首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spermatogenesis is a complex process involving an intrinsic genetic program composed of germ cell-specific and -predominant genes. In this study, we investigated the mouse Spink2 (serine protease inhibitor Kazal-type 2) gene, which belongs to the SPINK family of proteins characterized by the presence of a Kazal-type serine protease inhibitor-pancreatic secretory trypsin inhibitor domain. We showed that recombinant mouse SPINK2 has trypsin-inhibitory activity. Distribution analyses revealed that Spink2 is transcribed strongly in the testis and weakly in the epididymis, but is not detected in other mouse tissues. Expression of Spink2 is specific to germ cells in the testis and is first evident at the pachytene spermatocyte stage. Immunoblot analyses demonstrated that SPINK2 protein is present in male germ cells at all developmental stages, including in testicular spermatogenic cells, testicular sperm, and mature sperm. To elucidate the functional role of SPINK2 in vivo, we generated mutant mice with diminished levels of SPINK2 using a gene trap mutagenesis approach. Mutant male mice exhibit significantly impaired fertility; further phenotypic analyses revealed that testicular integrity is disrupted, resulting in a reduction in sperm number. Moreover, we found that testes from mutant mice exhibit abnormal spermatogenesis and germ cell apoptosis accompanied by elevated serine protease activity. Our studies thus provide the first demonstration that SPINK2 is required for maintaining normal spermatogenesis and potentially regulates serine protease-mediated apoptosis in male germ cells.  相似文献   

2.
Serine protease inhibitor Kazal type 1 (SPINK1; mouse homologue Spink3) was initially discovered as a trypsin-specific inhibitor in the pancreas. However, previous studies have suggested that SPINK1/Spink3 is expressed in a wide range of normal tissues and tumors, although precise characterization of its gene expression has not been described in adulthood. To further analyze Spink3 expression, we generated two mouse lines in which either lacZ or Cre recombinase genes were inserted into the Spink3 locus by Cre-loxP technology. In Spink3lacZ mice, β-galactosidase activity was found in acinar cells of the pancreas and kidney, as well as epithelial cells of the bronchus in the lung, but not in the gastrointestinal tract or liver. Spink3cre knock-in mice were crossed with Rosa26 reporter (R26R) mice to monitor Spink3 promoter activity. In Spink3cre;R26R mice, β-galactosidase activity was found in acinar cells of the pancreas, kidney, lung, and a small proportion of cells in the gastrointestinal tract and liver. These data suggest that Spink3 is widely expressed in endoderm-derived tissues, and that Spink3cre knock-in mice are a useful tool for establishment of a conditional knockout mice to analyze Spink3 function not only in normal tissues, but also in tumors that express SPINK1/Spink3.  相似文献   

3.
Successful embryo implantation depends on intricate epithelial-stromal cross-talk. However, molecular modulators involved in this cellular communication remain poorly elucidated. Using multiple approaches, we have investigated the spatiotemporal expression and regulation of serine protease inhibitor Kazal type 3 (SPINK3) in mouse uterus during the estrous cycle and early pregnancy. In cycling mice, both SPINK3 mRNA and protein are only expressed during proestrus. In the pregnant mouse, the expression levels of both SPINK3 mRNA and protein increase on days 5-8 and then decline. Spink3 mRNA is expressed exclusively in the uterine glandular epithelium, whereas SPINK3 protein is localized on the surface of both luminal and glandular epithelium and in the decidua. Moreover, SPINK3 in the decidua has been observed in the primary decidual zone on day 6 and the secondary decidual zone on days 7-8; this is tightly associated with the progression of decidualization. SPINK3 has also been found in decidual cells of the artificially decidualized uterine horn but not control horn, whereas Spink3 mRNA localizes in the glands of both horns. The expression of endometrial Spink3 is not regulated by the blastocyst according to its expression pattern during pseudopregnancy and delayed implantation but is induced by progesterone and further augmented by a combination of progesterone and estrogen in ovariectomized mice. Thus, uterine-gland-derived SPINK3, as a new paracrine modulator, might play an important role in embryo implantation through its influence on stromal decidualization in mice.  相似文献   

4.
Serine peptidase inhibitor, Kazal type 3 (SPINK3) is a trypsin inhibitor, and also a growth factor that has an identical structure to epidermal growth factor (EGF), which could combine with epidermal growth factor receptor (EGFR) to promote cell proliferation. To shed light on the role and regulation mechanism of SPINK3 in rat liver regeneration (LR), Rat Genome 230 2.0 assay was used to detect the expression profiles of LR genes after partial hepatectomy (PH). The results showed that Spink3 was significantly up-regulated at 2–24 h and 72–168 h after PH. In the present study, RT-PCR and immunoblotting were used to validate the assay results. Ingenuity Pathway Analysis 9.0 (IPA) software was used to build the SPINK3 signaling regulating LR and analyze the possible mechanism. And then the expression of cell proliferation-associated gene Ccna2 was examined by RT-PCR in normal rat liver cell line BRL-3A in which Spink3 was overexpressed. The results showed that Ccna2 was significantly up-regulated in BRL-3A in which Spink3 was over-expressed. SPINK3 combining with EGFR accelerated cell proliferation during rat liver regeneration via P38, PKC, JAK-STAT and AKT pathways. Thus, SPINK3 was likely to promote hepatocytes proliferation in LR through P38, PKC, JAK-STAT and AKT pathways.  相似文献   

5.
6.
Serine peptidase inhibitor Kazal type I (SPINK1) has the similar spatial structure as epidermal growth factor (EGF); EGF can interact with epidermal growth factor receptor (EGFR) to promote proliferation in different cell types. However, whether SPINK1 can interact with EGFR and further regulate the proliferation of hepatocytes in liver regeneration remains largely unknown. In this study, we investigated the role of SPINK1 in a rat liver hepatocyte line of BRL‐3A in vitro. The results showed the upregulation of endogenous Spink1 (gene addition) significantly increased not only the cell viability, cell numbers in S and G2/M phase, but also upregulated the genes/proteins expression related to cell proliferation and anti‐apoptosis in BRL‐3A. In contrast, the cell number in G1 phase and the expression of pro‐apoptosis‐related genes/proteins were significantly decreased. The similar results were observed when the cells were treated with exogenous rat recombinant SPINK1. Immunoblotting suggested SPINK1 can interact with EGFR. By Ingenuity Pathway Analysis software, the SPINK1 signalling pathway was built; the predicted read outs were validated by qRT‐PCR and western blot; and the results showed that p38, ERK, and JNK pathways‐related genes/proteins were involved in the cell proliferation upon the treatment of endogenous Spink1 and exogenous SPINK1. Collectively, SPINK1 can associate with EGFR to promote the expression of cell proliferation‐related and anti‐apoptosis‐related genes/proteins; inhibit the expression of pro‐apoptosis‐related genes/proteins via p38, ERK, and JNK pathways; and consequently promote the proliferation of BRL‐3A cells. For the first time, we demonstrated that SPINK1 can associate with EGFR to promote the proliferation of BRL‐3A cells via p38, ERK, and JNK pathways. This work has direct implications on the underlying mechanism of SPINK1 in regulating hepatocytes proliferation in vivo and liver regeneration after partial hepatectomy.  相似文献   

7.
8.
In order to identify genes involved in oogenesis and spermatogenesis in penaeid shrimp Marsupenaeus japonicus, a modified annealing control primer (ACP) system was adapted to identify genes differentially expressed in ovary and testis at different developmental stages. By using 20 pairs of ACP primers, 8 differentially expressed genes were obtained. One of these genes is ubiquitin-conjugating enzyme E2r (UBE2r). Bioinformatics analyses show that this gene encodes a protein of 241 amino acids with a predicted molecular mass of 27.4 kDa. Real time PCR analyses demonstrated that the expression level changed significantly in the developing testis and ovary. In the stage 2 of testis, it reached its highest expression level, the lowest expression level present in the stage 1 of ovary. The significantly different expression levels in developing testis and ovary suggest that UBE2r has an important role in oogenesis and spermatogenesis. This article is the first report of UBE2r in crustaceans and also is the first report showing that UBE2r is differentially expressed at different stages of the developing ovary and testis in an animal.  相似文献   

9.
Sperm maturation involves numerous surface modifications by a variety of secreted proteins from epididymal epithelia. The sperm surface architecture depends on correct localization of its components and highlights the importance of the sequence of the proteolytic processing of the sperm surface in the epididymal duct. The presence of several protease inhibitors from different families is consistent with the hypothesis that correctly timed epididymal protein processing is essential for proper sperm maturation. Here we show that the rat (Rattus norvegicus) epididymis-specific gene Spink13, an androgen-responsive serine protease inhibitor, could bind to the sperm acrosome region. Furthermore, knockdown of Spink13 in vivo dramatically enhanced the acrosomal exocytosis during the process of capacitation and thus led to a significant reduction in male fertility, indicating that Spink13 was essential for sperm maturation. We conclude that blockade of SPINK13 may provide a new putative target for post-testicular male contraceptives.  相似文献   

10.
PLIN1, a lipid droplet associated protein, has been implicated in playing a key role in the regulation of lipolysis and lipid storage in adipocytes. PLIN1 is found to be highly expressed in Leydig cells of testis, suggesting a potential role in steroidogenesis and spermatogenesis. In this study, we showed that PLIN1 was expressed in testis and that its mRNA levels declined significantly with development. To investigate the role of PLIN1, we take advantage of PLIN1-null mice. We found that the number of seminiferous tubules containing round spermatids was significantly increased at P21 (postnatal day 21). Furthermore, microarray analysis showed that there were 538 differentially expressed genes between PLIN1-null and wild-type mice at P21. The up-regulated genes in knockout mice were enriched in spermatogenesis by Gene Ontology classification. Among them, Prm1 and Wbp2nl are important for spermatogenesis which were confirmed by real-time PCR. Unexpectedly, the levels of serum testosterone and serum 17β-estradiol as well as steroidogenic genes are not altered in the PLIN1-null mice. Compared to the wild-type mice, no significant difference of fertility was found in the PLIN1-null mice. Therefore, these findings indicated that PLIN1 disruption leads to the increase of round spermatid-containing seminiferous tubules at the meiotic stage of the first wave of spermatogenesis through regulating spermatogenic related genes.  相似文献   

11.
Novel epididymal protease inhibitors with Kazal or WAP family domain   总被引:1,自引:0,他引:1  
The epididymal maturation of spermatozoa is regulated by changes in the luminal ion concentration and the processing of the sperm surface membrane by several glycosidases and proteases. In the present study, we identified five novel protease inhibitors that are highly expressed in the mouse epididymis. Four of the proteins were found to belong to the Kazal protease inhibitor family and were named SPINK8, SPINK10, SPINK11, and SPINK12, whereas one of the proteins, WFDC10, contained the WAP four-disulfide core domain structure. The novel genes showed very specific segmental expression patterns. The expression of all the five genes was regulated by testis-derived factors and decreased after gonadectomy. With the exception of Spink11, mRNA levels could be restored by testosterone replacement. We hypothesize that the protease inhibitors discovered represent a group of epididymal genes that contribute to the regulation of sperm maturation by regulating the proteolytic processing of the sperm membrane during epididymal transit.  相似文献   

12.
Testis of Hemidactylus flaviviridis, commonly known as Indian wall lizard, displays a lack of cellular and metabolic activity in regressed phase of testis during non-breeding season of the year. Retracted Sertoli cells (Sc), fibroid myoid cells and pre-meiotic resting spermatogonia are observed in such testis. This situation is akin to certain forms of infertility in men where hormone supplementation fails to generate sperm despite the presence of Sc and germ cells (Gc) in testis. In testis of lizard, spermatogenesis is reinitiated upon increased level of hormones during appropriate season (phase of recrudescence). Study of genes associated with generation of sperm, from regressed adult testis in lizard, may provide valuable information for understanding certain forms of male idiopathic infertility. Subtractive hybridization using testicular RNA obtained from the regressed and active phases of lizard reproductive cycle led to identify eight partial mRNA sequences that showed sequence homology with mice genes. We further evaluated the gene expression prolife by real-time PCR in three different reproductive phases of H. flaviviridis: regressed (pre-meiotic), recrudescent (meiotic) and active (post meiotic), for comparison with the corresponding testicular phases found in testis of 5 days (pre-meiotic), 20 days (meiotic) and 60 days (post-meiotic) old mouse. This is the first report where genes associated with progression of spermatogenesis during active phase, which follows a regressed state of adult testis, were identified in lizard and found to be conserved in mouse. Six important genes, Hk1, Nme5, Akap4, Arih1, Rassf7 and Tubb4b were found to be strictly associated with active spermatogenesis in both mouse and lizard. Factors interfering with the expression of any of these genes may potentially abrogate the process of spermatogenesis leading to infertility. Such information may shed light on unknown causes of idiopathic male infertility.  相似文献   

13.
Netherton Syndrome (NS) is a rare and severe autosomal recessive skin disease which can be life-threatening in infants. The disease is characterized by extensive skin desquamation, inflammation, allergic manifestations and hair shaft defects. NS is caused by loss-of-function mutations in SPINK5 encoding the LEKTI serine protease inhibitor. LEKTI deficiency results in unopposed activities of kallikrein-related peptidases (KLKs) and aberrantly increased proteolysis in the epidermis. Spink5 -/- mice recapitulate the NS phenotype, display enhanced epidermal Klk5 and Klk7 protease activities and die within a few hours after birth because of a severe skin barrier defect. However the contribution of these various proteases in the physiopathology remains to be determined. In this study, we developed a new murine model in which Klk5 and Spink5 were both knocked out to assess whether Klk5 deletion is sufficient to reverse the NS phenotype in Spink5 -/- mice. By repeated intercrossing between Klk5 -/- mice with Spink5 -/- mice, we generated Spink5 -/- Klk5 -/- animals. We showed that Klk5 knock-out in Lekti-deficient newborn mice rescues neonatal lethality, reverses the severe skin barrier defect, restores epidermal structure and prevents skin inflammation. Specifically, using in situ zymography and specific protease substrates, we showed that Klk5 knockout reduced epidermal proteolytic activity, particularly its downstream targets proteases KLK7, KLK14 and ELA2. By immunostaining, western blot, histology and electron microscopy analyses, we provide evidence that desmosomes and corneodesmosomes remain intact and that epidermal differentiation is restored in Spink5 -/- Klk5 -/-. Quantitative RT-PCR analyses and immunostainings revealed absence of inflammation and allergy in Spink5 -/- Klk5 -/- skin. Notably, Il-1β, Il17A and Tslp levels were normalized. Our results provide in vivo evidence that KLK5 knockout is sufficient to reverse NS-like symptoms manifested in Spink5 -/- skin. These findings illustrate the crucial role of protease regulation in skin homeostasis and inflammation, and establish KLK5 inhibition as a major therapeutic target for NS.  相似文献   

14.
Netherton syndrome (NS) is a severe ichthyosis caused by inactivating mutations in the SPINK5 gene encoding the serine protease inhibitor LEKTI. Spink5−/− mice recapitulate NS and die perinatally from extensive dehydration as a result of a severe defect of the epidermal barrier. We showed that deletion of Klk5 in Spink5−/− rescues neonatal lethality (Furio et al., 2015). However, Spink5−/−Klk5−/− mice developed skin shedding and inflammation during the first week from birth and the majority (70%) succumbed on P7. The remaining mice lived short (i.e. mean survival was 5 months) indicating alternative inflammatory pathways. Since cathelicidin is increased in Spink5−/− epidermis, we investigated whether it could be implicated in NS pathology. Ablation of Camp in Spink5−/− suppressed epidermal inflammation and restored abnormal epidermal differentiation, nevertheless, it failed to inhibit overdesquamation and Spink5−/−Camp−/− succumbed perinatally due to skin barrier defect, similarly to Spink5−/−. Joint invalidation of Klk5 and Camp significantly extended survival of Spink5−/−Klk5−/−Camp−/− mice. We provide evidence that cathelicidin is implicated in NS-associated skin inflammation in vivo. Therefore, marketed products that are known to reduce cathelicidin expression could be repurposed for the management of NS.  相似文献   

15.
16.
17.
18.
A novel human gene TSARG7 (GenBank accession No. AY513610) was identified from a human testis cDNA library by using the m TSARG7 gene (GenBank accession No. AY489184) as an electronic probe. The gene whose full cDNA length is 2 463 bp containing 12 exons and 11 introns is located in the human chromosome 8p11.21. The predicted protein encoded by this gene contains 456 amino acids with a theoretical molecular weight of 56 295 dalton and isoelectric point of 9.13. It is a new member of the acyltransferase family since its sequence possesses the highly conserved PlsC domain existing in all acyltransferase-like proteins. Two groups, the TSARG7 and mTSARG7, the TSARG7 and Au041707, share 97% identity in the 456 amino acids. Expression of the TSARG7 gene is restricted to the testis. Subcellular localization studies show that the EGFP-tagged TSARG7 protein was localized in the cytoplasm of GC-1 cells. The TSARG7 mRNA expression was initiated in the testis of a 13-year-old boy, and its level increased steadily along with spermatogenesis and sexual maturation of the human. The results of heat stress experiment demonstrate that TSARG7 expression has a relation with temperature. In conclusion, our study suggests that we have cloned a novel human gene and this gene may play an important role in human spermatogenesis and sexual maturation.  相似文献   

19.
20.
Azoospermia is one of the major reproductive disorders which cause male infertility in humans; however, the etiology of this disease is largely unknown. In the present study, six missense mutations of WT1 gene were detected in 529 human patients with non-obstructive azoospermia (NOA), indicating a strong association between WT1 mutation and NOA. The Wilms tumor gene, Wt1, is specifically expressed in Sertoli cells (SCs) which support spermatogenesis. To examine the functions of this gene in spermatogenesis, Wt1 was deleted in adult testis using Wt1flox and Cre-ERTM mice strains. We found that inactivation of Wt1 resulted in massive germ cell death and only SCs were present in most of the seminiferous tubules which was very similar to NOA in humans. In investigating the potential mechanism for this, histological studies revealed that the blood–testis barrier (BTB) was disrupted in Wt1 deficient testes. In vitro studies demonstrated that Wt1 was essential for cell polarity maintenance in SCs. Further studies found that the expression of cell polarity associated genes (Par6b and E-cadherin) and Wnt signaling genes (Wnt4, Wnt11) were downregulated in Wt1 deficient SCs, and that the expression of Par6b and E-cadherin was regulated by Wnt4. Our findings suggest that Wt1 is important in spermatogenesis by regulating the polarity of SCs via Wnt signaling pathway and that WT1 mutation is one of the genetic causes of NOA in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号