首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Diabetes causes oxidative stress in the liver and other tissues prone to complications. Photobiomodulation by near infrared light (670 nm) has been shown to accelerate diabetic wound healing, improve recovery from oxidative injury in the kidney, and attenuate degeneration in retina and optic nerve. The present study tested the hypothesis that 670 nm photobiomodulation, a low‐level light therapy, would attenuate oxidative stress and enhance the antioxidant protection system in the liver of a model of type I diabetes. Male Wistar rats were made diabetic with streptozotocin (50 mg/kg, ip) then exposed to 670 nm light (9 J/cm2) once per day for 18 days (acute) or 14 weeks (chronic). Livers were harvested, flash frozen, and then assayed for markers of oxidative stress. Light treatment was ineffective as an antioxidant therapy in chronic diabetes, but light treatment for 18 days in acutely diabetic rats resulted in the normalization of hepatic glutathione reductase and superoxide dismutase activities and a significant increase in glutathione peroxidase and glutathione‐S transferase activities. The results of this study suggest that 670 nm photobiomodulation may reduce, at least in part, acute hepatic oxidative stress by enhancing the antioxidant defense system in the diabetic rat model. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:1–8, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20257  相似文献   

2.
Inflammation is an umbrella feature of ageing. It is present in the aged retina and many retinal diseases including age-related macular degeneration (AMD). In ageing and in AMD mitochondrial function declines. In normal ageing this can be manipulated by brief exposure to 670 nm light on the retina, which increases mitochondrial membrane potential and reduces inflammation. Here we ask if 670 nm exposure has the same ability in an aged mouse model of AMD, the complement factor H knockout (CFH−/−) where inflammation is a key feature. Further, we ask whether this occurs when 670 nm is delivered briefly in environmental lighting rather than directly focussed on the retina. Mice were exposed to 670 nm for 6 minutes twice a day for 14 days in the form of supplemented environmental light. Exposed animals had significant increase in cytochrome c oxidase (COX), which is a mitochondrial enzyme regulating oxidative phosphorylation.There was a significant reduction in complement component C3, an inflammatory marker in the outer retina. Vimetin and glial fibrillary acidic protein (GFAP) expression, which reflect retinal stress in Muller glia, were also significantly down regulated. There were also significant changes in outer retinal macrophage morphology. However, amyloid beta (Aβ) load, which also increases with age in the outer retina and is pro-inflammatory, did not change. Hence, 670 nm is effective in reducing inflammation probably via COX activation in mice with a genotype similar to that in 50% of AMD patients even when brief exposures are delivered via environmental lighting. Further, inflammation can be reduced independent of Aβ. The efficacy revealed here supports current early stage clinical trials of 670 nm in AMD patients.  相似文献   

3.
Red/near-infrared irradiation therapy (R/NIR-IT) delivered by laser or light-emitting diode (LED) has improved functional outcomes in a range of CNS injuries. However, translation of R/NIR-IT to the clinic for treatment of neurotrauma has been hampered by lack of comparative information regarding the degree of penetration of the delivered irradiation to the injury site and the optimal treatment parameters for different CNS injuries. We compared the treatment efficacy of R/NIR-IT at 670 nm and 830 nm, provided by narrow-band LED arrays adjusted to produce equal irradiance, in four in vivo rat models of CNS injury: partial optic nerve transection, light-induced retinal degeneration, traumatic brain injury (TBI) and spinal cord injury (SCI). The number of photons of 670 nm or 830 nm light reaching the SCI injury site was 6.6% and 11.3% of emitted light respectively. Treatment of rats with 670 nm R/NIR-IT following partial optic nerve transection significantly increased the number of visual responses at 7 days after injury (P≤0.05); 830 nm R/NIR-IT was partially effective. 670 nm R/NIR-IT also significantly reduced reactive species and both 670 nm and 830 nm R/NIR-IT reduced hydroxynonenal immunoreactivity (P≤0.05) in this model. Pre-treatment of light-induced retinal degeneration with 670 nm R/NIR-IT significantly reduced the number of Tunel+ cells and 8-hydroxyguanosine immunoreactivity (P≤0.05); outcomes in 830 nm R/NIR-IT treated animals were not significantly different to controls. Treatment of fluid-percussion TBI with 670 nm or 830 nm R/NIR-IT did not result in improvements in motor or sensory function or lesion size at 7 days (P>0.05). Similarly, treatment of contusive SCI with 670 nm or 830 nm R/NIR-IT did not result in significant improvements in functional recovery or reduced cyst size at 28 days (P>0.05). Outcomes from this comparative study indicate that it will be necessary to optimise delivery devices, wavelength, intensity and duration of R/NIR-IT individually for different CNS injury types.  相似文献   

4.
Porphyromonas gingivalis is an etiologic agent of periodontal disease in humans. The disease is associated with the formation of a mixed oral biofilm which is exposed to oxygen and environmental stress, such as oxidative stress. To investigate possible roles for cytochrome bd oxidase in the growth and persistence of this anaerobic bacterium inside the oral biofilm, mutant strains deficient in cytochrome bd oxidase activity were characterized. This study demonstrated that the cytochrome bd oxidase of Porphyromonas gingivalis, encoded by cydAB, was able to catalyse O2 consumption and was involved in peroxide and superoxide resistance, and dioxygen tolerance.  相似文献   

5.
Spinal cord injury is a debilitating neurological disorder that initiates a cascade of cellular events that result in a period of secondary damage that can last for months after the initial trauma. The ensuing outcome of these prolonged cellular perturbations is the induction of neuronal and glial cell death through excitotoxic mechanisms and subsequent free radical production. We have previously shown that astrocytes can directly induce oligodendrocyte death following trauma, but the mechanisms regulating this process within the oligodendrocyte remain unclear. Here we provide evidence demonstrating that astrocytes directly regulate oligodendrocyte death after trauma by inducing activation of NADPH oxidase within oligodendrocytes. Spinal cord injury resulted in a significant increase in oxidative damage which correlated with elevated expression of the gp91 phox subunit of the NADPH oxidase enzyme. Immunohistochemical analysis confirmed the presence of gp91 phox in oligodendrocytes in vitro and at 1 week following spinal cord injury. Exposure of oligodendrocytes to media from injured astrocytes resulted in an increase in oligodendrocyte NADPH oxidase activity. Inhibition of NADPH oxidase activation was sufficient to attenuate oligodendrocyte death in vitro and at 1 week following spinal cord injury, suggesting that excitotoxicity of oligodendrocytes after trauma is dependent on the intrinsic activation of the NADPH oxidase enzyme. Acute administration of the NADPH oxidase inhibitor apocynin and the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate channel blocker 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione significantly improved locomotor behavior and preserved descending axon fibers following spinal cord injury. These studies lead to a better understanding of oligodendrocyte death after trauma and identify potential therapeutic targets in disorders involving demyelination and oligodendrocyte death.  相似文献   

6.
Drosophila melanogaster Crumbs (Crb) and its mammalian orthologues (CRB1–3) share evolutionarily conserved but poorly defined roles in regulating epithelial polarity and, in photoreceptor cells, morphogenesis and stability. Elucidating the molecular mechanisms of Crb function is vital, as mutations in the human CRB1 gene cause retinal dystrophies. Here, we report that Crb restricts Rac1–NADPH oxidase-dependent superoxide production in epithelia and photoreceptor cells. Reduction of superoxide levels rescued epithelial defects in crb mutant embryos, demonstrating that limitation of superoxide production is a crucial function of Crb and that NADPH oxidase and superoxide contribute to the molecular network regulating epithelial tissue organization. We further show that reduction of Rac1 or NADPH oxidase activity or quenching of reactive oxygen species prevented degeneration of Crb-deficient retinas. Thus, Crb fulfills a protective role during light exposure by limiting oxidative damage resulting from Rac1–NADPH oxidase complex activity. Collectively, our results elucidate an important mechanism by which Crb functions in epithelial organization and the prevention of retinal degeneration.  相似文献   

7.
Partial injury to the central nervous system (CNS) is exacerbated by additional loss of neurons and glia via toxic events known as secondary degeneration. Using partial transection of the rat optic nerve (ON) as a model, we have previously shown that myelin decompaction persists during secondary degeneration. Failure to repair myelin abnormalities during secondary degeneration may be attributed to insufficient OPC proliferation and/or differentiation to compensate for loss of oligodendrocyte lineage cells (oligodendroglia). Following partial ON transection, we found that sub-populations of oligodendroglia and other olig2+ glia were differentially influenced by injury. A high proportion of NG2+/olig2–, NG2+/olig2+ and CC1−/olig2+ cells proliferated (Ki67+) at 3 days, prior to the onset of death (TUNEL+) at 7 days, suggesting injury-related cues triggered proliferation rather than early loss of oligodendroglia. Despite this, a high proportion (20%) of the NG2+/olig2+ OPCs were TUNEL+ at 3 months, and numbers remained chronically lower, indicating that proliferation of these cells was insufficient to maintain population numbers. There was significant death of NG2+/olig2– and NG2−/olig2+ cells at 7 days, however population densities remained stable, suggesting proliferation was sufficient to sustain cell numbers. Relatively few TUNEL+/CC1+ cells were detected at 7 days, and no change in density indicated that mature CC1+ oligodendrocytes were resistant to secondary degeneration in vivo. Mature CC1+/olig2– oligodendrocyte density increased at 3 days, reflecting early oligogenesis, while the appearance of shortened myelin internodes at 3 months suggested remyelination. Taken together, chronic OPC decreases may contribute to the persistent myelin abnormalities and functional loss seen in ON during secondary degeneration.  相似文献   

8.

Aims

Oxidative stress is present in and contributes to calcification of the aortic valve, but the driving factors behind the initiation of valve oxidative stress are not well understood. We tested whether the valve endothelium acts as an initiator and propagator of oxidative stress in aortic valve disease.

Methods and Results

Calcified human aortic valves showed side-specific elevation of superoxide in the endothelium, co-localized with high VCAM1 expression, linking oxidative stress, inflammation, and valve degeneration. Treatment with inflammatory cytokine TNFα increased superoxide and oxidative stress and decreased eNOS and VE-cadherin acutely over 48 hours in aortic valve endothelial cells (VEC) and chronically over 21 days in ex vivo AV leaflets. Co-treatment of VEC with tetrahydrobiopterin (BH4) but not apocynin mitigated TNFα-driven VEC oxidative stress. Co-treatment of ex vivo AV leaflets with TNFα+BH4 or TNFα+peg-SOD rescued endothelial function and mitigated inflammatory responses. Both BH4 and peg-SOD rescued valve leaflets from the pro-osteogenic effects of TNFα treatment, but only peg-SOD was able to mitigate the fibrogenic effects, including increased collagen and αSMA expression.

Conclusions

Aortic valve endothelial cells are a novel source of oxidative stress in aortic valve disease. TNFα-driven VEC oxidative stress causes loss of endothelial protective function, chronic inflammation, and fibrogenic and osteogenic activation, mitigated differentially by BH4 and peg-SOD. These mechanisms identify new targets for tailored antioxidant therapy focused on mitigation of oxidative stress and restoration of endothelial protection.  相似文献   

9.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a potent developmental teratogen inducing oxidative stress and sublethal changes in multiple organs, provokes developmental renal injuries. In this study, we investigated TCDD-induced biochemical changes and the therapeutic efficacy of photobiomodulation (670 nm; 4 J/cm(2)) on oxidative stress in chicken kidneys during development. Eggs were injected once prior to incubation with TCDD (2 pg/g or 200 pg/g) or sunflower oil vehicle control. Half of the eggs in each dose group were then treated with red light once per day through embryonic day 20 (E20). Upon hatching at E21, the kidneys were collected and assayed for glutathione peroxidase, glutathione reductase, catalase, superoxide dimutase, and glutathione-S-transferase activities, as well as reduced glutathione and ATP levels, and lipid peroxidation. TCDD exposure alone suppressed the activity of the antioxidant enzymes, increased lipid peroxidation, and depleted available ATP. The biochemical indicators of oxidative and energy stress in the kidney were reversed by daily phototherapy, restoring ATP and glutathione contents and increasing antioxidant enzyme activities to control levels. Photobiomodulation also normalized the level of lipid peroxidation increased by TCDD exposure. The results of this study suggest that 670 nm photobiomodulation may be useful as a noninvasive treatment for renal injury resulting from chemically induced cellular oxidative and energy stress.  相似文献   

10.
The activities of phenolase, peroxidase, cytochrome oxidase, catalase and superoxide dismutase, as well as the levels of lipid peroxides, were measured in plerocercoids of S. solidus taken from the body cavity of the fish (unactivated) and in plerocercoids which had been cultured in vitro, either under air, or under 95% N2, 5% CO2. When cultured anaerobically, the activities of phenolase, peroxidase and cytochrome oxidase all increased dramatically. Aerobically, only phenolase activity increased. Lipid peroxide levels and superoxide dismutase activity was similar at all stages and catalase could not be detected. It is suggested that the increased activity of oxidative enzymes in anaerobically cultured worms is an attempt to compensate for the reduced environmental pO2.  相似文献   

11.
BackgroundBlue light can directly penetrate the lens and reach the retina to induce retinal damage, causing dry age-related macular degeneration (dAMD). Cynaroside (Cyn), a flavonoid glycoside, was proved to alleviate the oxidative damage of retinal cells in vitro. However, whether or not Cyn also exerts protective effect on blue light-induced retinal degeneration and its mechanisms of action are unclear.PurposeThis study aims to evaluate the protective effects of Cyn against blue-light induced retinal degeneration and its underlying mechanisms in vitro and in vivo.Study design/methodsBlue light-induced N-retinylidene-N-retinylethanolamine (A2E)-laden adult retinal pigment epithelial-19 (ARPE-19) cell damage and retinal damage in SD rats were respectively used to evaluate the protective effects of Cyn on retinal degeneration in vitro and in vivo. MTT assay and AnnexinV-PI double staining assay were used to evaluate the in vitro efficacy. Histological analysis, TUNEL assay, and fundus imaging were conducted to evaluate the in vivo efficacy. ELISA assay, western blot, and immunostaining were performed to investigate the mechanisms of action of Cyn.ResultsCyn decreased the blue light-induced A2E-laden ARPE-19 cell damage and oxidative stress. Intravitreal injection of Cyn (2, 4 μg/eye) reversed the retinal degeneration induced by blue light in SD rats. Furthermore, Cyn inhibited the nuclear translocation of NF-κB and induced autophagy, which led to the clearance of overactivated pyrin domain containing 3 (NLRP3) inflammasome in vitro and in vivo.ConclusionCyn protects against blue light-induced retinal degeneration by modulating autophagy and decreasing the NLRP3 inflammasome.  相似文献   

12.
We investigated whether sitagliptin, a dipeptidyl peptidase‐4 (DPP‐4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post‐infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP‐4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP‐4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post‐infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle‐treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real‐time quantitative RT‐PCR of NGF. Arrhythmic scores in the sitagliptin‐treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro‐9‐(2‐hydroxy‐3‐nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8‐cyclopentyl‐1,3‐dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase‐dependent pathways, which converge through the attenuated formation of superoxide in the non‐diabetic infarcted rats.  相似文献   

13.
Irreversible cardiomyocyte death is one of the main reasons of heart failure following cardiac injury. Therefore, controlling cardiomyocyte death is an effective method to delay the progression of cardiac disease after injury. IL-22 plays critical roles in tissue homeostasis and repair, and has become an important bridge between the immune system and specific tissues or organs. However, whether IL-22 can prevent of cardiomyocyte apoptosis from cardiac injury remains unclear. Therefore, the present work would address the above question. Our results showed that, in vitro, IL-22 prevented cardiomyocyte apoptosis induced by Angiotensin II via enhancing the activity of SOD, blocking the decrease of mitochondrial membrane potential, inhibiting ROS production and release of cytochrome C. The similar results were also found in vivo and patients. Our results shed a light on the therapy of cardiac injury.  相似文献   

14.
Photobiomodulation by light in the red to near infrared range (630-1000 nm) using low energy lasers or light-emitting diode (LED) arrays has been shown to accelerate wound healing, improve recovery from ischemic injury in the heart and attenuate degeneration in the injured optic nerve. Recent evidence indicates that the therapeutic effects of red to near infrared light result, in part, from intracellular signaling mechanisms triggered by the interaction of NIR light with the mitochondrial photoacceptor molecule cytochrome c oxidase. We have demonstrated that NIR-LED photo-irradiation increases the production of cytochrome oxidase in cultured primary neurons and reverses the reduction of cytochrome oxidase activity produced by metabolic inhibitors. We have also shown that NIR-LED treatment prevents the development of oral mucositis in pediatric bone marrow transplant patients. Photobiomodulation improves wound healing in genetically diabetic mice by upregulating genes important in the promotion of wound healing. More recent studies have provided evidence for the therapeutic benefit of NIR-LED treatment in the survival and functional recovery of the retina and optic nerve in vivo after acute injury by the mitochondrial toxin, formic acid generated in the course of methanol intoxication. Gene discovery studies conducted using microarray technology documented a significant upregulation of gene expression in pathways involved in mitochondrial energy production and antioxidant cellular protection. These findings provide a link between the actions of red to near infrared light on mitochondrial oxidative metabolism in vitro and cell injury in vivo. Based on these findings and the strong evidence that mitochondrial dysfunction is involved in the pathogenesis of numerous diseases processes, we propose that NIR-LED photobiomodulation represents an innovative and non-invasive therapeutic approach for the treatment of tissue injury and disease processes in which mitochondrial dysfunction is postulated to play a role including diabetic retinopathy, age-related macular degeneration, Leber's hereditary optic neuropathy and Parkinson's disease.  相似文献   

15.

Background

The approved immunomodulatory agents for the treatment of multiple sclerosis (MS) are only partially effective. It is thought that the combination of immunomodulatory and neuroprotective strategies is necessary to prevent or reverse disease progression. Irradiation with far red/near infrared light, termed photobiomodulation, is a therapeutic approach for inflammatory and neurodegenerative diseases. Data suggests that near-infrared light functions through neuroprotective and anti-inflammatory mechanisms. We sought to investigate the clinical effect of photobiomodulation in the Experimental Autoimmune Encephalomyelitis (EAE) model of multiple sclerosis.

Methodology/Principal Findings

The clinical effect of photobiomodulation induced by 670 nm light was investigated in the C57BL/6 mouse model of EAE. Disease was induced with myelin oligodendrocyte glycoprotein (MOG) according to standard laboratory protocol. Mice received 670 nm light or no light treatment (sham) administered as suppression and treatment protocols. 670 nm light reduced disease severity with both protocols compared to sham treated mice. Disease amelioration was associated with down-regulation of proinflammatory cytokines (interferon-γ, tumor necrosis factor-α) and up-regulation of anti-inflammatory cytokines (IL-4, IL-10) in vitro and in vivo.

Conclusion/Significance

These studies document the therapeutic potential of photobiomodulation with 670 nm light in the EAE model, in part through modulation of the immune response.  相似文献   

16.
Ageing is an irreversible cellular decline partly driven by failing mitochondrial integrity. Mitochondria accumulate DNA mutations and reduce ATP production necessary for cellular metabolism. This is associated with inflammation. Near-infrared exposure increases retinal ATP in old mice via cytochrome c oxidase absorption and reduces inflammation. Here, we expose fruitflies daily to 670 nm radiation, revealing elevated ATP and reduced inflammation with age. Critically, there was a significant increase in average lifespan: 100–175% more flies survived into old age following 670 nm exposure and these had significantly improved mobility. This may be a simple route to extending lifespan and improving function in old age.  相似文献   

17.
In vivo electron spin resonance (ESR) spectroscopy is a noninvasive technique that measures the oxidative stress in living experimental animals. The rate of decay of the ESR signal right after an injection of nitroxyl radical has been measured to evaluate the oxidative stress in animals, although the probe’s disposition could also affect this rate. Because the amount of probes forming the redox pair of hydroxyl amine and its corresponding nitroxyl radical was shown to be nearly constant in most organs or tissues 10 min after the injection of 1-acetoxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine (ACP) in mice, we evaluated the oxidative stress in sepsis model mice induced by lipopolysaccharide (LPS) by intravenously injecting ACP as a precursor of redox probes. The in vivo ESR signal increased up to 7–8 min after the ACP injection and then decreased. Decay of the in vivo signal in LPS-treated mice was significantly slower than that in healthy mice, whereas no significant difference was observed in the rate of change in the total amount of redox probes in the blood and liver between these groups. ESR imaging showed that the in vivo signals observed at the chest and upper abdomen decayed slowly in LPS-treated mice. Suppression of the decay in LPS-treated mice was canceled by the administration of a combination of pegylated superoxide dismutase and catalase, or an inhibitor of nitric oxide synthase, or gadolinium chloride. These results indicate that the LPS-treated mouse is under oxidative stress and that reactive oxygen species, such as superoxide and peroxynitrite, related to macrophages are mainly involved in the oxidative stress.  相似文献   

18.
Dihydroorotate dehydrogenase in rat brain mitochondria is capable of producing superoxide. The presence of a superoxide dismutase activity in brain mitochondria, similar to that found in mitochondria from chicken liver, suggests that production of superoxide may occur in vivo. Formation of superoxide is not dependent upon reduction of cytochrome b, rather, superoxide production is competitive with cytochrome b reduction. Phenazine methosulfate apparently competes with both oxygen (superoxide production) and cytochrome b as an electron carrier but does not enhance reduction of dichlorophenolindophenol or cytochrome c.  相似文献   

19.
Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration—defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.  相似文献   

20.
The generation of superoxide radicals, lipid peroxidation (as measured by malone dialdehyde formation) and the activity of selected antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase) were assessed in radish (Raphanus sativus L.), in response to elevated concentrations of copper ions in the culture medium in vitro and in vivo. Experiments were performed on 7-day-old seedlings and 5-week-old calluses grown on media supplemented with CuSO4 in concentrations of 10, 100 and 1000 μМ. The exposure to elevated Cu concentrations in the medium significantly reduced both callogenesis and the proliferation of radish calluses in vitro. Cu treatment resulted in the increased generation of the superoxide radical (O2) in radish seedlings and calluses indicating the occurrence of oxidative stress in radish cells, whereas the level of lipid peroxidation (LPO) remained unchanged. Both in calluses and in radish seedlings in vivo, the relative level of oxidative stress was maximal at micromolar Cu concentrations and became attenuated with increasing Cu concentrations. Stronger oxidative stress occurred in the radish seedlings in vivo, compared with radish calluses in vitro. The observed lower sensitivity of calluses to Cu-induced oxidative stress and their ability to proliferate upon exposure to Cu concentrations of up to 1000 μМ demonstrate the potential of in vitro cell-selection to obtain metal-tolerant radish plant lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号