首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbohydrate – receptor interactions are an integral part of biological events. They play an important role in many cellular processes, such as cell-cell adhesion, cell differentiation and in-cell signaling. Carbohydrates can interact with a receptor by using several types of intermolecular interactions. One of the most important is the interaction of a carbohydrate''s apolar part with aromatic amino acid residues, known as dispersion interaction or CH/π interaction. In the study presented here, we attempted for the first time to quantify how the CH/π interaction contributes to a more general carbohydrate - protein interaction. We used a combined experimental approach, creating single and double point mutants with high level computational methods, and applied both to Ralstonia solanacearum (RSL) lectin complexes with α-l-Me-fucoside. Experimentally measured binding affinities were compared with computed carbohydrate-aromatic amino acid residue interaction energies. Experimental binding affinities for the RSL wild type, phenylalanine and alanine mutants were −8.5, −7.1 and −4.1 kcal.mol−1, respectively. These affinities agree with the computed dispersion interaction energy between carbohydrate and aromatic amino acid residues for RSL wild type and phenylalanine, with values −8.8, −7.9 kcal.mol−1, excluding the alanine mutant where the interaction energy was −0.9 kcal.mol−1. Molecular dynamics simulations show that discrepancy can be caused by creation of a new hydrogen bond between the α-l-Me-fucoside and RSL. Observed results suggest that in this and similar cases the carbohydrate-receptor interaction can be driven mainly by a dispersion interaction.  相似文献   

2.
Intact yeast cells loaded with 5- and-6-carboxyfluorescein were used to assess water transport. The results were similar to those previously reported for protoplasts assessed by using either fluorescence or light scattering, and the activation energies were 8.0 and 15.1 kcal mol−1 (33.4 and 63.2 kJ mol−1) for a strain overexpressing AQY1 aquaporin and a parental strain, respectively.  相似文献   

3.
Achromobacter denitrificans YD35 is an NO2-tolerant bacterium that expresses the aconitase genes acnA3, acnA4, and acnB, of which acnA3 is essential for growth tolerance against 100 mm NO2. Atmospheric oxygen inactivated AcnA3 at a rate of 1.6 × 10−3 min−1, which was 2.7- and 37-fold lower compared with AcnA4 and AcnB, respectively. Stoichiometric titration showed that the [4Fe-4S]2+ cluster of AcnA3 was more stable against oxidative inactivation by ferricyanide than that of AcnA4. Aconitase activity of AcnA3 persisted against high NO2 levels that generate reactive nitrogen species with an inactivation rate constant of k = 7.8 × 10−3 min−1, which was 1.6- and 7.8-fold lower than those for AcnA4 and AcnB, respectively. When exposed to NO2, the acnA3 mutant (AcnA3Tn) accumulated higher levels of cellular citrate compared with the other aconitase mutants, indicating that AcnA3 is a major producer of cellular aconitase activity. The extreme resistance of AcnA3 against oxidation and reactive nitrogen species apparently contributes to bacterial NO2 tolerance. AcnA3Tn accumulated less cellular NADH and ATP compared with YD35 under our culture conditions. The accumulation of more NO by AcnA3Tn suggested that NADH-dependent enzymes detoxify NO for survival in a high NO2 milieu. This novel aconitase is distributed in Alcaligenaceae bacteria, including pathogens and denitrifiers, and it appears to contribute to a novel NO2 tolerance mechanism in this strain.  相似文献   

4.
Expression of genes encoding polyamine transporters from plasmids and polyamine supplements increased furfural tolerance (growth and ethanol production) in ethanologenic Escherichia coli LY180 (in AM1 mineral salts medium containing xylose). This represents a new approach to increase furfural tolerance and may be useful for other organisms. Microarray comparisons of two furfural-resistant mutants (EMFR9 and EMFR35) provided initial evidence for the importance of polyamine transporters. Each mutant contained a single polyamine transporter gene that was upregulated over 100-fold (microarrays) compared to that in the parent LY180, as well as a mutation that silenced the expression of yqhD. Based on these genetic changes, furfural tolerance was substantially reconstructed in the parent, LY180. Deletion of potE in EMFR9 lowered furfural tolerance to that of the parent. Deletion of potE and puuP in LY180 also decreased furfural tolerance, indicating functional importance of the native genes. Of the 8 polyamine transporters (18 genes) cloned and tested, half were beneficial for furfural tolerance (PotE, PuuP, PlaP, and PotABCD). Supplementing AM1 mineral salts medium with individual polyamines (agmatine, putrescine, and cadaverine) also increased furfural tolerance but to a smaller extent. In pH-controlled fermentations, polyamine transporter plasmids were shown to promote the metabolism of furfural and substantially reduce the time required to complete xylose fermentation. This increase in furfural tolerance is proposed to result from polyamine binding to negatively charged cellular constituents such as nucleic acids and phospholipids, providing protection from damage by furfural.  相似文献   

5.
The lon mutants of Escherichia coli grow apparently normally except that, after temporary periods of inhibition of deoxyribonucleic acid synthesis, septum formation is specifically inhibited. Under these conditions, long, multinucleate, nonseptate filaments result. The lon mutation also creates a defect such that wild-type bacteriophage λ fails to lysogenize lon mutants efficiently and consequently forms clear plaques on a lon host. Two lines of evidence suggest that this failure probably results from interference with expression of the λcI gene, which codes for repressor, or with repressor action:-(i) when a lon mutant was infected with a λcII, cIII, or c Y mutant, there was an additive effect between the lon mutation and the λc mutations upon reduction of lysogenization frequency; and (ii) lon mutants permitted the growth of the λcro mutant under conditions in which the repressor was active. The isolation of λ mutants (λtp) which gained the ability to form turbid plaques on lon cells is also reported.  相似文献   

6.
Evolutionary conservation of substructure architecture between yeast iso-1-cytochrome c and the well-characterized horse cytochrome c is studied with limited proteolysis, the alkaline conformational transition and global unfolding with guanidine-HCl. Mass spectral analysis of limited proteolysis cleavage products for iso-1-cytochrome c show that its least stable substructure is the same as horse cytochrome c. The limited proteolysis data yield a free energy of 3.8 ± 0.4 kcal mol−1 to unfold the least stable substructure compared with 5.05 ± 0.30 kcal mol−1 for global unfolding of iso-1-cytochrome c. Thus, substructure stabilities of iso-1-cytochrome c span only ∼1.2 kcal mol−1 compared with ∼8 kcal mol−1 for horse cytochrome c. Consistent with the less cooperative folding thus expected for the horse protein, the guanidine-HCl m-values are ∼3 kcal mol−1M−1 versus ∼4.5 kcal mol−1M−1 for horse versus yeast cytochrome c. The tight free energy spacing of the yeast cytochrome c substructures suggests that its folding has more branch points than for horse cytochrome c. Studies on a variant of iso-1-cytochrome c with an H26N mutation indicate that the least and most stable substructures unfold sequentially and the two least stable substructures unfold independently as for horse cytochrome c. Thus, important aspects of the substructure architecture of horse cytochrome c, albeit compressed energetically, are preserved evolutionally in yeast iso-1-cytochrome c.  相似文献   

7.
Amir J  Cherry JH 《Plant physiology》1972,49(6):893-897
A 40-fold purification of adenosine diphosphoglucose pyrophosphorylase from sweet corn (Zea mays var. Golden Beauty) revealed the enzyme to be specific for adenosine triphosphate. The enzyme has an absolute requirement for Mg2+ and is activated by 3-phosphoglycerate and to a lesser extent by ribose-5-phosphate and fructose-6-phosphate. The apparent Km values of the enzyme for glucose-1-phosphate, adenosine triphosphate, pyrophosphate, and adenosine diphosphoglucose are 1.9 × 10−4, 3.2 × 10−5, 3.3 × 10−5, and 6.2 × 10−4m, respectively. Pyrophosphate inhibits adenosine diphosphoglucose synthesis competitively (Ki = 3.8 × 10−7m), while orthophosphate and sulfate appear to inhibit the reacion noncompetitively. These results show that the production of this sugar nucleotide can be controlled by the concentration of pyrophosphate.  相似文献   

8.
Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are −3.0 kcal mol−1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of −5.0 kcal mol−1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (−10 kcal mol−1) exceeds than that of bridge term (−7 kcal mol−1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic signature in its specific electrostatic interactions which we hope would help in protein engineering and bioinformatics studies.  相似文献   

9.
Guo L  Arteca RN  Phillips AT  Liu Y 《Plant physiology》1992,100(4):2041-2045
1-Aminocyclopropane-1-carboxylate (ACC) N-malonyltransferase converts ACC, an immediate precursor of ethylene, to the presumably inactive product malonyl-ACC (MACC). This enzyme plays a role in ethylene production by reducing the level of free ACC in plant tissue. In this study, ACC N-malonyltransferase was purified 3660-fold from etiolated mung bean (Vigna radiata) hypocotyls, with a 6% overall recovery. The final specific activity was about 83,000 nmol of MACC formed mg−1 protein h−1. The five-step purification protocol consisted of polyethylene glycol fractionation, Cibacron blue 3GA-agarose chromatography using salt gradient elution, Sephadex G-100 gel filtration, MonoQ anion-exchange chromatography, and Cibacron blue 3GA-agarose chromatography using malonyl-CoA plus ACC for elution. The molecular mass of the native enzyme determined by Sephadex G-100 chromatography was 50 ± 3 kD. Protein from the final purification step showed one major band at 55 kD after sodium dodecyl sulfate polyacrylamide gel electrophoresis, indicating that ACC N-malonyltransferase is a monomer. The mung bean ACC N-malonyltransferase has a pH optimum of 8.0, an apparent Km of 0.5 mm for ACC and 0.2 mm for malonyl-coenzyme A, and an Arrhenius activation energy of 70.29 kJ mol−1 degree−1.  相似文献   

10.
Phanerochaete chrysosporium produces intracellular soluble and particulate β-glucosidases and an extracellular β-glucosidase. The extracellular enzyme is induced by cellulose but repressed in the presence of glucose. The molecular weight of this enzyme is 90,000. The Km for p-nitrophenyl-β-glucoside is 1.6 × 10−4 M; the Ki for glucose, a competitive inhibitor, is 5.0 × 10−4 M. The Km for cellobiose is 5.3 × 10−4 M. The intracellular soluble enzyme is induced by cellobiose; this induction is prevented by cycloheximide. The presence of 300 mM glucose in the medium, however, had no effect on induction. The Km for p-nitrophenyl-β-glucoside is 1.1 × 10−4 M. The molecular weight of this enzyme is ~410,000. Both enzymes have an optimal temperature of 45°C and an Eact of 9.15 kcal (ca. 3.83 × 104 J). The pH optima, however, were ~7.0 and 5.5 for the intracellular and extracellular enzymes, respectively.  相似文献   

11.
We identified the extremely nitrite-tolerant bacterium Achromobacter denitrificans YD35 that can grow in complex medium containing 100 mM nitrite (NO2) under aerobic conditions. Nitrite induced global proteomic changes and upregulated tricarboxylate (TCA) cycle enzymes as well as antioxidant proteins in YD35. Transposon mutagenesis generated NO2-hypersensitive mutants of YD35 that had mutations at genes for aconitate hydratase and α-ketoglutarate dehydrogenase in the TCA cycle and a pyruvate dehydrogenase (Pdh) E1 component, indicating the importance of TCA cycle metabolism to NO2 tolerance. A mutant in which the pdh gene cluster was disrupted (Δpdh mutant) could not grow in the presence of 100 mM NO2. Nitrite decreased the cellular NADH/NAD+ ratio and the cellular ATP level. These defects were more severe in the Δpdh mutant, indicating that Pdh contributes to upregulating cellular NADH and ATP and NO2-tolerant growth. Exogenous acetate, which generates acetyl coenzyme A and then is metabolized by the TCA cycle, compensated for these defects caused by disruption of the pdh gene cluster and those caused by NO2. These findings demonstrate a link between NO2 tolerance and pyruvate/acetate metabolism through the TCA cycle. The TCA cycle mechanism in YD35 enhances NADH production, and we consider that this contributes to a novel NO2-tolerating mechanism in this strain.  相似文献   

12.
In order to enlarge the substrate binding pocket of the meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum to accommodate larger 2-keto acids, four amino acid residues (Phe146, Thr171, Arg181, and His227) were targeted for site saturation mutagenesis. Among all mutants, the single mutant H227V had a specific activity of 2.39 ± 0.06 U · mg−1, which was 35.1-fold enhancement over the wild-type enzyme.  相似文献   

13.
In this work, we integrated terminal truncation and N-terminal oligopeptide fusion as a novel protein engineering strategy to improve specific activity and catalytic efficiency of alkaline α-amylase (AmyK) from Alkalimonas amylolytica. First, the C terminus or N terminus of AmyK was partially truncated, yielding 12 truncated mutants, and then an oligopeptide (AEAEAKAKAEAEAKAK) was fused at the N terminus of the truncated AmyK, yielding another 12 truncation-fusion mutants. The specific activities of the truncation-fusion mutants AmyKΔC500-587::OP and AmyKΔC492-587::OP were 25.5- and 18.5-fold that of AmyK, respectively. The kcat/Km was increased from 1.0 × 105 liters · mol−1 · s−1 for AmyK to 30.6 × and 23.2 × 105 liters · mol−1 · s−1 for AmyKΔC500-587::OP and AmyKΔC492-587::OP, respectively. Comparative analysis of structure models indicated that the higher flexibility around the active site may be the main reason for the improved catalytic efficiency. The proposed terminal truncation and oligopeptide fusion strategy may be effective to engineer other enzymes to improve specific activity and catalytic efficiency.  相似文献   

14.
Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR) and translesion DNA synthesis (TLS). TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V), and DNA polymerase ζ by generating POLη−/−/POLζ−/− cells from the chicken DT40 cell line. POLζ−/− cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV) only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη−/−/POLζ−/− cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ−/− cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells.  相似文献   

15.
Recently, myxoma virus was shown to encode an additional member of the serpin superfamily. The viral gene, called serp2, was cloned, and the Serp2 protein was shown to specifically bind to interleukin-1β (IL-1β)-converting enzyme (ICE), thus inhibiting the cleavage of pro-IL-1β by the protease (F. Petit, S. Bertagnoli, J. Gelfi, F. Fassy, C. Boucraut-Baralon, and A. Milon, J. Virol. 70:5860–5866, 1996). Here, we address the role of Serp2 in the development of myxomatosis, a lethal infectious disease of the European rabbit. A Serp2 mutant myxoma virus was constructed by disruption of the single-copy serp2 gene and insertion of the Escherichia coli gpt gene serving as the selectable marker. A revertant virus was obtained by replacing the E. coli gpt gene by the intact serp2 open reading frame. The Serp2 mutant virus replicated with wild-type kinetics both in rabbit fibroblasts and a rabbit CD4+ T-cell line (RL5). Moderate reduction of cell surface levels of major histocompatibility complex I was observed after infection with wild-type or Serp2 mutant myxoma virus, and both produced white pocks on the chorioallantoic membrane of the chick embryo. After the infection of European rabbits, the Serp2 mutant virus proved to be highly attenuated compared to wild-type myxoma virus, as demonstrated by the clinical course of myxomatosis and the survival rates of infected animals. Pathohistological examinations revealed that infection with wild-type myxoma virus resulted in a blockade of the inflammatory response at the vascular level. In contrast, rapid inflammatory reactions occurred upon infection with the Serp2 mutant virus. Furthermore, lymphocytes in lymph nodes derived from animals inoculated with Serp2 mutant virus were shown to rapidly undergo apoptosis. We postulate that the virulence of myxoma virus in the European rabbit can be partially attributed to an impairment of host inflammatory processes and to the prevention of apoptosis in lymphocytes. The weakening of host defense is directly linked to serp2 gene function and is likely to involve the inhibition of IL-1β-converting-enzyme-dependent pathways.  相似文献   

16.

Background/Objective

The CDKAL1 gene is among the best-replicated susceptibility loci for type 2 diabetes, originally identified by genome-wide association studies in humans. To clarify a physiological importance of CDKAL1, we examined effects of a global Cdkal1-null mutation in mice and also evaluated the influence of a CDKAL1 risk allele on body mass index (BMI) in Japanese subjects.

Methods

In Cdkal1-deficient (Cdkal1 −/−) mice, we performed oral glucose tolerance test, insulin tolerance test, and perfusion experiments with and without high-fat feeding. Based on the findings in mice, we tested genetic association of CDKAL1 variants with BMI, as a measure of adiposity, and type 2 diabetes in Japanese.

Principal Findings

On a standard diet, Cdkal1 −/− mice were modestly lighter in weight than wild-type littermates without major alterations in glucose metabolism. On a high fat diet, Cdkal1 −/− mice showed significant reduction in fat accumulation (17% reduction in %intraabdominal fat, P = 0.023 vs. wild-type littermates) with less impaired insulin sensitivity at an early stage. High fat feeding did not potentiate insulin secretion in Cdkal1 −/− mice (1.0-fold), contrary to the results in wild-type littermates (1.6-fold, P<0.01). Inversely, at a later stage, Cdkal1 −/− mice showed more prominent impairment of insulin sensitivity and glucose tolerance. mRNA expression analysis indicated that Scd1 might function as a critical mediator of the altered metabolism in Cdkal1 −/− mice. In accordance with the findings in mice, a nominally significant (P<0.05) association between CDKAL1 rs4712523 and BMI was replicated in 2 Japanese general populations comprising 5,695 and 12,569 samples; the risk allele for type 2 diabetes was also associated with decreased BMI.

Conclusions

Cdkal1 gene deletion is accompanied by modestly impaired insulin secretion and longitudinal fluctuations in insulin sensitivity during high-fat feeding in mice. CDKAL1 may affect such compensatory mechanisms regulating glucose homeostasis through interaction with diet.  相似文献   

17.
A modified 3-hydroxypropionate cycle has been proposed as the autotrophic CO2 fixation pathway for the thermoacidophilic crenarchaeon Metallosphaera sedula. The cycle requires the reductive conversion of 3-hydroxypropionate to propionyl-coenzyme A (propionyl-CoA). The specific activity of the 3-hydroxypropionate-, CoA-, and MgATP-dependent oxidation of NADPH in autotrophically grown cells was 0.023 μmol min−1mg protein−1. The reaction sequence is catalyzed by at least two enzymes. The first enzyme, 3-hydroxypropionyl-CoA synthetase, catalyzes the following reaction: 3-hydroxypropionate + ATP + CoA → 3-hydroxypropionyl-CoA + AMP + PPi. The enzyme was purified 95-fold to a specific activity of 18 μmol min−1 mg protein−1 from autotrophically grown M. sedula cells. An internal peptide sequence was determined and a gene encoding a homologous protein identified in the genome of Sulfolobus tokodaii; similar genes were found in S. solfataricus and S. acidocaldarius. The gene was heterologously expressed in Escherichia coli, and the His-tagged protein was purified. Both the native enzyme from M. sedula and the recombinant enzyme from S. tokodaii not only activated 3-hydroxypropionate to its CoA ester but also activated propionate, acrylate, acetate, and butyrate; however, with the exception of propionate, the affinities for these substrates were reduced. 3-Hydroxypropionyl-CoA synthetase is up-regulated eightfold in autotrophically versus heterotrophically grown M. sedula, supporting its proposed role during CO2 fixation in this archaeon and possibly other members of the Sulfolobaceae family.  相似文献   

18.
We have examined the activity of the thiamin phosphate pyrophosphorylase in Arabidopsis thaliana wild type and in a mutant (th-1) which requires exogenous thiamin for growth. Mutant and wild-type plants grown in 1 × 10−7 molar thiamin were used for the examination of the production of thiamin and thiamin monophosphate (TMP) using 4-methyl-5-hydroxyethylthiazole phosphate and 2-methyl-4-amino-5-hydroxymethylpyrimidine pyrophosphate as substrates. While the wild-type strain formed both thiamin and TMP, the th-1 mutant did not. When TMP was added to the extracts, the th-1 mutant, as well as wild type, produced thiamin. Accordingly, it was concluded that the th-1 mutant was defective in the activity of TMP pyrophosphorylase. Some of the characteristics of the enzyme from the wild-type plant were examined. The optimum temperature for the reaction is 45°C, and the Km values for the substrates are 2.7 × 10−6 molar for 4-methyl-5-hydroxyethylthiazole phosphate and 1.8 × 10−6 molar for 2-methyl-4-amino-5-hydroxymethylpyrimidine pyrophosphate.  相似文献   

19.
β-Galactosidase fragments were isolated from strains of Escherichia coli with mutations in the lacZ gene. The polypeptide obtained from a termination mutant (lacZNG125) appeared to be the intact gene product, containing the first half of the β-galactosidase amino acid sequence. From an internal deletion mutant strain (lacZU163), an aggregate was obtained of several partially degraded polypeptides. Each of these was smaller than predicted from genetic data for the fragment. Introduction of the lacZU163 mutation into a protein degradation-deficient strain (Deg) resulted in the protection of the amino-terminal region of the protein. Some of the BrCN peptides from the U163 polypeptides were separated and identified. From such experiments it was shown that in both Deg and Deg+ strains the COOH-terminal region is rapidly degraded. This indicates that the complete gene product of lacZU163 has not been detected. The use of genetically defined enzyme fragments in studying structure-function relationships and in determination of primary structure is discussed.  相似文献   

20.
Synthesis of many T7 proteins is prevented in F′ episome-containing cells. In order to quantitate the degree of inhibition, we measured the activity of several T7 proteins in extracts prepared from T7-infected F and F′ cells and cells containing F factors mutant in phage inhibition [F′(PIF2A) and F′(PIF2A,2B)]. In addition, we were able to assign specific T7 proteins to the three translational units previously defined by polyacrylamide gel analysis of T7 proteins made in F and episome-containing cells. After T7 infection, the presence of the wild-type F′ (PIF+) episome led to greater than 90% inhibition of T7 DNA polymerase (product of gene 5), T7 lysozyme (gene 3.5), and gene 10 capsid protein synthesis. Nearly normal amounts of T7 RNA polymerase (gene 1) were made in these cells. T7 infection of cells containing the mutant F′ (PIF2A) episome led to normal synthesis of T7 RNA polymerase and T7 DNA polymerase; T7 lysozyme was synthesized at 30% of the maximal level in these cells; T7 gene 10 capsid protein synthesis was inhibited by 90%, and T7 DNA synthesis was arrested in these cells. T7 infection of cells containing the mutant F′ (PIF2A,2B) episome led to synthesis of normal levels of the enzymes assayed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号