The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important questions, including origin and host range [1], [2]. Two of the three pandemics in the last century resulted in the spread of virus to pigs (H1N1, 1918; H3N2, 1968) with subsequent independent establishment and evolution within swine worldwide [3]. A key public and veterinary health consideration in the context of the evolving pandemic is whether the H1N1/09 virus could become established in pig populations [4]. We performed an infection and transmission study in pigs with A/California/07/09. In combination, clinical, pathological, modified influenza A matrix gene real time RT-PCR and viral genomic analyses have shown that infection results in the induction of clinical signs, viral pathogenesis restricted to the respiratory tract, infection dynamics consistent with endemic strains of influenza A in pigs, virus transmissibility between pigs and virus-host adaptation events. Our results demonstrate that extant H1N1/09 is fully capable of becoming established in global pig populations. We also show the roles of viral receptor specificity in both transmission and tissue tropism. Remarkably, following direct inoculation of pigs with virus quasispecies differing by amino acid substitutions in the haemagglutinin receptor-binding site, only virus with aspartic acid at position 225 (225D) was detected in nasal secretions of contact infected pigs. In contrast, in lower respiratory tract samples from directly inoculated pigs, with clearly demonstrable pulmonary pathology, there was apparent selection of a virus variant with glycine (225G). These findings provide potential clues to the existence and biological significance of viral receptor-binding variants with 225D and 225G during the 1918 pandemic [5]. 相似文献
5.
6.
Quynh Mai Le Yuko Sakai-Tagawa Makoto Ozawa Mustumi Ito Yoshihiro Kawaoka 《Journal of virology》2009,83(10):5278-5281
Highly pathogenic H5N1 influenza viruses continue to cause concern, even though currently circulating strains are not efficiently transmitted among humans. For efficient transmission, amino acid changes in viral proteins may be required. Here, we examined the amino acids at positions 627 and 701 of the PB2 protein. A direct analysis of the viral RNAs of H5N1 viruses in patients revealed that these amino acids contribute to efficient virus propagation in the human upper respiratory tract. Viruses grown in culture or eggs did not always reflect those in patients. These results emphasize the importance of the direct analysis of original specimens.Given the continued circulation of highly pathogenic H5N1 avian influenza viruses and their sporadic transmission to humans, the threat of a pandemic persists. However, for H5N1 influenza viruses to be efficiently transmitted among humans, amino acid substitutions in the avian viral proteins may be necessary.Two positions in the PB2 protein affect the growth of influenza viruses in mammalian cells (3, 11, 18): the amino acid at position 627 (PB2-627), which in most human influenza viruses is lysine (PB2-627Lys) and most avian viruses is glutamic acid (PB2-627Glu), and the amino acid at position 701. PB2-627Lys is associated with the efficient replication (16) and high virulence (5) of H5N1 viruses in mice. Moreover, an H7N7 avian virus isolated from a fatal human case of pneumonia possessed PB2-627Lys, whereas isolates from a nonfatal human case of conjunctivitis and from chickens during the same outbreak possessed PB2-627Glu (2).The amino acid at position 701 in PB2 is important for the high pathogenicity of H5N1 viruses in mice (11). Most avian influenza viruses possess aspartic acid at this position (PB2-701Asp); however, A/duck/Guangxi/35/2001 (H5N1), which is highly virulent in mice (11), possesses asparagine at this position (PB2-701Asn). PB2-701Asn is also found in equine (4) and swine (15) viruses, as well as some H5N1 human isolates (7, 9). Thus, both amino acids appear to be markers for the adaptation of H5N1 viruses in humans (1, 3, 17).Massin et al. (13) reported that the amino acid at PB2-627 affects viral RNA replication in cultured cells at low temperatures. Recently, we demonstrated that viruses, including those of the H5N1 subtype, with PB2-627Lys (human type) grow better at low temperatures in cultured cells than those with PB2-627Glu (avian type) (6). This association between the PB2 amino acid and temperature-dependent growth correlates with the body temperatures of hosts; the human upper respiratory tract is at a lower temperature (around 33°C) than the lower respiratory tract (around 37°C) and the avian intestine, where avian influenza viruses usually replicate (around 41°C). The ability to replicate at low temperatures may be crucial for viral spread among humans via sneezing and coughing by being able to grow in the upper respiratory organs. Therefore, the Glu-to-Lys mutation in PB2-627 is an important step for H5N1 viruses to develop pandemic potential.However, there is no direct evidence that the substitutions of PB2-627Glu with PB2-627Lys and PB2-701Asp with PB2-701Asn occur during the replication of H5N1 avian influenza viruses in human respiratory organs. Therefore, here, we directly analyzed the nucleotide sequences of viral genes from several original specimens collected from patients infected with H5N1 viruses. 相似文献
7.
Yan Zhang Jiping Zhu Yongtao Li Konrad C. Bradley Jiyue Cao Huanchun Chen Meilin Jin Hongbo Zhou 《PloS one》2013,8(4)
The two glycosylation sites (Asn142 and Asn177) were observed in the HA of most human seasonal influenza A/H1N1 viruses, while none in pandemic H1N1/2009 influenza A (pH1N1) viruses. We investigated the effect of the two glycosylation sites on viral virulence and pathogenicity in mice using recombinant pH1N1. The H1N1/144 and H1N1/177 mutants which gained potential glycosylation sites Asn142 and Asn177 on HA respectively were generated from A/Mexico/4486/2009(H1N1) by site-directed mutagenesis and reverse genetics, the same as the H1N1/144+177 gained both glycosylation sites Asn142 and Asn177. The biological characteristics and antigenicity of the mutants were compared with wild-type pH1N1. The virulence and pathogenicity of recombinants were also detected in mice. Our results showed that HA antigenicity and viral affinity for receptor may change with introduction of the glycosylation sites. Compared with wild-type pH1N1, the mutant H1N1/177 displayed an equivalent virus titer in chicken embryos and mice, and increased virulence and pathogenicity in mice. The H1N1/144 displayed the highest virus titer in mice lung. However, the H1N1/144+177 displayed the most serious alveolar inflammation and pathogenicity in infected mice. The introduction of the glycosylation sites Asn144 and Asn177 resulted in the enhancement on virulence and pathogenicity of pH1N1 in mice, and was also associated with the change of HA antigenicity and the viral affinity for receptor. 相似文献
8.
Amy L. Vincent Kelly M. Lager Michelle Harland Alessio Lorusso Eraldo Zanella Janice R. Ciacci-Zanella Marcus E. Kehrli Jr. Alexander Klimov 《PloS one》2009,4(12)
The emergence of the pandemic 2009 H1N1 influenza A virus in humans and subsequent discovery that it was of swine influenza virus lineages raised concern over the safety of pork. Pigs experimentally infected with pandemic 2009 H1N1 influenza A virus developed respiratory disease; however, there was no evidence for systemic disease to suggest that pork from pigs infected with H1N1 influenza would contain infectious virus. These findings support the WHO recommendation that pork harvested from pandemic influenza A H1N1 infected swine is safe to consume when following standard meat hygiene practices. 相似文献
9.
Pathogenicity and Transmissibility of Novel Reassortant H3N2 Influenza Viruses with 2009 Pandemic H1N1 Genes in Pigs 总被引:1,自引:0,他引:1
Jingjiao Ma Huigang Shen Qinfang Liu Bhupinder Bawa Wenbao Qi Michael Duff Yuekun Lang Jinhwa Lee Hai Yu Jianfa Bai Guangzhi Tong Richard A. Hesse Jürgen A. Richt Wenjun Ma 《Journal of virology》2015,89(5):2831-2841
10.
During the early phase of the 2009 influenza pandemic, attempts were made to contain the spread of the virus. Success of reactive control measures may be compromised if the proportion of transmission that occurs before overt clinical symptoms develop is high. In this study we investigated the timing of transmission of an early prototypic strain of pandemic H1N1 2009 influenza virus in the ferret model. Ferrets are the only animal model in which this can be assessed because they display typical influenza-like clinical signs including fever and sneezing after infection. We assessed transmission from infected animals to sentinels that were placed either in direct contact or in adjacent cages, the latter reflecting the respiratory droplet (RD) transmission route. We found that pre-symptomatic influenza transmission occurred via both contact and respiratory droplet exposure before the earliest clinical sign, fever, developed. Three of 3 animals exposed in direct contact between day 1 and 2 after infection of the donor animals became infected, and 2/3 of the animals exposed at this time period by the RD route acquired the infection, with the third animal becoming seropositive indicating either a low level infection or significant exposure. Moreover, this efficient transmission did not temporally correlate with respiratory symptoms, such as coughs and sneezes, but rather with the peak viral titre in the nose. Indeed respiratory droplet transmission did not occur late in infection, even though this was when sneezing and coughing were most apparent. None of the 3 animals exposed at this time by the RD route became infected and these animals remained seronegative at the end of the experiment. These data have important implications for pandemic planning strategies and suggest that successful containment is highly unlikely for a human-adapted influenza virus that transmits efficiently within a population. 相似文献
11.
Salin Chutinimitkul Sander Herfst John Steel Anice C. Lowen Jianqiang Ye Debby van Riel Eefje J. A. Schrauwen Theo M. Bestebroer Bj?rn Koel David F. Burke Kyle H. Sutherland-Cash Chris S. Whittleston Colin A. Russell David J. Wales Derek J. Smith Marcel Jonges Adam Meijer Marion Koopmans Guus F. Rimmelzwaan Thijs Kuiken Albert D. M. E. Osterhaus Adolfo García-Sastre Daniel R. Perez Ron A. M. Fouchier 《Journal of virology》2010,84(22):11802-11813
The clinical impact of the 2009 pandemic influenza A(H1N1) virus (pdmH1N1) has been relatively low. However, amino acid substitution D222G in the hemagglutinin of pdmH1N1 has been associated with cases of severe disease and fatalities. D222G was introduced in a prototype pdmH1N1 by reverse genetics, and the effect on virus receptor binding, replication, antigenic properties, and pathogenesis and transmission in animal models was investigated. pdmH1N1 with D222G caused ocular disease in mice without further indications of enhanced virulence in mice and ferrets. pdmH1N1 with D222G retained transmissibility via aerosols or respiratory droplets in ferrets and guinea pigs. The virus displayed changes in attachment to human respiratory tissues in vitro, in particular increased binding to macrophages and type II pneumocytes in the alveoli and to tracheal and bronchial submucosal glands. Virus attachment studies further indicated that pdmH1N1 with D222G acquired dual receptor specificity for complex α2,3- and α2,6-linked sialic acids. Molecular dynamics modeling of the hemagglutinin structure provided an explanation for the retention of α2,6 binding. Altered receptor specificity of the virus with D222G thus affected interaction with cells of the human lower respiratory tract, possibly explaining the observed association with enhanced disease in humans.In April 2009, the H1N1 influenza A virus of swine origin was detected in humans in North America (9, 12, 42). Evidence for its origin came from analyses of the viral genome, with six gene segments displaying the closest resemblance to American “triple-reassortant” swine viruses and two to “Eurasian-lineage” swine viruses (13, 42). After this first detection in humans, the virus spread rapidly around the globe, starting the first influenza pandemic of the 21st century. The 2009 pandemic influenza A(H1N1) virus (pdmH1N1) has been relatively mild, with a spectrum of disease ranging from subclinical infections or mild upper respiratory tract illness to sporadic cases of severe pneumonia and acute respiratory distress syndrome (3, 11, 27, 29, 30, 37). Overall, the case-fatality rate during the start of the pandemic was not significantly higher than in seasonal epidemics in most countries. However, a marked difference was observed in the case-fatality rate in specific age groups, with seasonal influenza generally causing highest mortality in elderly and immunocompromised individuals, and the pdmH1N1 affecting a relatively large proportion of (previously healthy) young individuals (3, 11, 27, 29, 30, 37).Determinants of influenza A virus virulence have been mapped for a wide variety of zoonotic and pandemic influenza viruses to the polymerase genes, hemagglutinin (HA), neuraminidase (NA), and nonstructural protein 1 (NS1). Such virulence-associated substitutions generally facilitate more efficient replication in humans via improved interactions with host cell factors. Since most of these virulence-associated substitutions were absent in the earliest pdmH1N1s, it has been speculated that the virus could acquire some of these mutations, potentially resulting in the emergence of more pathogenic viruses. Such virulence markers could be acquired by gene reassortment with cocirculating influenza A viruses, or by mutation. The influenza virus polymerase genes, in particular PB2, have been shown to be important determinants of the virulence of the highly pathogenic avian influenza (HPAI) H5N1 and H7N7 viruses and the transmission of the 1918 H1N1 Spanish influenza virus (17, 26, 34, 51). One of the most commonly identified virulence markers to date is E627K in PB2. The glutamic acid (E) residue is generally found in avian influenza viruses, while human viruses have a lysine (K), and this mutation was described as a determinant of host range in vitro (48). Given that all human and many zoonotic influenza viruses of the last century contained 627K, it was surprising that the pdmH1N1 had 627E. In addition, an aspartate (D)-to-asparagine (N) substitution at position 701 (D701N) of PB2 has previously been shown to expand the host range of avian H5N1 virus to mice and humans and to increase virus transmission in guinea pigs (26, 46). Like E627K, D701N was absent in the genome of pdmH1N1. Thus, the pdmH1N1 was the first known human pandemic virus with 627E and 701D, and it has been speculated that pdmH1N1 could mutate into a more virulent form by acquiring one of these mutations or both. Recently, it was shown that neither E627K nor D701N in PB2 of pdmH1N1 increased its virulence in ferrets and mice (18). The PB1-F2 protein has previously also been associated with high pathogenicity of the 1918 H1N1 and HPAI H5N1 viruses (8). The PB1-F2 protein of the pdmH1N1 is truncated due to premature stop codons. However, restoration of the PB1-F2 reading frame did not result in viruses with increased virulence (15). The NS1 protein of pdmH1N1 is also truncated due to a stop codon and, as a result, does not contain a PDZ ligand domain that is involved in cell-signaling pathways and has been implicated in the pathogenicity of 1918 H1N1 and HPAI H5N1 viruses (5, 8, 21). Surprisingly, restoration of a full-length version of the NS1 gene did not result in increased virulence in animal models (16). Mutations affecting virulence and host range have further frequently been mapped to hemagglutinin (HA) and neuraminidase (NA) in relation to their interaction with α2,3- or α2,6-linked sialic acids (SAs), the virus receptors on host cells (17, 32, 35, 50). The HA gene of previous pandemic viruses incorporated substitutions that allow efficient attachment to α2,6-SAs—the virus receptor on human cells—compared to ancestral avian viruses that attach more efficiently to α2,3-SAs (35, 47, 50).To search for mutations of potential importance to public health, numerous laboratories performed genome sequencing of pdmH1N1s, resulting in the real-time accumulation of information on emergence of potential virulence markers. Of specific interest were reports on amino acid substitutions from aspartic acid (D) to glycine (G) at position 222 (position 225 in H3) in HA of pdmH1N1. This substitution was observed in a fatal case of pdmH1N1 infection in June 2009 in the Netherlands (M. Jonges et al., unpublished data). Between July and December 2009, viruses from 11 (18%) of 61 cases with severe disease outcome in Norway have also been reported to harbor the D222G substitution upon direct sequencing of HA in clinical specimens. Such mutant viruses were not observed in any of 205 mild cases investigated, and the frequency of detection of this mutation was significantly higher in severe cases than in mild cases (23). In Hong Kong, the D222G substitution was detected in 12.5% (6) and 4.1% (31) of patients with severe disease and in 0% of patients with mild disease, in two different studies without prior propagation in embryonated chicken eggs. In addition to Norway and Hong Kong, the mutation has been detected in Brazil, Japan, Mexico, Ukraine, and the United States (56). Thus, D222G in HA could be the first identified “virulence marker” of pdmH1N1. pdmH1N1 with D222G in HA have not become widespread in the population, although they were detected in several countries. However, D222G in HA is of special interest, since it has also been described as the single change in HA between two strains of the “Spanish” 1918 H1N1 virus that differed in receptor specificity (47). Furthermore, upon propagation in embryonated chicken eggs, pdmH1N1 can acquire the mutation rapidly, presumably because it results in virus adaptation to avian (α2,3-SAs) receptors (49). The presence of the substitution in pdmH1N1s in the human population and its potential association with more severe disease prompted us to test its effect on pdmH1N1 receptor binding, replication, antigenic properties, and pathogenesis and transmission in animal models. 相似文献
12.
Carrie Reed Jacqueline M. Katz Kathy Hancock Amanda Balish Alicia M. Fry HN Serosurvey Working Group 《PloS one》2012,7(10)
Background
2009 pandemic influenza A/H1N1 (A(H1N1)pdm09) was first detected in the United States in April 2009 and resulted in a global pandemic. We conducted a serologic survey to estimate the cumulative incidence of A(H1N1)pdm09 through the end of 2009 when pandemic activity had waned in the United States.Methods
We conducted a pair of cross sectional serologic surveys before and after the spring/fall waves of the pandemic for evidence of seropositivity (titer ≥40) using the hemagglutination inhibition (HI) assay. We tested a baseline sample of 1,142 serum specimens from the 2007–2008 National Health and Nutrition Examination Survey (NHANES), and 2,759 serum specimens submitted for routine screening to clinical diagnostic laboratories from ten representative sites.Results
The age-adjusted prevalence of seropositivity to A(H1N1)pdm09 by year-end 2009 was 36.9% (95%CI: 31.7–42.2%). After adjusting for baseline cross-reactive antibody, pandemic vaccination coverage and the sensitivity/specificity of the HI assay, we estimate that 20.2% (95%CI: 10.1–28.3%) of the population was infected with A(H1N1)pdm09 by December 2009, including 53.3% (95%CI: 39.0–67.1%) of children aged 5–17 years.Conclusions
By December 2009, approximately one-fifth of the US population, or 61.9 million persons, may have been infected with A(H1N1)pdm09, including around half of school-aged children. 相似文献13.
Ryuta Uraki Maki Kiso Kiyoko Iwatsuki-Horimoto Satoshi Fukuyama Emi Takashita Makoto Ozawa Yoshihiro Kawaoka 《Journal of virology》2013,87(14):7874-7881
Vaccination is an effective means to protect against influenza virus. Although inactivated and live-attenuated vaccines are currently available, each vaccine has disadvantages (e.g., immunogenicity and safety issues). To overcome these problems, we previously developed a replication-incompetent PB2-knockout (PB2-KO) influenza virus that replicates only in PB2 protein-expressing cells. Here, we generated two PB2-KO viruses whose PB2-coding regions were replaced with the HA genes of either A/California/04/2009 (H1N1pdm09) or A/Vietnam/1203/2004 (H5N1). The resultant viruses comparably, or in some cases more efficiently, induced virus-specific antibodies in the serum, nasal wash, and bronchoalveolar lavage fluid of mice relative to a conventional formalin-inactivated vaccine. Furthermore, mice immunized with these PB2-KO viruses were protected from lethal challenges with not only the backbone virus strain but also strains from which their foreign HAs originated, indicating that PB2-KO viruses with antigenically different HAs could serve as bivalent influenza vaccines. 相似文献
14.
Maki Kiso Kyoko Shinya Masayuki Shimojima Ryo Takano Kei Takahashi Hiroaki Katsura Satoshi Kakugawa Mai thi Quynh Le Makoto Yamashita Yousuke Furuta Makoto Ozawa Yoshihiro Kawaoka 《PLoS pathogens》2010,6(8)
Influenza viruses resistant to antiviral drugs emerge frequently. Not surprisingly, the widespread treatment in many countries of patients infected with 2009 pandemic influenza A (H1N1) viruses with the neuraminidase (NA) inhibitors oseltamivir and zanamivir has led to the emergence of pandemic strains resistant to these drugs. Sporadic cases of pandemic influenza have been associated with mutant viruses possessing a histidine-to-tyrosine substitution at position 274 (H274Y) in the NA, a mutation known to be responsible for oseltamivir resistance. Here, we characterized in vitro and in vivo properties of two pairs of oseltaimivir-sensitive and -resistant (possessing the NA H274Y substitution) 2009 H1N1 pandemic viruses isolated in different parts of the world. An in vitro NA inhibition assay confirmed that the NA H274Y substitution confers oseltamivir resistance to 2009 H1N1 pandemic viruses. In mouse lungs, we found no significant difference in replication between oseltamivir-sensitive and -resistant viruses. In the lungs of mice treated with oseltamivir or even zanamivir, 2009 H1N1 pandemic viruses with the NA H274Y substitution replicated efficiently. Pathological analysis revealed that the pathogenicities of the oseltamivir-resistant viruses were comparable to those of their oseltamivir-sensitive counterparts in ferrets. Further, the oseltamivir-resistant viruses transmitted between ferrets as efficiently as their oseltamivir-sensitive counterparts. Collectively, these data indicate that oseltamivir-resistant 2009 H1N1 pandemic viruses with the NA H274Y substitution were comparable to their oseltamivir-sensitive counterparts in their pathogenicity and transmissibility in animal models. Our findings highlight the possibility that NA H274Y-possessing oseltamivir-resistant 2009 H1N1 pandemic viruses could supersede oseltamivir-sensitive viruses, as occurred with seasonal H1N1 viruses. 相似文献
15.
Magali Lemaitre Fabrice Carrat Grégoire Rey Mark Miller Lone Simonsen Cécile Viboud 《PloS one》2012,7(9)
Background
The mortality burden of the 2009 A/H1N1 pandemic remains unclear in many countries due to delays in reporting of death statistics. We estimate the age- and cause-specific excess mortality impact of the pandemic in France, relative to that of other countries and past epidemic and pandemic seasons.Methods
We applied Serfling and Poisson excess mortality approaches to model weekly age- and cause-specific mortality rates from June 1969 through May 2010 in France. Indicators of influenza activity, time trends, and seasonal terms were included in the models. We also reviewed the literature for country-specific estimates of 2009 pandemic excess mortality rates to characterize geographical differences in the burden of this pandemic.Results
The 2009 A/H1N1 pandemic was associated with 1.0 (95% Confidence Intervals (CI) 0.2–1.9) excess respiratory deaths per 100,000 population in France, compared to rates per 100,000 of 44 (95% CI 43–45) for the A/H3N2 pandemic and 2.9 (95% CI 2.3–3.7) for average inter-pandemic seasons. The 2009 A/H1N1 pandemic had a 10.6-fold higher impact than inter-pandemic seasons in people aged 5–24 years and 3.8-fold lower impact among people over 65 years.Conclusions
The 2009 pandemic in France had low mortality impact in most age groups, relative to past influenza seasons, except in school-age children and young adults. The historical A/H3N2 pandemic was associated with much larger mortality impact than the 2009 pandemic, across all age groups and outcomes. Our 2009 pandemic excess mortality estimates for France fall within the range of previous estimates for high-income regions. Based on the analysis of several mortality outcomes and comparison with laboratory-confirmed 2009/H1N1 deaths, we conclude that cardio-respiratory and all-cause mortality lack precision to accurately measure the impact of this pandemic in high-income settings and that use of more specific mortality outcomes is important to obtain reliable age-specific estimates. 相似文献16.
A novel swine-origin pandemic influenza A(H1N1) virus (H1N1pdm, also referred to as S-OIV) was identified as the causative agent of the 21st century''s first influenza pandemic, but molecular features conferring its ability of human-to-human transmission has not been identified. Here we compared the protein sequences of 2009 H1N1pdm strains with those causing other pandemics and the viruses isolated from humans, swines and avians, and then analyzed the mutation trend of the residues at the signature and non-signature positions, which are species- and non-species-associated, respectively, in the proteins of H1N1pdm during the pandemic of 2009. We confirmed that the host-specific genomic signatures of 2009 H1N1pdm, which are mainly swine-like, were highly identical to those of the 1918 H1N1pdm. During the short period of time when the pandemic alert level was raised from phase 4 to phase 6, one signature residue at the position of NP-100 mutated from valine to isoleucine. Four non-signature residues, at positions NA-91, NA-233, HA-206, and NS1-123, also changed during the epidemic in 2009. All these mutant residues, except that at NA-91, are located in the viral functional domains, suggesting that they may play roles in the human adaption and virulence of 2009 H1N1pdm. 相似文献
17.
Background
The 2009 influenza pandemic and shortages in vaccine supplies worldwide underscore the need for new approaches to develop more effective vaccines.Methodology/Principal Findings
We generated influenza virus-like particles (VLPs) containing proteins derived from the A/California/04/2009 virus, and tested their efficacy as a vaccine in mice. A single intramuscular vaccination with VLPs provided complete protection against lethal challenge with the A/California/04/2009 virus and partial protection against A/PR/8/1934 virus, an antigenically distant human isolate. VLP vaccination induced predominant IgG2a antibody responses, high hemagglutination inhibition (HAI) titers, and recall IgG and IgA antibody responses. HAI titers after VLP vaccination were equivalent to those observed after live virus infection. VLP immune sera also showed HAI responses against diverse geographic pandemic isolates. Notably, a low dose of VLPs could provide protection against lethal infection.Conclusion/Significance
This study demonstrates that VLP vaccination provides highly effective protection against the 2009 pandemic influenza virus. The results indicate that VLPs can be developed into an effective vaccine, which can be rapidly produced and avoid the need to isolate high growth reassortants for egg-based production. 相似文献18.
Christopher W. Seibert Michael Kaminski Jennifer Philipp Dennis Rubbenstroth Randy A. Albrecht Folker Schwalm Silke Stertz Rafael A. Medina Georg Kochs Adolfo García-Sastre Peter Staeheli Peter Palese 《Journal of virology》2010,84(21):11219-11226
Oseltamivir is routinely used worldwide for the treatment of severe influenza A virus infection, and should drug-resistant pandemic 2009 H1N1 viruses become widespread, this potent defense strategy might fail. Oseltamivir-resistant variants of the pandemic 2009 H1N1 influenza A virus have been detected in a substantial number of patients, but to date, the mutant viruses have not moved into circulation in the general population. It is not known whether the resistance mutations in viral neuraminidase (NA) reduce viral fitness. We addressed this question by studying transmission of oseltamivir-resistant mutants derived from two different isolates of the pandemic H1N1 virus in both the guinea pig and ferret transmission models. In vitro, the virus readily acquired a single histidine-to-tyrosine mutation at position 275 (H275Y) in viral neuraminidase when serially passaged in cell culture with increasing concentrations of oseltamivir. This mutation conferred a high degree of resistance to oseltamivir but not zanamivir. Unexpectedly, in guinea pigs and ferrets, the fitness of viruses with the H275Y point mutation was not detectably impaired, and both wild-type and mutant viruses were transmitted equally well from animals that were initially inoculated with 1:1 virus mixtures to naïve contacts. In contrast, a reassortant virus containing an oseltamivir-resistant seasonal NA in the pandemic H1N1 background showed decreased transmission efficiency and fitness in the guinea pig model. Our data suggest that the currently circulating pandemic 2009 H1N1 virus has a high potential to acquire drug resistance without losing fitness.Oseltamivir resistance was rare until 2008, when resistant seasonal H1N1 viruses were found circulating in the general Scandinavian population (15). Soon after, studies from other countries in Europe also reported the isolation of oseltamivir-resistant viruses, and eventually, oseltamivir resistance was recognized as a global phenomenon (9, 27). Prior to 2008, resistant viruses were primarily isolated from patients with nonresponsive influenza virus infections or from infected patients who received a low-dose prophylaxis regiment prior to symptom onset. At the time, these resistant isolates accounted for 1% of the circulating H1N1 virus. Drug resistance mutations were identified during oseltamivir development, including a histidine-to-tyrosine mutation at position 275 (H275Y) in N1 neuraminidase (NA). This mutation in particular was shown to attenuate virus growth and pathology in ferrets (17). Additionally, oseltamivir-resistant viruses with a nearby mutation in N2 neuraminidase transmitted less efficiently than oseltamivir-sensitive viruses in the guinea pig transmission model (4). Surprisingly, the seasonal 2008 H1N1 viral isolates that spread around the world had the same tyrosine mutation, which was previously associated with iatrogenic infections and attenuation. Furthermore, epidemiological studies concluded that this resistant virus developed independently of drug selection, suggesting that compensatory adaptations allowed an attenuating mutation to become permissible (3, 18). The ability of resistant 2008 isolates to perform on par with nonresistant 2008 isolates in growth curves, in mean plaque size, and in a transmission model was recently confirmed (2). Currently, 99% of seasonal H1N1 viruses are oseltamivir resistant; however, the prevalence of these viruses is very low due to replacement by a novel reassortant H1N1 virus (6, 8). This novel reassortant was originally identified in Mexico by doctors concerned about a jump in the number of influenza cases during the month of March in 2009 (7). Later referred to as swine-origin influenza virus, novel H1N1 virus, or 2009 pandemic H1N1 virus, this virus would continue to efficiently transmit around the world, even during the summer months of the northern hemisphere. Its robust transmission was later confirmed in aerosol transmission models, in which 86% of ferrets and 100% of guinea pigs exposed to infected animals contracted pandemic influenza (22, 28, 31). Oseltamivir was used broadly during the outbreak, treating those with complications and prophylactically treating close contacts of confirmed cases. The use of oseltamivir in this manner provided ample opportunity for oseltamivir-resistant viruses to develop. More than 225 cases of oseltamivir-resistant infections have been confirmed from the beginning of the pandemic, including four incidents of suspected aerosol transmission (21, 32, 33). Fortunately, these clinical isolates never progressed into stable transmission in the general public. This study seeks to evaluate if introducing the H275Y mutation into the pandemic 2009 H1N1 virus attenuates virus replication in vitro or in vivo using the guinea pig model and the ferret model to test aerosol transmission efficiency. Furthermore, this study evaluates if a reassortant between the circulating novel H1N1 virus and seasonal neuraminidase (NA) forms a well-adapted, resistant virus capable of efficient transmission.Currently, oseltamivir is the drug of choice for treating novel H1N1 complications and outpatient prophylaxis. Therefore, it is of great importance to study the in vitro replication and transmission phenotypes of oseltamivir-resistant novel H1N1 viruses to understand why broad oseltamivir resistance has not occurred or whether we should expect it to occur in the future. 相似文献
19.
Xinhui Ge Venus Tan Paul L. Bollyky Nathan E. Standifer Eddie A. James William W. Kwok 《Journal of virology》2010,84(7):3312-3319
Very limited evidence has been reported to show human adaptive immune responses to the 2009 pandemic H1N1 swine-origin influenza A virus (S-OIV). We studied 17 S-OIV peptides homologous to immunodominant CD4 T epitopes from hemagglutinin (HA), neuraminidase (NA), nuclear protein (NP), M1 matrix protein (MP), and PB1 of a seasonal H1N1 strain. We concluded that 15 of these 17 S-OIV peptides would induce responses of seasonal influenza virus-specific T cells. Of these, seven S-OIV sequences were identical to seasonal influenza virus sequences, while eight had at least one amino acid that was not conserved. T cells recognizing epitopes derived from these S-OIV antigens could be detected ex vivo. Most of these T cells expressed memory markers, although none of the donors had been exposed to S-OIV. Functional analysis revealed that specific amino acid differences in the sequences of these S-OIV peptides would not affect or partially affect memory T-cell responses. These findings suggest that without protective antibody responses, individuals vaccinated against seasonal influenza A may still benefit from preexisting cross-reactive memory CD4 T cells reducing their susceptibility to S-OIV infection.The outbreak of H1N1 swine-origin influenza A virus (S-OIV) in April 2009 has raised a new threat to public health (5, 6). This novel virus (with A/California/04/09 H1N1 as a prototypic strain) not only replicated more efficiently but also caused more severe pathological lesions in the lungs of infected mice, ferrets, and nonhuman primates than a currently circulating human H1N1 virus (9). Similarly, human patients with influenza-like illness who tested negative for S-OIV had a milder clinical course than those who tested positive (13). Another major concern is the lack of immune protection against S-OIV in the human population. Initial serum analysis indicated that cross-reactive antibodies to this novel viral strain were detected in only one-third of people over 60 years of age, while humoral immune responses in the population under 60 years of age were rarely detected (3, 8). In addition, vaccination with recent seasonal influenza vaccines induced little or no cross-reactive antibody responses to S-OIV in any age group (3, 8).Only a few studies address whether preexisting seasonal influenza A virus-specific memory T cells cross-react with antigenic peptides derived from S-OIV (7). In the absence of preexisting cross-reactive neutralizing antibodies, it is likely that T-cell-mediated cellular immunity contributes to viral clearance and reduces the severity of symptoms, although virus-specific T cells cannot directly prevent the establishment of infection (10). Greenbaum and colleagues recently compared published T-cell epitopes for seasonal influenza viruses with S-OIV antigens (Ags) using a computational approach (7). Several seasonal H1N1 epitopes were found to be identical to S-OIV sequences. This implies that seasonal flu-specific memory T cells circulating in the peripheral blood of vaccinated and/or previously infected individuals are able to recognize their S-OIV homologues.The first objective of this study was to determine the extent of cross-reactivity of seasonal H1N1 influenza A virus-specific CD4 T cells with S-OIV epitopes, especially those less conserved peptide sequences. We chose 17 immunodominant DR4-restricted T-cell epitopes derived from a seasonal H1N1 strain, compared the binding of these epitopes and their S-OIV homologous peptides to DR4, tested the ability of S-OIV peptides to drive seasonal influenza virus-specific T-cell proliferation in vitro, and estimated the frequency of S-OIV cross-reactive T cells in the periphery of noninfected donors. We found that most homologous S-OIV peptides were able to activate seasonal H1N1 virus-specific CD4 T cells. The second objective was to compare the antigen dosage requirement to activate those T cells. By assessing the alternations in the functional avidities (of T cells to the cognate peptide and S-OIV homologue) due to amino acid differences in S-OIV peptides, we showed how those cross-reactive CD4 T cells differentially responded to the antigenic peptides derived from seasonal H1N1 virus or S-OIV. This study leads to the conclusion that previous exposure to seasonal H1N1 viral antigens will generate considerable levels of memory CD4 T cells cross-reactive with S-OIV. 相似文献
20.
Manabu Igarashi Kimihito Ito Reiko Yoshida Daisuke Tomabechi Hiroshi Kida Ayato Takada 《PloS one》2010,5(1)
The pandemic influenza virus (2009 H1N1) was recently introduced into the human population. The hemagglutinin (HA) gene of 2009 H1N1 is derived from “classical swine H1N1” virus, which likely shares a common ancestor with the human H1N1 virus that caused the pandemic in 1918, whose descendant viruses are still circulating in the human population with highly altered antigenicity of HA. However, information on the structural basis to compare the HA antigenicity among 2009 H1N1, the 1918 pandemic, and seasonal human H1N1 viruses has been lacking. By homology modeling of the HA structure, here we show that HAs of 2009 H1N1 and the 1918 pandemic virus share a significant number of amino acid residues in known antigenic sites, suggesting the existence of common epitopes for neutralizing antibodies cross-reactive to both HAs. It was noted that the early human H1N1 viruses isolated in the 1930s–1940s still harbored some of the original epitopes that are also found in 2009 H1N1. Interestingly, while 2009 H1N1 HA lacks the multiple N-glycosylations that have been found to be associated with an antigenic change of the human H1N1 virus during the early epidemic of this virus, 2009 H1N1 HA still retains unique three-codon motifs, some of which became N-glycosylation sites via a single nucleotide mutation in the human H1N1 virus. We thus hypothesize that the 2009 H1N1 HA antigenic sites involving the conserved amino acids will soon be targeted by antibody-mediated selection pressure in humans. Indeed, amino acid substitutions predicted here are occurring in the recent 2009 H1N1 variants. The present study suggests that antibodies elicited by natural infection with the 1918 pandemic or its early descendant viruses play a role in specific immunity against 2009 H1N1, and provides an insight into future likely antigenic changes in the evolutionary process of 2009 H1N1 in the human population. 相似文献