首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Tyr corner is a conformation in which a tyrosine (residue “Y”) near the beginning or end of an antiparallel β-strand makes an H bond from its side-chain OH group to the backbone NH and/or CO of residue Y – 3, Y – 4, or Y – 5 in the nearby connection. The most common “classic” case is a Δ4 Tyr corner (more than 40 examples listed), in which the H bond is to residue Y – 4 and the Tyr x1 is near ?60°. Y – 2 is almost always a glycine, whose left-handed β or very extended β conformation helps the backbone curve around the Tyr ring. Residue Y – 3 is in polyproline II conformation (often Pro), and residue Y – 5 is usually a hydrophobic (often Leu) that packs next to the Tyr ring. The consensus sequence, then, is LxPGxY, where the first x (the H-bonding position) is hydrophilic. Residues Y and Y – 2 both form narrow pairs of β-sheet H-bonds with the neighboring strand, Δ5 Tyr corners have a 1-residue insertion between the Gly and the Tyr, forming a β-bulge. One protein family has a Δ4 corner formed by a His rather than a Tyr, and several examples use Trp in place of Tyr. For almost all these cases, the protein or domain is a Greek key β-barrel structure, the Tyr corner ends a Greek key connection, and it is well-conserved in related proteins. Most low-twist Greek key β-barrels have 1 Tyr corner. “Reverse” Δ4 Tyr corners (H bonded to Y + 4) and other variants are described, all less common and less conserved. It seems likely that the more classic Tyr corners (Δ4, Δ5, and Δ3 Tyr, Trp, or His) contribute to the stability of a Greek key connection over a hairpin connection, and also that they may aid in the process of folding up Greek key structures.  相似文献   

2.
OXA-58 is a class D β-lactamase from the multi-drug resistant Acinetobacter baumannii. We determined the crystal structure of OXA-58 in a novel crystal, and revealed the structure of the substrate-binding cleft in a closed state, distinct from a previously reported OXA-58 crystal structure with the binding cleft in an open state. In the closed state, the movement of three loops (α3–α4, β6–β7, and β8–α10) forms an arch-like architecture over the binding cleft through interaction between the Phe113 residues of α3–α4 and Met225 of β6–β7. This structure suggests the involvement of these flexible loops in OXA-58 substrate binding. In contrast to the mobile loops, the Ω-loop appeared static, including the conserved loop residues and their hydrogen bonds; the pivotal residue Trp169 within the Ω-loop, ζ-carbamic acid of the modified base catalyst residue Lys86, and nucleophilic residue Ser83. The stability of OXA-58 was enhanced concomitant with an increase in the hydrolytic activity catalyzed by NaHCO3-dependent ζ-carbamic acid formation, with an EC50 of 0.34 mM. The W169A mutant enzyme was significantly thermally unstable even in the presence of 100 mM NaHCO3, whereas the S83A mutant was stabilized with NaHCO3-dependent activation. The ζ-carbamic acid was shown to increase not only OXA-58 hydrolytic activity but also OXA-58 stability through the formation of a hydrogen bond network connected to the Ω-loop with Ser83 and Trp169. Thus, the static Ω-loop is important for OXA-58 stability, whereas the mobile loops of the substrate-binding cleft form the basis for accommodation of the various substituents of β-lactam backbone.  相似文献   

3.
UV resonance Raman (UVRR) spectroscopy is used to study the binding of biotin and 2-iminobiotin by streptavidin, and the results are compared to those previously obtained from the avidin-biotin complex and new data from the avidin-2-iminobiotin complex. UVRR difference spectroscopy using 244-nm excitation reveals changes to the tyrosine (Tyr) and tryptophan (Trp) residues of both proteins upon complex formation. Avidin has four Trp and only one Tyr residue, while streptavidin has eight Trp and six Tyr residues. The spectral changes observed in streptavidin upon the addition of biotin are similar to those observed for avidin. However, the intensity enhancements observed for the streptavidin Trp Raman bands are less than those observed with avidin. The changes observed in the streptavidin Tyr bands are similar to those observed for avidin and are assigned exclusively to the binding site Tyr 43 residue. The Trp and Tyr band changes are due to the exclusion of water and addition of biotin, resulting in a more hydrophobic environment for the binding site residues. The addition of 2-iminobiotin results in spectral changes to both the streptavidin and avidin Trp bands that are very similar to those observed upon the addition of biotin in each protein. The changes to the Tyr bands are very different than those observed with the addition of biotin, and similar spectral changes are observed in both streptavidin and avidin. This is attributable to hydrogen bond changes to the binding site Tyr residue in each protein, and the similar Tyr difference features in both proteins supports the exclusive assignment of the streptavidin Tyr difference features to the binding site Tyr 43.  相似文献   

4.
Iron scarcity is one of the nutrition limitations that the Gram-positive infectious pathogens Streptococcus pneumoniae encounter in the human host. To guarantee sufficient iron supply, the ATP binding cassette (ABC) transporter Pia is employed to uptake iron chelated by hydroxamate siderophore, via the membrane-anchored substrate-binding protein PiaA. The high affinity towards ferrichrome enables PiaA to capture iron at a very low concentration in the host. We presented here the crystal structures of PiaA in both apo and ferrichrome-complexed forms at 2.7 and 2.1 Å resolution, respectively. Similar to other class III substrate binding proteins, PiaA is composed of an N-terminal and a C-terminal domain bridged by an α-helix. At the inter-domain cleft, a molecule of ferrichrome is stabilized by a number of highly conserved residues. Upon ferrichrome binding, two highly flexible segments at the entrance of the cleft undergo significant conformational changes, indicating their contribution to the binding and/or release of ferrichrome. Superposition to the structure of Escherichia coli ABC transporter BtuF enabled us to define two conserved residues: Glu119 and Glu262, which were proposed to form salt bridges with two arginines of the permease subunits. Further structure-based sequence alignment revealed that the ferrichrome binding pattern is highly conserved in a series of PiaA homologs encoded by both Gram-positive and negative bacteria, which were predicted to be sensitive to albomycin, a sideromycin antibiotic derived from ferrichrome.  相似文献   

5.
Photolyases can repair pyrimidine dimers on the DNA that are formed during UV irradiation. PhrB from Agrobacterium fabrum represents a new group of prokaryotic (6–4) photolyases which contain an iron-sulfur cluster and a DMRL chromophore. We performed site-directed mutagenesis in order to assess the role of particular amino acid residues in photorepair and photoreduction, during which the FAD chromophore converts from the oxidized to the enzymatically active, reduced form. Our study showed that Trp342 and Trp390 serve as electron transmitters. In the H366A mutant repair activity was lost, which points to a significant role of His366 in the protonation of the lesion, as discussed for the homolog in eukaryotic (6–4) photolyases. Mutants on cysteines that coordinate the Fe-S cluster of PhrB were either insoluble or not expressed. The same result was found for proteins with a truncated C-terminus, in which one of the Fe-S binding cysteines was mutated and for expression in minimal medium with limited Fe concentrations. We therefore assume that the Fe-S cluster is required for protein stability. We further mutated conserved tyrosines that are located between the DNA lesion and the Fe-S cluster. Mutagenesis results showed that Tyr424 was essential for lesion binding and repair, and Tyr430 was required for efficient repair. The results point to an important function of highly conserved tyrosines in prokaryotic (6–4) photolyases.  相似文献   

6.
The influence of the amino acid residues surrounding the flavin ring in the flavodoxin of the cyanobacterium Anabaena PCC 7119 on the electron spin density distribution of the flavin semiquinone was examined in mutants of the key residues Trp(57) and Tyr(94) at the FMN binding site. Neutral semiquinone radicals of the proteins were obtained by photoreduction and examined by electron-nuclear double resonance (ENDOR) and hyperfine sublevel correlation (HYSCORE) spectroscopies. Significant differences in electron density distribution were observed in the flavodoxin mutants Trp(57) --> Ala and Tyr(94) --> Ala. The results indicate that the presence of a bulky residue (either aromatic or aliphatic) at position 57, as compared with an alanine, decreases the electron spin density in the nuclei of the benzene flavin ring, whereas an aromatic residue at position 94 increases the electron spin density at positions N(5) and C(6) of the flavin ring. The influence of the FMN ribityl and phosphate on the flavin semiquinone was determined by reconstituting apoflavodoxin samples with riboflavin and with lumiflavin. The coupling parameters of the different nuclei of the isoalloxazine group, as detected by ENDOR and HYSCORE, were very similar to those of the native flavodoxin. This indicates that the protein conformation around the flavin ring and the electron density distribution in the semiquinone form are not influenced by the phosphate and the ribityl of FMN.  相似文献   

7.
To elucidate a role of the Src homology 3 (SH3)-conserved acidic residue Asp21 of the phosphatidylinositol 3-kinase (PI3K) SH3 domain, structural changes induced by the D21N mutation (Asp21 --> Asn) were examined by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopies. In the previous study, we demonstrated that environmental alterations occurred at the side chains of Trp55 and some Tyr residues from the comparison of the near-UV CD spectra of the PI3K SH3 domain with or without a D21N mutation [Okishio, N., et al. (2000) Biopolymers 57, 208-217]. In this work, the affected Tyr residues were identified as Tyr14 and Tyr73 by the CD analysis of a series of mutants, in which every single Tyr residue was replaced by a Phe residue with or without a D21N mutation. The (1)H and (15)N resonance assignments of the PI3K SH3 domain and its D21N mutant revealed that significant chemical shift changes occurred to the aromatic side-chain protons of Trp55 and Tyr14 upon the D21N mutation. All these aromatic residues are implicated in ligand recognition. In addition, the NMR analysis showed that the backbone conformations of Lys15-Asp23, Gly54-Trp55, Asn57-Gly58, and Gly67-Pro70 were affected by the D21N mutation. Furthermore, the (15)N[(1)H] nuclear Overhauser effect values of Tyr14, Glu19, and Glu20 were remarkably changed by the mutation. These results show that the D21N mutation causes structural deformation of more than half of the ligand binding cleft of the domain and provide evidence that Asp21 plays an important role in forming a well-ordered ligand binding cleft in cooperation with the RT loop (Lys15-Glu20).  相似文献   

8.
Two periplasmic binding proteins of E. coli, the leucine specific-binding protein (LS) and leucine-isoleucine-valine binding protein (LIV), have high similarity in their structure and function, but show different substrate specificity. A key difference between these proteins is residue 18 in the binding pocket, a tryptophan residue in the LS and a tyrosine residue in the LIV. To examine the role of this residue in binding specificity, we used fluorescence and (19)F NMR to monitor ligand binding to three mutants: LSW18Y, LSW18F and LIVY18W. We observed leucine binding to all proteins. LS binds L-phenylalanine but the mutation from Trp to Tyr or Phe disallows this ligand and expands the binding repertoire to L-isoleucine and L-valine. The LIVY18W mutant still retains the ability to bind L-isoleucine and also binds L-phenylalanine.  相似文献   

9.
O-Acetylserine sulfhydrylase is a homodimeric enzyme catalyzing the last step of cysteine biosynthesis via a Bi Bi ping-pong mechanism. The subunit is composed of two domains, each containing one tryptophan residue, Trp50 in the N-terminal domain and Trp161 in the C-terminal domain. Only Trp161 is highly conserved in eucaryotes and bacteria. The coenzyme pyridoxal 5'-phosphate is bound in a cleft between the two domains. The enzyme undergoes an open to closed conformational transition upon substrate binding. The effect of single Trp to Tyr mutations on O-acetylserine sulfhydrylase structure, function, and stability was investigated with a variety of spectroscopic techniques. The mutations do not significantly alter the enzyme secondary structure but affect the catalysis, with a predominant influence on the second half reaction. The W50Y mutation strongly affects the unfolding pathway due to the destabilization of the intersubunit interface. The W161Y mutation, occurring in the C-terminal domain, produces a reduction of the accessibility of the active site to acrylamide and stabilizes thermodynamically the N-terminal domain, a result consistent with stronger interdomain interactions.  相似文献   

10.
The mammalian heterogeneous ribonucleoprotein (hnRNP) A1 and its constituent N-terminal domain, termed UP1, have been studied by steady-state and dynamic fluorimetry, as well as phosphorescence and optically detected magnetic resonance (ODMR) spectroscopy at cryogenic temperatures. The results of these diverse techniques coincide in assigning the site of the single tryptophan residue of A1, located in the UP1 domain, to a partially solvent-exposed site distal to the protein's nucleic acid binding surface. In contrast, tyrosine fluorescence is significantly perturbed when either protein associates with single-stranded polynucleotides. Tyr to Trp energy transfer at the singlet level is found for both UP1 and A1 proteins. Single-stranded polynucleotide binding induces a quenching of their intrinsic fluorescence emission, which can be attributed to a significant reduction (greater than 50%) of the Tyr contribution, while Trp emission is only quenched by approximately 15%. Tyrosine quenching effects of similar magnitude are seen upon polynucleotide binding by either UP1 (1 Trp, 4 Tyr) or A1 (1 Trp, 12 Tyr), strongly suggesting that Tyr residues in both the N-terminal and C-terminal domain of A1 are involved in the binding process. Tyr phosphorescence emission was strongly quenched in the complexes of UP1 with various polynucleotides, and was attributed to triplet state energy transfer to nucleic acid bases located in the close vicinity of the fluorophore. These results are consistent with stacking of the tyrosine residues with the nucleic acid bases. While the UP1 Tyr phosphorescence lifetime is drastically shortened in the polynucleotide complex, no change of phosphorescence emission maximum, phosphorescence decay lifetime or ODMR transition frequencies were observed for the single Trp residue. The results of dynamic anisotropy measurements of the Trp fluorescence have been interpreted as indicative of significant internal flexibility in both UP1 and A1, suggesting a flexible linkage connecting the two sub-domains in UP1. Theoretical calculations based on amino acid sequence for chain flexibility and other secondary structural parameters are consistent with this observation, and suggest that flexible linkages between sub-domains may exist in other RNA binding proteins. While the dynamic anisotropy data are consistent with simultaneous binding of both the C-terminal and the N-terminal domains to the nucleic acid lattice, no evidence for simultaneous binding of both UP1 sub-domains was found.  相似文献   

11.
The structure and function of a cadaverine-lysine antiporter CadB and a putrescine-ornithine antiporter PotE in Escherichia coli were evaluated using model structures based on the crystal structure of AdiC, an agmatine-arginine antiporter, and the activities of various CadB and PotE mutants. The central cavity of CadB, containing the substrate binding site, was wider than that of PotE, mirroring the different sizes of cadaverine and putrescine. The size of the central cavity of CadB and PotE was dependent on the angle of transmembrane helix 6 (TM6) against the periplasm. Tyr(73), Tyr(89), Tyr(90), Glu(204), Tyr(235), Asp(303), and Tyr(423) of CadB, and Cys(62), Trp(201), Glu(207), Trp(292), and Tyr(425) of PotE were strongly involved in the antiport activities. In addition, Trp(43), Tyr(57), Tyr(107), Tyr(366), and Tyr(368) of CadB were involved preferentially in cadaverine uptake at neutral pH, while only Tyr(90) of PotE was involved preferentially in putrescine uptake. The results indicate that the central cavity of CadB consists of TMs 2, 3, 6, 7, 8, and 10, and that of PotE consists of TMs 2, 3, 6, and 8. These results also suggest that several amino acid residues are necessary for recognition of cadaverine in the periplasm because the level of cadaverine is much lower than that of putrescine in the periplasm at neutral pH. All the amino acid residues identified as being strongly involved in both the antiport and uptake activities were located on the surface of the transport path consisting of the central cavity and TM12.  相似文献   

12.
The nucleotide state of actin (ATP, ADP-Pi, or ADP) is known to impact its interactions with other actin molecules upon polymerization as well as with multiple actin binding proteins both in the monomeric and filamentous states of actin. Recently, molecular dynamics simulations predicted that a sequence located at the interface of subdomains 1 and 3 (W-loop; residues 165–172) changes from an unstructured loop to a β-turn conformation upon ATP hydrolysis (Zheng, X., Diraviyam, K., and Sept, D. (2007) Biophys. J. 93, 1277–1283). This region participates directly in the binding to other subunits in F-actin as well as to cofilin, profilin, and WH2 domain proteins and, therefore, could contribute to the nucleotide sensitivity of these interactions. The present study demonstrates a reciprocal communication between the W-loop region and the nucleotide binding cleft on actin. Point mutagenesis of residues 167, 169, and 170 and their site-specific labeling significantly affect the nucleotide release from the cleft region, whereas the ATP/ADP switch alters the fluorescence of probes located in the W-loop. In the ADP-Pi state, the W-loop adopts a conformation similar to that in the ATP state but different from the ADP state. Binding of latrunculin A to the nucleotide cleft favors the ATP-like conformation of the W-loop, whereas ADP-ribosylation of Arg-177 forces the W-loop into a conformation distinct from those in the ADP and ATP-states. Overall, our experimental data suggest that the W-loop of actin is a nucleotide sensor, which may contribute to the nucleotide state-dependent changes in F-actin and nucleotide state-modulated interactions of both G- and F-actin with actin-binding proteins.  相似文献   

13.
Studies of CO ligand binding revealed that two protein states with different ligand affinities exist in the protoglobin from Methanosarcina acetivorans (in MaPgb*, residue Cys(E20)101 was mutated to Ser). The switch between the two states occurs upon the ligation of MaPgb*. In this work, site-directed mutagenesis was used to explore the role of selected amino acids in ligand sensing and stabilization and in affecting the equilibrium between the “more reactive” and “less reactive” conformational states of MaPgb*. A combination of experimental data obtained from electronic and resonance Raman absorption spectra, CO ligand-binding kinetics, and X-ray crystallography was employed. Three amino acids were assigned a critical role: Trp(60)B9, Tyr(61)B10, and Phe(93)E11. Trp(60)B9 and Tyr(61)B10 are involved in ligand stabilization in the distal heme pocket; the strength of their interaction was reflected by the spectra of the CO-ligated MaPgb* and by the CO dissociation rate constants. In contrast, Phe(93)E11 is a key player in sensing the heme-bound ligand and promotes the rotation of the Trp(60)B9 side chain, thus favoring ligand stabilization. Although the structural bases of the fast CO binding rate constant of MaPgb* are still unclear, Trp(60)B9, Tyr(61)B10, and Phe(93)E11 play a role in regulating heme/ligand affinity.  相似文献   

14.
The high affinity receptor for IgE (FcepsilonRI) plays an integral role in triggering IgE-mediated hypersensitivity reactions. The IgE-interactive site of human FcepsilonRI has previously been broadly mapped to several large regions in the second extracellular domain (D2) of the alpha-subunit (FcepsilonRIalpha). In this study, the IgE binding site of human FcepsilonRIalpha has been further localized to subregions of D2, and key residues putatively involved in the interaction with IgE have been identified. Chimeric receptors generated between FcepsilonRIalpha and the functionally distinct but structurally homologous low affinity receptor for IgG (FcgammaRIIa) have been used to localize two IgE binding regions of FcepsilonRIalpha to amino acid segments Tyr129-His134 and Lys154-Glu161. Both regions were capable of independently binding IgE upon placement into FcgammaRIIa. Molecular modeling of the three-dimensional structure of FcepsilonRIalpha-D2 has suggested that these binding regions correspond to the "exposed" C'-E and F-G loop regions at the membrane distal portion of the domain. A systematic site-directed mutagenesis strategy, whereby each residue in the Tyr129-His134 and Lys154-Glu161 regions of FcepsilonRIalpha was replaced with alanine, has identified key residues putatively involved in the interaction with IgE. Substitution of Tyr131, Glu132, Val155, and Asp159 decreased the binding of IgE, whereas substitution of Trp130, Trp156, Tyr160, and Glu161 increased binding. In addition, mutagenesis of residues Trp113, Val115, and Tyr116 in the B-C loop region, which lies adjacent to the C'-E and F-G loops, has suggested Trp113 also contributes to IgE binding, since the substitution of this residue with alanine dramatically reduces binding. This information should prove valuable in the design of strategies to intervene in the FcepsilonRIalpha-IgE interaction for the possible treatment of IgE-mediated allergic disease.  相似文献   

15.
The importance of Trp H33 in antibody recognition of DNA containing a central pyrimidine (6-4) pyrimidone photoproduct was investigated. This residue was replaced by Tyr, Phe and Ala and the binding abilities of these mutants were determined by surface plasmon resonance and fluorescence spectroscopy. Conservative substitution of Trp H33 by Tyr or Phe resulted in moderate losses of binding affinity; however, replacement by Ala had a significantly larger impact. The fluorescence properties of DNA containing a (6-4) photoproduct were strongly affected by the identity of the H33 residue. DNA binding by both the wild-type and the W-H33-Y mutant was accompanied by a small degree of fluorescence quenching; by contrast, binding by the W-H33-F and W-H33-A mutants produced large fluorescence increases. Taken together, these variations in binding and fluorescence properties with the identity of the H33 residue are consistent with a role in photoproduct recognition by Trp H33 in the high-affinity antibody 64M5.  相似文献   

16.
Nitric-oxide synthase (NOS) requires the cofactor, (6R)-5,6,7, 8-tetrahydrobiopterin (H4B), for catalytic activity. The crystal structures of NOSs indicate that H4B is surrounded by aromatic residues. We have mutated the conserved aromatic acids, Trp(676), Trp(678), Phe(691), His(692), and Tyr(706), together with the neighboring Arg(414) residue within the H4B binding region of full-length neuronal NOS. The W676L, W678L, and F691L mutants had no NO formation activity and had very low heme reduction rates (<0.02 min(-1)) with NADPH. Thus, it appears that Trp(676), Trp(678), and Phe(691) are important to retain the appropriate active site conformation for H4B/l-Arg binding and/or electron transfer to the heme from NADPH. The mutation of Tyr(706) to Leu and Phe decreased the activity down to 13 and 29%, respectively, of that of the wild type together with a dramatically increased EC(50) value for H4B (30-40-fold of wild type). The Tyr(706) phenol group interacts with the heme propionate and Arg(414) amine via hydrogen bonds. The mutation of Arg(414) to Leu and Glu resulted in the total loss of NO formation activity and of the heme reduction with NADPH. Thus, hydrogen bond networks consisting of the heme carboxylate, Tyr(706), and Arg(414) are crucial in stabilizing the appropriate conformation(s) of the heme active site for H4B/l-Arg binding and/or efficient electron transfer to occur.  相似文献   

17.
Src homology 3 (SH3) domains recognize Pro-rich motifs using a hydrophobic cleft which contains several conserved aromatic residues. To investigate how aromatic residues contribute to ligand recognition, circular dichroism (CD) and 235 nm excited ultraviolet resonance Raman spectroscopies have been applied to Src and phosphatidylinositol 3-kinase (PI3K) SH3s. The CD analysis shows that Src SH3 binds to RPLPPLP (R-core) using aromatic residues with a dissociation constant (K(d)) of 10 microM. Moreover, intensity increases of the Trp and Tyr Raman bands suggest that the interaction is mediated by hydrophobic contacts and/or hydrogen bond formation with both Trp and Tyr residues. In the interaction of Src SH3 with VSLARRPLPPLP (VSL12) (K(d) 0.8 microM), Trp118 appears to form a strong hydrogen bond with VSL12, judging from significant intensity increases of the Trp Raman bands and the reported complex structure. In contrast, PI3K SH3 binds to R-core and VSL12 with lower affinities (K(d) 34 and 18 microM, respectively), and the interactions are suggested to be mediated mainly by hydrophobic contacts and/or hydrogen bond formation with Tyr residue(s). In the D21N mutant (Asp21 --> Asn) of PI3K SH3, whose hydrophobic cleft is deformed, Trp55 is shown to be responsible for the interaction with VSL12 by intensity increases of the Trp Raman bands. However, the affinity is severely decreased (K(d) 330 microM). These observations imply that SH3 domains associate with their ligands with distinct use of aromatic residues and that hydrogen bond formation with an SH3-conserved Trp residue in the well-ordered hydrophobic cleft is important for stable complex formation.  相似文献   

18.
The active site of factor Xa, labelled with dansylglutamylglycylarginine (DnsEGR) is sensitive to association with Ca2+, factor Va and phospholipids. When bound to factor Va, DnsEGR-factor-Xa does not change the composition of the binding site of factor Va, as shown by fluorescence energy-transfer experiments between the Trp residues of factor Va and pyrene-labelled phospholipids. Prothrombin was cleaved by alpha-chymotrypsin into two parts: N-terminal residues 1-41 (peptide 1-41) containing the gamma-carboxyglutamic acid residues (Gla), and des-(1-41)-prothrombin; their membrane association was investigated. Peptide 1-41 contains the aromatic residues Tyr and Trp in positions 24 and 41, respectively, and is suitable for fluorescence spectroscopy. The absence of fluorescence energy transfer between these residues suggests that they are more than 2.8 nm apart. Binding of Ca2+ and of phospholipids involves essentially the Tyr residue, while the C-terminal characteristics of the Trp residue remain unchanged. The conformational change which takes place on binding does not shorten the distance between Tyr and Trp beyond 2.8 nm. Our conclusion is that peptide 1-41 has an extended conformation. This result is compatible with the disordered character of the Gla region found in the crystalline structure of fragment 1 of prothrombin. Ca2+ induces a greater fluorescence energy transfer between prothrombin and membranes labelled with pyrene but has no influence on the binding of des-(1-41)-prothrombin. Moreover, the binding curves of des(1-41)-prothrombin are similar to those of prothrombin in the absence of Ca2+. It is concluded that the Ca2+-independent association of prothrombin with membranes involves essentially that part of the prothrombin molecule deleted in the Gla region.  相似文献   

19.
All but 11 of the 323 known actin sequences have Tyr at position 53, and the 11 exceptions have the conservative substitution Phe, which raises the following questions. What is the critical role(s) of Tyr-53, and, if it can be replaced by Phe, why has this happened so infrequently? We compared the properties of purified endogenous Dictyostelium actin and mutant constructs with Tyr-53 replaced by Phe, Ala, Glu, Trp, and Leu. The Y53F mutant did not differ significantly from endogenous actin in any of the properties assayed, but the Y53A and Y53E mutants differed substantially; affinity for DNase I was reduced, the rate of nucleotide exchange was increased, the critical concentration for polymerization was increased, filament elongation was inhibited, and polymerized actin was in the form of small oligomers and imperfect filaments. Growth and/or development of cells expressing these actin mutants were also inhibited. The Trp and Leu mutations had lesser but still significant effects on cell phenotype and the biochemical properties of the purified actins. We conclude that either Tyr or Phe is required to maintain the functional conformations of the DNase I-binding loop (D-loop) in both G- and F-actin, and that the conformation of the D-loop affects not only the properties that directly involve the D-loop (binding to DNase I and polymerization) but also allosterically modifies the conformation of the nucleotide-binding cleft, thus increasing the rate of nucleotide exchange. The apparent evolutionary “preference” for Tyr at position 53 may be the result of Tyr allowing dynamic modification of the D-loop conformation by phosphorylation (Baek, K., Liu, X., Ferron, F., Shu, S., Korn, E. D., and Dominguez, R. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 11748–11753) with effects similar, but not identical, to those of the Ala and Glu mutations.  相似文献   

20.
In the native state of proteins there is a marked tendency for an aromatic amino acid to precede a cis proline. There are also significant differences between the three aromatic amino acids with Tyr exhibiting a noticeably higher propensity than Phe or Trp to precede a cis proline residue. In order to study the role that local interactions play in these conformation preferences, a set of tetrapeptides of the general sequence acetyl-Gly-X-Pro-Gly-carboxamide (GXPG), where X = Tyr, Phe, Trp, Ala, or cyclohexyl alanine, were synthesized and studied by nmr. Analysis of the nmr data shows that none of the peptides adopt a specific backbone structure. Ring current shifts, the equilibrium constants, the Van't Hoff enthalpy, and the measured rate of cis-trans isomerization all indicate that the cis proline conformer is stabilized by favorable interactions between the aromatic ring and the proline residue. Analysis of the side chain conformation of the aromatic residue and analysis of the chemical shifts of the pyrrolidine ring protons shows that the aromatic side chain adopts a preferred conformation in the cis form. The distribution of rotamers and the effect of an aromatic residue on the cis-trans equilibrium indicate that the preferred conformation is populated to approximately 62% for the Phe containing peptide, 67% for the Tyr containing peptide, and between 75 and 80% for the Trp containing peptide. The interaction is unaffected by the addition of 8M urea. These local interactions favor an aromatic residue immediately preceding a cis proline, but they cannot explain the relative propensities for Phe-Pro, Tyr-Pro, and Trp-Pro cis peptide bonds observed in the native state of proteins. In the model peptides the percentage of the cis proline conformer is 21% GYPG while it is 17% for GFPG. This difference is considerably smaller than the almost three to one preponderance observed for cis Tyr-Pro peptide bonds vs cis Phe-Pro peptide bonds in the protein database. © 1998 John Wiley & Sons, Inc. Biopoly 45: 381–394, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号