首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Deciphering immune events during early stages of human immunodeficiency virus type 1 (HIV-1) infection is critical for understanding the course of disease. We characterized the hierarchy of HIV-1-specific T-cell gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay responses during acute subtype C infection in 53 individuals and associated temporal patterns of responses with disease progression in the first 12 months. There was a diverse pattern of T-cell recognition across the proteome, with the recognition of Nef being immunodominant as early as 3 weeks postinfection. Over the first 6 months, we found that there was a 23% chance of an increased response to Nef for every week postinfection (P = 0.0024), followed by a nonsignificant increase to Pol (4.6%) and Gag (3.2%). Responses to Env and regulatory proteins appeared to remain stable. Three temporal patterns of HIV-specific T-cell responses could be distinguished: persistent, lost, or new. The proportion of persistent T-cell responses was significantly lower (P = 0.0037) in individuals defined as rapid progressors than in those progressing slowly and who controlled viremia. Almost 90% of lost T-cell responses were coincidental with autologous viral epitope escape. Regression analysis between the time to fixed viral escape and lost T-cell responses (r = 0.61; P = 0.019) showed a mean delay of 14 weeks after viral escape. Collectively, T-cell epitope recognition is not a static event, and temporal patterns of IFN-γ-based responses exist. This is due partly to viral sequence variation but also to the recognition of invariant viral epitopes that leads to waves of persistent T-cell immunity, which appears to associate with slower disease progression in the first year of infection.For more than a decade, there has been a wealth of evidence to show that human immunodeficiency virus (HIV)-specific cytotoxic T-cell (CTL) responses play a role in the control of HIV-1 and simian immunodeficiency virus (SIV) infection. In humans, the first appearance of CTL in primary HIV-1 infection coincides with the decline of peak viremia (7, 27), while depletion of CD8+ T cells in SIV infection resulted in elevated viremia (45). Additionally, polymorphisms in HLA class I-restricted CTL responses are associated with differential HIV-1 disease outcomes (25), and the emergence of viral escape within CTL epitopes during acute and chronic SIV or HIV-1 infection demonstrates the effectiveness of CD8+ T cells to exert viral selection pressure (21). Dissecting the specificity of HIV-1-specific CD8+ T-cell responses that associate with the control of viral replication during acute/early infection is thought to be critical for the design of vaccines and potential immunotherapeutic strategies aimed at stimulating these responses.Preferential targeting of class I-restricted CTL epitopes in Gag during early and chronic HIV-1 infection has been associated with lower viral loads (15, 25, 34, 48, 55), whereas Env- and Nef-specific CD8+ T-cell responses have been associated with higher viremia (15, 34, 55). Increasing evidence suggests that patterns of immunodominant HIV-specific CD8+ T-cell responses restricted by specific HLA alleles are major determinants of the viral set point (47). In addition, Goonetilleke et al. (17) have provided insight into the rapidity of early escape and the contribution of the first HIV-specific CD8+ T-cell responses to the transmitted/founder virus in control of acute viremia. The restriction of CTL epitopes by HLA-B*5801, for example, has also been associated with better viral control (16, 24). However, the temporal nature of epitope-specific responses that associate with viral control has not been explored. Recently, we found no association between the magnitude and breadth of gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay responses at a static 3-month time point with the viral set point at 12 months (22). The unpredictability of early T-cell responses with later viral control could be a result of HIV variability resulting in epitope escape from humoral and T-cell pressure (1, 8). For example, the impact of CTL pressure on shaping viral diversity at a human population level has been observed through HLA imprinting (6, 9, 44), and several studies have shown that certain selected escape mutations can compromise viral fitness (10, 29, 33, 39). Other studies have also demonstrated that the selection of escape variants in chronic HIV-1 and SIV infection can result in the loss of immune control and disease progression (3, 20). Assessing the nature of T-cell responses longitudinally and relating the patterns of contemporaneous viral recognition with viral diversity may represent alternative insights into factors associated with set point and disease progression.As the global AIDS epidemic continues to expand in sub-Saharan Africa, and South Africa in particular, the need to implement a preventive vaccine through the public health sector remains paramount. To date, several prototype antibody and T-cell-based candidate vaccine trials have been completed worldwide (37), and the recent failure of a phase IIb Ad5-Gag-Pol-Nef HIV-1 vaccine trial has emphasized the challenge of producing an effective T-cell-based vaccine against HIV. Data from the recent ALVAC and AIDSVAX (RV144) trials in Thailand have provided modest efficacy of a vaccine regimen in reducing HIV infection (42), and while the immune mechanisms for this are as yet unclear, these findings have created a platform for identifying immune responses that correlate with protection.The identification of the earliest targets of T cells during acute HIV-1 infection would be helpful in understanding the evolution of immunity when a host first encounters the virus and also would provide insight into the host-pathogen interplay when there is a rapidly changing target. We describe some of the earliest T-cell responses that occur during acute subtype C HIV-1 infection, how these change over time and associate with early disease progression, as well as the kinetics of these changes in relation to autologous viral escape.  相似文献   

3.
To evaluate antibody specificities induced by simian immunodeficiency virus (SIV) versus human immunodeficiency virus type 1 (HIV-1) envelope antigens in nonhuman primate (NHP), we profiled binding antibody responses to linear epitopes in NHP studies with HIV-1 or SIV immunogens. We found that, overall, HIV-1 Env IgG responses were dominated by V3, with the notable exception of the responses to the vaccine strain A244 Env that were dominated by V2, whereas the anti-SIVmac239 Env responses were dominated by V2 regardless of the vaccine regimen.  相似文献   

4.

Background

Recent reports suggest that Natural Killer (NK) cells may modulate pathogenesis of primary HIV-1 infection. However, HIV dysregulates NK-cell responses. We dissected this bi-directional relationship to understand how HIV impacts NK-cell responses during primary HIV-1 infection.

Methodology/Principal Findings

Paired samples from 41 high-risk, initially HIV-uninfected CAPRISA004 participants were analysed prior to HIV acquisition, and during viraemic primary HIV-1 infection. At the time of sampling post-infection five women were seronegative, 11 women were serodiscordant, and 25 women were seropositive by HIV-1 rapid immunoassay. Flow cytometry was used to measure NK and T-cell activation, NK-cell receptor expression, cytotoxic and cytokine-secretory functions, and trafficking marker expression (CCR7, α4β7). Non-parametric statistical tests were used. Both NK cells and T-cells were significantly activated following HIV acquisition (p = 0.03 and p<0.0001, respectively), but correlation between NK-cell and T-cell activation was uncoupled following infection (pre-infection r = 0.68;p<0.0001; post-infection, during primary infection r = 0.074;p = 0.09). Nonetheless, during primary infection NK-cell and T-cell activation correlated with HIV viral load (r = 0.32''p = 0.04 and r = 0.35;p = 0.02, respectively). The frequency of Killer Immunoglobulin-like Receptor-expressing (KIRpos) NK cells increased following HIV acquisition (p = 0.006), and KIRpos NK cells were less activated than KIRneg NK cells amongst individuals sampled while seronegative or serodiscordant (p = 0.001;p<0.0001 respectively). During HIV-1 infection, cytotoxic NK cell responses evaluated after IL-2 stimulation alone, or after co-culture with 721 cells, were impaired (p = 0.006 and p = 0.002, respectively). However, NK-cell IFN-y secretory function was not significantly altered. The frequency of CCR7+ NK cells was elevated during primary infection, particularly at early time-points (p<0.0001).

Conclusions/Significance

Analyses of immune cells before and after HIV infection revealed an increase in both NK-cell activation and KIR expression, but reduced cytotoxicity during acute infection. The increase in frequency of NK cells able to traffic to lymph nodes following HIV infection suggests that these cells may play a role in events in secondary lymphoid tissue.  相似文献   

5.
Progress in the fight against the HIV/AIDS epidemic is hindered by our failure to elucidate the precise reasons for the onset of immunodeficiency in HIV-1 infection. Increasing evidence suggests that elevated immune activation is associated with poor outcome in HIV-1 pathogenesis. However, the basis of this association remains unclear. Through ex vivo analysis of virus-specific CD8+ T-cells and the use of an in vitro model of naïve CD8+ T-cell priming, we show that the activation level and the differentiation state of T-cells are closely related. Acute HIV-1 infection induces massive activation of CD8+ T-cells, affecting many cell populations, not only those specific for HIV-1, which results in further differentiation of these cells. HIV disease progression correlates with increased proportions of highly differentiated CD8+ T-cells, which exhibit characteristics of replicative senescence and probably indicate a decline in T-cell competence of the infected person. The differentiation of CD8+ and CD4+ T-cells towards a state of replicative senescence is a natural process. It can be driven by excessive levels of immune stimulation. This may be part of the mechanism through which HIV-1-mediated immune activation exhausts the capacity of the immune system.  相似文献   

6.
We compared the microbial community composition in soils from the Brazilian Amazon with two contrasting histories; anthrosols and their adjacent non-anthrosol soils of the same mineralogy. The anthrosols, also known as the Amazonian Dark Earths or terra preta, were managed by the indigenous pre-Colombian Indians between 500 and 8,700 years before present and are characterized by unusually high cation exchange capacity, phosphorus (P), and calcium (Ca) contents, and soil carbon pools that contain a high proportion of incompletely combusted biomass as biochar or black carbon (BC). We sampled paired anthrosol and unmodified soils from four locations in the Manaus, Brazil, region that differed in their current land use and soil type. Community DNA was extracted from sampled soils and characterized by use of denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism. DNA bands of interest from Bacteria and Archaea DGGE gels were cloned and sequenced. In cluster analyses of the DNA fingerprints, microbial communities from the anthrosols grouped together regardless of current land use or soil type and were distinct from those in their respective, paired adjacent soils. For the Archaea, the anthrosol communities diverged from the adjacent soils by over 90%. A greater overall richness was observed for Bacteria sequences as compared with those of the Archaea. Most of the sequences obtained were novel and matched those in databases at less than 98% similarity. Several sequences obtained only from the anthrosols grouped at 93% similarity with the Verrucomicrobia, a genus commonly found in rice paddies in the tropics. Sequences closely related to Proteobacteria and Cyanobacteria sp. were recovered only from adjacent soil samples. Sequences related to Pseudomonas, Acidobacteria, and Flexibacter sp. were recovered from both anthrosols and adjacent soils. The strong similarities among the microbial communities present in the anthrosols for both the Bacteria and Archaea suggests that the microbial community composition in these soils is controlled more strongly by their historical soil management than by soil type or current land use. The anthrosols had consistently higher concentrations of incompletely combusted organic black carbon material (BC), higher soil pH, and higher concentrations of P and Ca compared to their respective adjacent soils. Such characteristics may help to explain the longevity and distinctiveness of the anthrosols in the Amazonian landscape and guide us in recreating soils with sustained high fertility in otherwise nutrient-poor soils in modern times.  相似文献   

7.
The modest protection afforded by the RV144 vaccine offers an opportunity to evaluate its mechanisms of protection. Differences between HIV-1 breakthrough viruses from vaccine and placebo recipients can be attributed to the RV144 vaccine as this was a randomized and double-blinded trial. CD8 and CD4 T cell epitope repertoires were predicted in HIV-1 proteomes from 110 RV144 participants. Predicted Gag epitope repertoires were smaller in vaccine than in placebo recipients (p = 0.019). After comparing participant-derived epitopes to corresponding epitopes in the RV144 vaccine, the proportion of epitopes that could be matched differed depending on the protein conservation (only 36% of epitopes in Env vs 84–91% in Gag/Pol/Nef for CD8 predicted epitopes) or on vaccine insert subtype (55% against CRF01_AE vs 7% against subtype B). To compare predicted epitopes to the vaccine, we analyzed predicted binding affinity and evolutionary distance measurements. Comparisons between the vaccine and placebo arm did not reveal robust evidence for a T cell driven sieve effect, although some differences were noted in Env-V2 (0.022≤p-value≤0.231). The paucity of CD8 T cell responses identified following RV144 vaccination, with no evidence for V2 specificity, considered together both with the association of decreased infection risk in RV 144 participants with V-specific antibody responses and a V2 sieve effect, lead us to hypothesize that this sieve effect was not T cell specific. Overall, our results did not reveal a strong differential impact of vaccine-induced T cell responses among breakthrough infections in RV144 participants.  相似文献   

8.
9.

Background

The clinical significance and cellular sources of residual human immunodeficiency virus type 1 (HIV-1) production despite suppressive combination antiretroviral therapy (cART) remain unclear and the effect of low-level viremia on T-cell homeostasis is still debated.

Methodology/Principal Findings

We characterized the recently produced residual viruses in the plasma and short-lived blood monocytes of 23 patients with various immunological responses to sustained suppressive cART. We quantified the residual HIV-1 in the plasma below 50 copies/ml, and in the CD14high CD16 and CD16+ monocyte subsets sorted by flow cytometry, and predicted coreceptor usage by genotyping V3 env sequences.We detected residual viremia in the plasma of 8 of 10 patients with poor CD4+ T-cell reconstitution in response to cART and in only 5 of 13 patients with good CD4+ T-cell reconstitution. CXCR4-using viruses were frequent among the recently produced viruses in the plasma and in the main CD14high CD16 monocyte subset. Finally, the residual viremia was correlated with persistent CD4+ and CD8+ T-cell activation in patients with poor immune reconstitution.

Conclusions

Low-level viremia could result from the release of archived viruses from cellular reservoirs and/or from ongoing virus replication in some patients. The compartmentalization of the viruses between the plasma and the blood monocytes suggests at least two origins of residual virus production during effective cART. CXCR4-using viruses might be produced preferentially in patients on cART. Our results also suggest that low-level HIV-1 production in some patients may contribute to persistent immune dysfunction despite cART.  相似文献   

10.
11.
HIV involvement of the CNS continues to be a significant problem despite successful use of combination antiretroviral therapy (cART). Drugs of abuse can act in concert with HIV proteins to damage glia and neurons, worsening the neurotoxicity caused by HIV alone. Methamphetamine (METH) is a highly addictive psychostimulant drug, abuse of which has reached epidemic proportions and is associated with high-risk sexual behavior, increased HIV transmission, and development of drug resistance. HIV infection and METH dependence can have synergistic pathological effects, with preferential involvement of frontostriatal circuits. At the molecular level, epigenetic alterations have been reported for both HIV-1 infection and drug abuse, but the neuropathological pathways triggered by their combined effects are less known. We investigated epigenetic changes in the brain associated with HIV and METH. We analyzed postmortem frontal cortex tissue from 27 HIV seropositive individuals, 13 of which had a history of METH dependence, in comparison to 14 cases who never used METH. We detected changes in the expression of DNMT1, at mRNA and protein levels, that resulted in the increase of global DNA methylation. Genome-wide profiling of DNA methylation in a subset of cases, showed differential methylation on genes related to neurodegeneration; dopamine metabolism and transport; and oxidative phosphorylation. We provide evidence for the synergy of HIV and METH dependence on the patterns of DNA methylation on the host brain, which results in a distinctive landscape for the comorbid condition. Importantly, we identified new epigenetic targets that might aid in understanding the aggravated neurodegenerative, cognitive, motor and behavioral symptoms observed in persons living with HIV and addictions.  相似文献   

12.
13.

Background

The human T-Cell Lymphotropic Virus Type 1 (HTLV-1) is a retrovirus associated with neurological alterations; individuals with HTLV-1 infection may develop HTLV-1 associated myelopathy / tropical spastic paraparesis (HAM/TSP). Frequent neurological complaints include foot numbness and leg weakness. In this study, we compared the distribution of the body weight on different areas of the foot in HTLV-1 patients with HAM/TSP, asymptomatic HTLV-1 patients, and healthy individuals.

Methodology

We studied 36 HTLV-1 infected patients, who were divided in two groups of 18 patients each based on whether or not they had been diagnosed with HAM/TSP, and 17 control subjects. The evaluation included an interview on the patient’s clinical history and examinations of the patient’s reflexes, foot skin tactile sensitivity, and risk of falling. The pressure distribution on different areas of the foot was measured with baropodometry, using a pressure platform, while the patients had their eyes open or closed.

Main Findings

The prevalence of neurological disturbances—altered reflexes and skin tactile sensitivity and increased risk of falling—was higher in HTLV-1 HAM/TSP patients than in HTLV-1 asymptomatic patients. The medium and maximum pressure values were higher in the forefoot than in the midfoot and hindfoot in both HTLV-1 groups. In addition, the pressure on the hindfoot was lower in HAM/TSP patients compared to control subjects.

Conclusions

The neurological disturbances associated with HTLV-1 infection gradually worsened from HTLV-1 asymptomatic patients to HAM/TSP patients. Baropodometry is a valuable tool to establish the extent of neurological damage in patients suffering from HTLV-1 infection.  相似文献   

14.
15.

Background

Monocytes are increasingly implicated in the inflammatory consequences of HIV-1 disease, yet their phenotype following antiretroviral therapy (ART) initiation is incompletely defined. Here, we define more completely monocyte phenotype both prior to ART initiation and during 48 weeks of ART.

Methods

Cryopreserved peripheral blood mononuclear cells (PBMCs) were obtained at baseline (prior to ART initiation) and at weeks 12, 24, and 48 of treatment from 29 patients participating in ACTG clinical trial A5248, an open label study of raltegravir/emtricitibine/tenofovir administration. For comparison, cryopreserved PBMCs were obtained from 15 HIV-1 uninfected donors, each of whom had at least two cardiovascular risk factors. Thawed samples were stained for monocyte subset markers (CD14 and CD16), HLA-DR, CCR2, CX3CR1, CD86, CD83, CD40, CD38, CD36, CD13, and CD163 and examined using flow cytometry.

Results

In untreated HIV-1 infection there were perturbations in monocyte subset phenotypes, chiefly a higher frequency and density (mean fluorescence intensity–MFI) of HLA-DR (%-p = 0.004, MFI-p = .0005) and CD86 (%-p = 0.012, MFI-p = 0.005) expression and lower frequency of CCR2 (p = 0.0002) expression on all monocytes, lower CCR2 density on inflammatory monocytes (p = 0.045) when compared to the expression and density of these markers in controls’ monocytes. We also report lower expression of CX3CR1 (p = 0.014) on patrolling monocytes at baseline, compared to levels seen in controls. After ART, these perturbations tended to improve, with decreasing expression and density of HLA-DR and CD86, increasing CCR2 density on inflammatory monocytes, and increasing expression and density of CX3CR1 on patrolling monocytes.

Conclusions

In HIV-1 infected patients, ART appears to attenuate the high levels of activation (HLA-DR, CD86) and to increase expression of the chemokine receptors CCR2 and CX3CR1 on monocyte populations. Circulating monocyte phenotypes are altered in untreated infection and tend to normalize with ART; the role of these cells in the inflammatory environment of HIV-1 infection warrants further study.  相似文献   

16.
17.
Human APOBEC3 proteins are cytidine deaminases that contribute broadly to innate immunity through the control of exogenous retrovirus replication and endogenous retroelement retrotransposition. As an intrinsic antiretroviral defense mechanism, APOBEC3 proteins induce extensive guanosine-to-adenosine (G-to-A) mutagenesis and inhibit synthesis of nascent human immunodeficiency virus-type 1 (HIV-1) cDNA. Human APOBEC3 proteins have additionally been proposed to induce infrequent, potentially non-lethal G-to-A mutations that make subtle contributions to sequence diversification of the viral genome and adaptation though acquisition of beneficial mutations. Using single-cycle HIV-1 infections in culture and highly parallel DNA sequencing, we defined trinucleotide contexts of the edited sites for APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H. We then compared these APOBEC3 editing contexts with the patterns of G-to-A mutations in HIV-1 DNA in cells obtained sequentially from ten patients with primary HIV-1 infection. Viral substitutions were highest in the preferred trinucleotide contexts of the edited sites for the APOBEC3 deaminases. Consistent with the effects of immune selection, amino acid changes accumulated at the APOBEC3 editing contexts located within human leukocyte antigen (HLA)-appropriate epitopes that are known or predicted to enable peptide binding. Thus, APOBEC3 activity may induce mutations that influence the genetic diversity and adaptation of the HIV-1 population in natural infection.  相似文献   

18.
To target immune responses towards invariable regions of the virus, we engineered DNA-based immunogens encoding conserved elements (CE) of HIV-1 p24gag. This conserved element vaccine is designed to avoid decoy epitopes by focusing responses to critical viral elements. We previously reported that vaccination of macaques with p24CE DNA induced robust cellular immune responses to CE that were not elicited upon wild type p55gag DNA vaccination. p24CE DNA priming followed by p55gag DNA boost provided a novel strategy to increase the magnitude and breadth of the cellular immune responses to HIV-1 Gag, including the induction of strong, multifunctional T-cell responses targeting epitopes within CE. Here, we examined the humoral responses induced upon p24CE DNA or p55gag DNA vaccination in macaques and found that although both vaccines induced robust p24gag binding antibody responses, the responses induced by p24CE DNA showed a unique broad range of linear epitope recognition. In contrast, antibodies elicited by p55gag DNA vaccine failed to recognize p24CE protein and did not recognize linear epitopes spanning the CE. Interestingly, boosting of p24CE DNA primed animals with p55gag DNA resulted in augmentation of antibodies able to recognize p24gag as well as the p24CE proteins, thereby inducing broadest immunity. Our results indicate that an effectively directed vaccine strategy that includes priming with the conserved element vaccine followed by boost with the complete immunogen induces broad cellular and humoral immunity focused on the conserved regions of the virus. This novel and effective strategy to broaden responses could be applied against other antigens of highly diverse pathogens.  相似文献   

19.

Background

HIV-1+ individuals who, without therapy, conserve cellular anti-HIV-1 responses, present with high, stable CD4+ T-cell numbers, and control viral replication, facilitate analysis of atypical viro-immunopathology. In the absence of universal definition, immune function in such HIV controllers remains an indication of non-progression.

Methodology/Principal Findings

CD4 T-cell responses to a number of HIV-1 proteins and peptide pools were assessed by IFN-γ ELISpot and lymphoproliferative assays in HIV controllers and chronic progressors. Thymic output was assessed by sjTRECs levels. Follow-up of 41 HIV-1+ individuals originally identified as “Long-term non-progressors” in 1996 according to clinical criteria, and longitudinal analysis of two HIV controllers over 22 years, was also performed. HIV controllers exhibited substantial IFN-γ producing and proliferative HIV-1-specific CD4 T-cell responses to both recombinant proteins and peptide pools of Tat, Rev, Nef, Gag and Env, demonstrating functional processing and presentation. Conversely, HIV-specific T-cell responses were limited to IFN-γ production in chronic progressors. Additionally, thymic output was approximately 19 fold higher in HIV controllers than in age-matched chronic progressors. Follow-up of 41 HIV-1+ patients identified as LTNP in 1996 revealed the transitory characteristics of this status. IFN-γ production and proliferative T-cell function also declines in 2 HIV controllers over 22 years.

Conclusions

Although increased thymic output and anti-HIV-1 T-cell responses are observed in HIV controllers compared to chronic progressors, the nature of nonprogressor/controller status appears to be transitory.  相似文献   

20.
The major route of human T-cell leukemia virus type 1 (HTLV-1) infection is mother-to-child transmission caused by breast-feeding. We investigated the host immune responses to orally established persistent HTLV-1 infection in adult rats. HTLV-1-producing MT-2 cells were inoculated into immunocompetent adult rats either orally, intravenously, or intraperitoneally. HTLV-1 proviruses were detected in the peripheral blood and several organs for at least 12 weeks. Transmission of HTLV-1 to these animals was confirmed by analysis of HTLV-1 flanking regions. Despite persistent HTLV-1 presence, none of the orally inoculated rats produced detectable levels of anti-HTLV-1 antibodies, whereas all intravenously or intraperitoneally inoculated rats showed significant anti-HTLV-1 antibody responses. T-cell proliferative responses against HTLV-1 were also absent in orally inoculated rats. Our findings suggest that gastrointestinal exposure of adult rats to HTLV-1-infected cells induces persistent HTLV-1 infection in the absence of both humoral and cellular immune responses against HTLV-1. This immune unresponsiveness at primary infection may subsequently affect the host defense ability against HTLV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号