首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Eukaryotic release factor 3 (eRF3) is implicated in translation termination and also interacts with the poly(A)-binding protein (PABP, Pab1 in yeast), a major player in mRNA metabolism. Despite conservation of this interaction, its precise function remains elusive. First, we showed experimentally that yeast eRF3 does not contain any obvious consensus PAM2 (PABP-interacting motif 2). Thus, in yeast this association is different from the well described interaction between the metazoan factors. To gain insight into the exact function of this interaction, we then analyzed the phenotypes resulting from deleting the respective binding domains. Deletion of the Pab1 interaction domain on eRF3 did not affect general mRNA stability or nonsense-mediated mRNA decay (NMD) pathway and induced a decrease in translational readthrough. Furthermore, combined deletions of the respective interacting domains on eRF3 and on Pab1 were viable, did not affect Pab1 function in mRNA stability and harbored an antisuppression phenotype. Our results show that in Saccharomyces cerevisiae the role of the Pab1 C-terminal domain in mRNA stability is independent of eRF3 and the association of these two factors negatively regulates translation termination.  相似文献   

6.
无义介导的mRNA降解(NMD)是一种重要的真核生物mRNA质量监控途径。NMD可识别并降解含有提前终止密码子(PTC)的异常mRNA(PTC-mRNA)。但NMD途径对PTC-mRNA的识别和降解机制尚无阐明。蓝氏贾第虫(Giardia lamblia)是一种寄生性的原生动物,进化上处于真核生物基部,对其NMD途径的研究有利于了解NMD途径的机制与进化。本研究通过双分子荧光互补实验、酵母双杂交实验和体外pull-down实验,分析了贾第虫的UPF1 (GlUPF1)、SMG1 (GlSMG1)和肽链释放因子(GleRF1、GleRF3)之间的相互作用关系。结果表明,贾第虫的肽链释放因子都能够与GlUPF1发生相互作用,且GlUPF1的CH结构域与GleRF3能够形成较稳定的复合体,而GlSMG1的激酶结构域PIKK能与UPF1的C端和N端结构域相互作用。进一步研究证实,GlSMG1的PIKK结构域能使GlUPF1两种截短体GlUPF1(1~500 aa)和GlUPF1(501~1 304 aa)发生磷酸化修饰,说明GlUPF1 的N端和C端均有GlSMG1的磷酸化位点。进一步分析证实,T111是GlUPF1上的1个磷酸化位点。我们的研究结果表明,贾第虫NMD途径起始阶段,首先在mRNA的PTC处的核糖体上形成SMG1-UPF1-eRF1-eRF3(SURF)复合体,并且GlSMG1磷酸化修饰GlUPF1,由此激活NMD途径,可能招募XRN1和SKI7d等酶参与无义mRNA的降解。  相似文献   

7.
8.
The polycomb repressive complex 1 (PRC1), containing the core BMI1 and RING1A/B proteins, mono-ubiquitinylates histone H2A (H2Aub) and is associated with silenced developmental genes at facultative heterochromatin. It is, however, assumed that the PRC1 is excluded from constitutive heterochromatin in somatic cells based on work performed on mouse embryonic stem cells and oocytes. We show here that BMI1 is required for constitutive heterochromatin formation and silencing in human and mouse somatic cells. BMI1 was highly enriched at intergenic and pericentric heterochromatin, co-immunoprecipitated with the architectural heterochromatin proteins HP1, DEK1, and ATRx, and was required for their localization. In contrast, BRCA1 localization was BMI1-independent and partially redundant with that of BMI1 for H2Aub deposition, constitutive heterochromatin formation, and silencing. These observations suggest a dynamic and developmentally regulated model of PRC1 occupancy at constitutive heterochromatin, and where BMI1 function in somatic cells is to stabilize the repetitive genome.  相似文献   

9.
In eukaryotes, for a protein to be synthesized, the 40 S subunit has to first scan the 5'-UTR of the mRNA until it has encountered the AUG start codon. Several initiation factors that ensure high fidelity of AUG recognition were identified previously, including eIF1A, eIF1, eIF2, and eIF5. In addition, eIF3 was proposed to coordinate their functions in this process as well as to promote their initial binding to 40 S subunits. Here we subjected several previously identified segments of the N-terminal domain (NTD) of the eIF3c/Nip1 subunit, which mediates eIF3 binding to eIF1 and eIF5, to semirandom mutagenesis to investigate the molecular mechanism of eIF3 involvement in these reactions. Three major classes of mutant substitutions or internal deletions were isolated that affect either the assembly of preinitiation complexes (PICs), scanning for AUG, or both. We show that eIF5 binds to the extreme c/Nip1-NTD (residues 1-45) and that impairing this interaction predominantly affects the PIC formation. eIF1 interacts with the region (60-137) that immediately follows, and altering this contact deregulates AUG recognition. Together, our data indicate that binding of eIF1 to the c/Nip1-NTD is equally important for its initial recruitment to PICs and for its proper functioning in selecting the translational start site.  相似文献   

10.
11.
In a previous study, we identified TRIB1, a serine-threonine kinase-like molecule, as a biomarker of chronic antibody-mediated rejection of human kidneys when measured in peripheral blood mononuclear cells. Here, we focused our analysis on a specific subset of peripheral blood mononuclear cells that play a dominant role in regulating immune responses in health and disease, so-called CD4+CD25+Foxp3+ regulatory T cells (Tregs). We isolated both human and murine Treg and non-Treg counterparts and analyzed TRIB1 and Foxp3 mRNA expression by quantitative PCR on the freshly isolated cells or following 24 h of activation. Physical interaction between the human TRIB1 and Foxp3 proteins was analyzed in live cell lines by protein complementation assay using both flow cytometry and microscopy and confirmed in primary freshly isolated human CD4+CD25hiCD127 Tregs by co-immunoprecipitation. Both TRIB1 and Foxp3 were expressed at significantly higher levels in Tregs than in their CD4+CD25 counterparts (p < 0.001). Moreover, TRIB1 and Foxp3 mRNA levels correlated tightly in Tregs (Spearman r = 1.0; p < 0.001, n = 7), but not in CD4+CD25 T cells. The protein complementation assay revealed a direct physical interaction between TRIB1 and Foxp3 in live cells. This interaction was impaired upon deletion of the TRIB1 N-terminal but not the C-terminal domain, suggesting an interaction in the nucleus. This direct interaction within the nucleus was confirmed in primary human Tregs by co-immunoprecipitation. These data show a direct relationship between TRIB1 and Foxp3 in terms of their expression and physical interaction and highlight Tribbles-1 as a novel binding partner of Foxp3 in Tregs.  相似文献   

12.
13.
14.
15.
16.
One of the rate-limiting steps in messenger RNA decay pathway is the 5'-cap cleavage of mRNAs, decapping reaction, which is conducted by the protein complex of Dcp1 and Dcp2. We find here that Dcp1p can interact with the release factor eRF3p (Sup35p) in Saccharomyces cerevisiae. Knockout of DCP1 caused not only the accumulation of nonsense mRNAs possibly due to the impaired decapping activity but also the enhancement of the read-through of nonsense codon. To examine the relationship between the two DCP1-knockout phenotypes, we produced DCP1 point mutants that lack the ability to support the translation termination. Interestingly, decapping activity of Dcp1p was still intact, but its interaction with eRF3p was abolished in the DCP1 mutants, indicating that the two functions originated from different entities of Dcp1p. These results suggest that the decapping enzyme Dcp1p may have an additional role in the translation termination through its interaction with eRF3p.  相似文献   

17.
Recent studies have revealed two new functions of prothymosin α (ProTα), a well-known protein and a subject of intense research. In addition to acting as an immunomodulator and stimulating cell proliferation, ProTα is involved in protecting the cell from apoptosis and regulating the expression of oxidative stress defense genes. The review considers the methods and approaches used to demonstrate the two new functions of ProTα.  相似文献   

18.
19.
Tau mRNA is axonally localized mRNA that is found in developing neurons and targeted by an axonal localization signal (ALS) that is located in the 3'UTR of the message. The tau mRNA is trafficked in an RNA-protein complex (RNP) from the neuronal cell body to the distal parts of the axon, reaching as far as the growth cone. This movement is microtubule-dependent and is observed as granules that contain tau mRNA and additional proteins. A major protein contained in the granule is HuD, an Elav protein family member, which has an identified mRNA binding site on the tau 3'UTR and stabilizes the tau message and several axonally targeted mRNAs. Using GST-HuD fusion protein as bait, we have identified four proteins contained within the tau RNP, in differentiated P19 neuronal cells. In this work, we studied two of the identified proteins, i.e. IGF-II mRNA binding protein 1 (IMP-1), the orthologue of chick beta-actin binding protein-ZBP1, and RAS-GAP SH3 domain binding protein (G3BP). We show that IMP-1 associates with HuD and G3BP-1 proteins in an RNA-dependent manner and binds directly to tau mRNA. We also show an RNA-dependent association between G3BP-1 and HuD proteins. These associations are investigated in relation to the neuronal differentiation of P19 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号