首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • Hypoxic floodwaters can seriously damage seedlings. Seed dormancy could be an effective trait to avoid lethal underwater germination. This research aimed to discover novel adaptive dormancy responses to hypoxic floodwaters in seeds of Echinochloa crus‐galli, a noxious weed from rice fields and lowland croplands.
  • Echinochloa crus‐galli dormant seeds were subjected to a series of sequential treatments. Seeds were: (i) submerged under hypoxic floodwater (simulated with hypoxic flasks) at different temperatures for 15 or 30 days, and germination tested under drained conditions while exposing seeds to dormancy‐breaking signals (alternating temperatures, nitrate (KNO3), light); or (ii) exposed to dormancy‐breaking signals during hypoxic submergence, and germination monitored during incubation and after transfer to drained conditions.
  • Echinochloa crus‐galli seed primary dormancy was attenuated under hypoxic submergence but to a lesser extent than under drained conditions. Hypoxic floodwater did not reinforced dormancy but hindered secondary dormancy induction in warm temperatures. Seeds did not germinate under hypoxic submergence even when subjected to dormancy‐breaking signals; however, these signals broke dormancy in seeds submerged under normoxic water. Seeds submerged in hypoxic water could sense light through phytochrome signals and germinated when normoxic conditions were regained.
  • Hypoxic floodwaters interfere with E. crus‐galli seed seasonal dormancy changes. Dormancy‐breaking signals are overridden during hypoxic floods, drastically decreasing underwater germination. In addition, results indicate that a fraction of E. crus‐galli seeds perceive dormancy‐breaking signals under hypoxic water and germinate immediately after aerobic conditions are regained, a hazardous yet less competitive environment for establishment.
  相似文献   

2.

Background and Aims

Lomatium dissectum (Apiaceae) is a perennial, herbaceous plant of wide distribution in Western North America. At the time of dispersal, L. dissectum seeds are dormant and have under-developed embryos. The aims of this work were to determine the requirements for dormancy break and germination, to characterize the type of seed dormancy, and to determine the effect of dehydration after embryo growth on seed viability and secondary dormancy.

Methods

The temperature requirements for embryo growth and germination were investigated under growth chamber and field conditions. The effect of GA3 on embryo growth was also analysed to determine the specific type of seed dormancy. The effect of dehydration on seed viability and induction of secondary dormancy were tested in seeds where embryos had elongated about 4-fold their initial length. Most experiments examining the nature of seed dormancy were conducted with seeds collected at one site in two different years. To characterize the degree of variation in dormancy-breaking requirements among seed populations, the stratification requirements of seeds collected at eight different sites were compared.

Key Results

Embryo growth prior to and during germination occurred at temperatures between 3 and 6 °C and was negligible at stratification temperatures of 0·5 and 9·1 °C. Seeds buried in the field and exposed to natural winter conditions showed similar trends. Interruption of the cold stratification period by 8 weeks of dehydration decreased seed viability by about 30 % and induced secondary dormancy in the remaining viable seeds. Comparison of the cold stratification requirements of different seed populations indicates that seeds collected from moist habitats have longer cold stratification requirements that those from semiarid environments.

Conclusions

Seeds of L. dissectum have deep complex morphophysiological dormancy. The requirements for dormancy break and germination reflect an adaptation to trigger germination in late winter.Key words: Apiaceae, cold stratification, Lomatium dissectum, morphophysiological dormancy, secondary dormancy, seed germination  相似文献   

3.
We tested the hypothesis that seeds of the monocarpic perennial Ferula gummosa from the Mediterranean area and central Asia have deep complex morphophysiological dormancy. We determined the water permeability of seeds, embryo morphology, temperature requirements for embryo growth and seed germination and responses of seeds to warm and cold stratification and to different concentrations of GA3. The embryo has differentiated organs, but it is small (underdeveloped) and must grow inside the seed, reaching a critical embryo length, seed length ratio of 0.65–0.7, before the seed can germinate. Seeds required 9 weeks of cold stratification at <10°C for embryo growth, dormancy break and germination to occur. Thus, seeds have morphophysiological dormancy (MPD). Furthermore, GA3 improved the germination percentage and rate at 5°C and promoted 20 and 5% germination of seeds incubated at 15 and 20°C, respectively. Thus, about 20% of the seeds had intermediate complex MPD. For the other seeds in the seed lot, cold stratification (5°C) was the only requirement for dormancy break and germination and GA3 could not substitute for cold stratification. Thus, about 80% of the seeds had deep complex MPD.  相似文献   

4.
We investigated the germination requirements of the species Stachys germanica L. subsp. bithynica (Boiss.) Bhattacharjee (Lamiaceae). We studied the effects of scarification, short-time moist chilling (+4 °C) for 15 and 30 days, and various doses of gibberellic acid (GA3; 0, 100, 150 and 250 ppm), Kinetin (KIN; 50 ppm) and a combination of 250 ppm GA3 and 50 ppm KIN. The hormone and moist chilling treatments were carried out under both continuous darkness (20 °C) and photoperiodic (20/10 °C; 12/12 h, respectively) conditions. Seeds failed to germinate in response to short-time moist chilling treatments with distilled water under both continuous darkness and photoperiodic conditions. Seeds were found to have dormancy. Treatments with GA3 or a combination of GA3 and KIN were successful at breaking seed dormancy. A maximum of 37% of the seeds germinated after GA3 application in all series. When only KIN was applied at a 50 ppm concentration, germination (12%) was found only with moist chilling for 30 days under continuous darkness. The highest germination rates were found in seeds treated with combination of 250 ppm GA3 and 50 ppm KIN. In the combination treatments, while the moist chilling treatments for 15 days resulted in 68 and 73% germination, respectively, these rates were up to 95% in the moist chilling treatments for 30 days under continuous darkness and photoperiodic conditions. Mean germination time (MGT) in GA3 and KIN combinations was lower than in other treatments. Scarification with 80% sulphuric acid did not promote germination. The characteristics of physiological dormancy of S. germanica ssp. bithynica seeds are consistent with conditions of existence in the in alpine habitat of this species.  相似文献   

5.
Seed development, dormancy and germination of the American invasive tree species, Prunus serotina, are described for plants growing in a large forest in Belgium. Seeds of P. serotina were collected following anthesis in the first week of July and thereafter at fortnightly intervals. Seed dormancy, temperature requirements for germination and the soil seed bank were investigated. At maturation (about 105 days after anthesis), seed moisture content had decreased to around 13.7%, and 44% of the seeds had attained the capacity to germinate. Mature seeds of P. serotina exhibited physiological dormancy, germinating only after a long cold, moist stratification period. Highest germination percentage occurred in seeds treated with gibberellic acid (GA3), at 10°C. We found no evidence that P. serotina forms a persistent seed bank but noticed a persistent seedling bank in the field.  相似文献   

6.
Aruncus dioicus (Walter) Fernald (Rosaceae) is a perennial herbaceous plant whose young shoots are traditionally collected in the wild and consumed as a food in NE Italy. The aim of this study was to determine the germination requirements of its seeds in order to start its cultivation, and to assess the germination of six accessions of the species. Viability of seeds ranged from 86 to 97% in the various accessions. Germination rate was almost null in seeds of two accessions, and ranged from 10.5 to 37.3 in the other ones. The seed coat was permeable to water. Treatments with GA3, KNO3 and mechanical scarification did not enhance the germination, while the cold stratification treatment at 2 °C for different periods improved the germination rate and the mean germination time as compared with the untreated seeds. With 45 days of cold stratification, the germination rate and mean germination time (respectively, 90.1% and 7.7 dd) of seeds were different from those of the untreated seeds. Cold stratified seeds germinated under artificial light and did not germinate in the dark. Seeds of A. dioicus displayed an intermediate physiological dormancy, removable by a cold stratification treatment, requiring both light and cold conditions.  相似文献   

7.
  • Fruiting season of many Sri Lankan tropical montane species is not synchronised and may not occur when conditions are favourable for seedling establishment. We hypothesised that species with different fruiting seasons have different seed dormancy mechanisms to synchronise timing of germination with a favourable season for establishment. Using six species with different fruiting seasons, we tested this hypothesis.
  • Germination and imbibition of intact and manually scarified seeds were studied. Effect of GA3 on germination was examined. Embryo length:seed length (E:S) ratio of freshly matured seeds and of those with a split seed coat was determined. Time taken for radicle and plumule emergence and morphological changes of the embryos were recorded.
  • The radicle emerged from Ardisia missionis, Bheza nitidissima and Gaetnera walkeri seeds within 30 days, whereas it took >30 days in other species. Embryos grew in seeds of B. nitidissima and G. walkeri prior to radicle emergence but not in Microtropis wallichiana, Nothapodytes nimmoniana and Symplocos cochinchinensis. A considerable delay was observed between radicle and plumule emergence in all six species. Warm stratification and/or GA3 promoted germination of all species.
  • All the tested species have epicotyl dormancy. Seeds of B. nitidissima and G. walkeri have non‐deep simple morphophysiological epicotyl dormancy, and the other four species have non‐deep physiological epicotyl dormancy. Differences in radicle and epicotyl dormancy promote synchronisation of germination to a favourable time for seedling development. Therefore, information on dormancy‐breaking and germination requirements of both radicle and epicotyl are needed to determine the kind of dormancy of a particular species.
  相似文献   

8.
龙华  黄衡宇 《植物研究》2008,28(3):347-352
对温度、光照、植物激素(GA3、NAA)条件对獐牙菜(Swertia bimaculata)种子萌发的影响进行了研究。结果表明,獐牙菜种子萌发的适宜温度为15~20℃,低温贮藏可促进其萌发,而有无光照对獐牙菜种子萌发没有明显影响,GA3处理可提高其萌发势和萌发率,而NAA处理仅提高其萌发势。研究认为:獐牙菜种子具有休眠现象;激素及低温贮藏对打破种子的休眠具有重要作用。  相似文献   

9.
The occurrence of various species of Brassicaceae with indehiscent fruits in the cold deserts of NW China suggests that there are adaptive advantages of this trait. We hypothesized that the pericarp of the single-seeded silicles of Isatis violascens restricts embryo expansion and thus prevents germination for 1 or more years. Thus, our aim was to investigate the role of the pericarp in seed dormancy and germination of this species. The effects of afterripening, treatment with gibberellic acid (GA3) and cold stratification on seed dormancy-break were tested using intact silicles and isolated seeds, and germination phenology was monitored in an experimental garden. The pericarp has a role in mechanically inhibiting germination of fresh seeds and promotes germination of nondormant seeds, but it does not facilitate formation of a persistent seed bank. Seeds in silicles in watered soil began to germinate earlier in autumn and germinated to higher percentages than isolated seeds. Sixty-two percent of seeds in the buried silicles germinated by the end of the first spring, and only 3% remained nongerminated and viable. Twenty to twenty-five percent of the seeds have nondeep physiological dormancy (PD) and 75–80% intermediate PD. Seeds with nondeep PD afterripen in summer and germinate inside the silicles in autumn if the soil is moist. Afterripening during summer significantly decreased the amount of cold stratification required to break intermediate PD. The presence of both nondeep and intermediate PD in the seed cohort may be a bet-hedging strategy.  相似文献   

10.
Desert annual Suaeda acuminata produces two morphologically distinct types of seeds on the same plant. The main aims of our study were to compare germination characteristics of the dimorphic seeds, ascertain their dormancy types and give the hormonal explanation. The two seed types of S. acuminata absorbed water at different rates with brown seeds imbibing water faster. Germination percentages of brown seeds were significantly higher than those of black seeds in all temperature and light regimes tested. Eight weeks of cold stratification did not break dormancy of black seeds, whereas exogenous GA3 promoted germination. Excised embryos of untreated black seeds produced normal seedlings. Contents of ZR, GA3 and ABA of brown seeds were significantly higher than that of black seeds; while contents of IAA of black seeds were significantly higher than that of brown seeds. Brown seeds of S. acuminata are non-dormant, whereas black seeds have intermediate physiological dormancy (PD). Interaction among ZR, ABA and GA3 may play an important role in dormancy status of both seed types. This is the first report of non-dormancy and intermediate PD in a heteromorphic species.  相似文献   

11.
In this study, we show that seeds of Ilex maximowicziana collected from northern and southern Taiwan differ in germination responses to temperature. Seeds produced by plants growing in the tropical environment of southern Taiwan were more responsive (in a positive way) to higher incubation temperatures than those produced by plants growing in the subtropical environment of northern Taiwan. On the other hand, seeds produced in northern Taiwan were more responsive (in a positive way) to low incubation temperatures and to cold stratification than those from southern Taiwan. Germination percentages and rates of seeds from northern Taiwan were higher at 20/10°C than at 30/20°C, reaching a plateau of >80% germination after 12 weeks incubation, whereas germination of seeds from southern Taiwan reached >80% at 30/20 and 25°C but not at 20/10°C. Gibberellic acid (GA3) increased germination rate but not germination percentage of seeds from both southern and northern Taiwan. Freshly matured seeds of I. maximowicziana have rudimentary embryos. During dormancy break, embryo length increased 11.5- and 8.0-fold in northern and southern seeds, respectively, before radicle emergence. Thus, seeds of Ilex maximowicziana have nondeep simple morphophysiological dormancy. This is the first detailed study of the germination requirements of a subtropical/tropical species of the large cosmopolitan genus Ilex.  相似文献   

12.
Milk thistle (Silybum marianum) is a medicinal plant; however, lack of consistency in past dormancy studies has hindered propagation of this species from seeds. We tested the germination responses of freshly harvested and after-ripened (stored for 2 and 7 months; 25°C at 50% relative humidity) seeds from three populations (P1, P2 and P3) in Iran at varying constant or alternating temperatures, with or without GA3 and in light and continuous darkness. No germination occurred in freshly harvested seeds incubated at any condition without GA3 application, indicating that all the seeds were dormant. Seeds from P1 and P2, which developed under relatively dry, warm conditions, germinated over a wider range of temperatures after 2 months of dry storage, indicating type 6 of non-deep physiological dormancy (PD). Seeds from P3, which developed under relatively wet, cool conditions, incubated at constant temperatures (especially on GA3), exhibited an increase in maximum temperature for germination, indicating type 1 of non-deep PD. Light improved germination of after-ripened seeds, and GA3 application substituted for the light requirement for germination. This is the first report that environmental conditions during seed development may be correlated with differences in the type of non-deep PD. We conclude that milk thistle seeds are positively photoblastic and photodormant and the germination responses of after-ripened seeds from different populations are different under darkness. Therefore, the impacts of genetic differences and maternal effects on the induction of dormancy during seed development should be considered in attempts to domesticate this medicinal plant.  相似文献   

13.
Investigations on seeds of Scrophularia marilandica L. were undertaken to determine their germination requirements. Seeds were collected from three naturally occurring sites and one greenhouse-grown population in London, Ontario in September and October of 1997. Some were set to germinate immediately after collection; others were stored in or on soil outside and/or under controlled laboratory conditions before testing. Germination was assessed under two light/temperature regimes (35°C 14 h light, 20°C 10 h dark and 25°C 14 h light, 10°C 10 h dark), in continuous darkness, and in the presence of two germination-promoting chemicals (GA3 and KNO3). Fresh seeds germinated best at 35/20°C, while stored seeds germinated best at 25/10°C. No differences in percent germination were found among three seed-maturity stages. All chemical treatments, except 0.01 M KNO3, increased percent germination. Significant differences were found both among and within sites for most chemical treatments, but exposure to 3 × 10−4 M GA3 caused almost every seed to germinate. When compared to the control, both the gibberellic acid and the soil-storage treatments contributed to faster germination. Exposure of seeds to naturally prevailing conditions on the soil surface followed by testing under the 25/10°C regime produced the highest percent germination. No seeds germinated in the dark. In summary, seeds of S. marilandica exhibit physiological dormancy, which can be alleviated by exposure to light, after-ripening and/or cold stratification. It is probable that the differences in germination response among sites can be attributed to differences in environmental conditions during seed production. These experiments indicate that the seeds of S. marilandica must be buried shortly after dispersal in order to form a persistent seed bank.  相似文献   

14.
Studying seed dormancy and its consequent effect can provide important information for vegetation restoration and management. The present study investigated seed dormancy, seedling emergence and seed survival in the soil seed bank of Stipa bungeana, a grass species used in restoration of degraded land on the Loess Plateau in northwest China. Dormancy of fresh seeds was determined by incubation of seeds over a range of temperatures in both light and dark. Seed germination was evaluated after mechanical removal of palea and lemma (hulls), chemical scarification and dry storage. Fresh and one-year-stored seeds were sown in the field, and seedling emergence was monitored weekly for 8 weeks. Furthermore, seeds were buried at different soil depths, and then retrieved every 1 or 2 months to determine seed dormancy and seed viability in the laboratory. Fresh seeds (caryopses enclosed by palea and lemma) had non-deep physiological dormancy. Removal of palea and lemma, chemical scarification, dry storage (afterripening), gibberellin (GA3) and potassium nitrate (KNO3) significantly improved germination. Dormancy was completely released by removal of the hulls, but seeds on which hulls were put back to their original position germinated to only 46%. Pretreatment of seeds with a 30% NaOH solution for 60 min increased germination from 25% to 82%. Speed of seedling emergence from fresh seeds was significantly lower than that of seeds stored for 1 year. However, final percentage of seedling emergence did not differ significantly for seeds sown at depths of 0 and 1 cm. Most fresh seeds of S. bungeana buried in the field in early July either had germinated or lost viability by September. All seeds buried at a depth of 5 cm had lost viability after 5 months, whereas 12% and 4% seeds of those sown on the soil surface were viable after 5 and 12 months, respectively.  相似文献   

15.
Abstract

Desert plant species commonly use seed dormancy to prevent germination during unfavorable environmental conditions and thus increase the probability of seedling survival. Seed dormancy presents a challenge for restoration ecology, particularly in desert species for which our knowledge of dormancy regulation is limited. In the present study the effect of gibberellic acid (GA3) and potassium nitrate (KNO3) on seed dormancy release was investigated on eight Arabian desert species. Both treatments significantly enhanced the germination of most species tested. GA3 was more effective than KNO3 in enhancing germination percentage, reducing mean germination time and synchronizing the germination in most of the studied species. Light requirement during germination was species-specific, but in general the presence of light promoted germination more effectively when combined with KNO3 and GA3. The wide variation in dormancy and germination requirements among the tested species is indicative of distinct germination niches, which might assist their co-existence in similar habitat/environmental conditions. Seed pre-treatments that optimize germination in this habitat must therefore be assessed for individual species to improve the outcomes of ecological restoration.  相似文献   

16.
Dodonaea viscosa (Sapindaceae) is widespread in the mountainous highlands of the southwestern part of Kingdom of Saudi Arabia, where it is a medicinally important species for the people in Saudi Arabia. Seeds of this species were collected from Mount Atharb in Al-Baha region, at an altitude of 2100 m. The aims of this study were to determine if the seeds of D. viscosa have physical dormancy (i.e. a water-impermeable seed coat) and, if so, what treatments would break dormancy, and what conditions promote germination after dormancy has been broken. The dormancy-breaking treatments included: soaking of seeds in concentrated sulfuric acid (H2SO4) for 10 min, immersion in boiling water for 10 min and exposure to 50 °C for 1 min. After seeds had been pre-treated with H2SO4, to break dormancy, they were incubated at constant temperatures from 5 to 35 °C, under 12-h photoperiods or in continuous darkness, and germination recorded. Salinity tolerance was investigated by incubating acid-scarified seeds in different concentrations of mM NaCl in the light at 25 °C.Untreated seeds had low final germination 30%. Seeds that had been acid-scarified, immersed in boiling water or exposed to 50 °C all achieved 91% subsequently when incubated at 25 °C. Thus, seeds of this species in Saudi Arabia have physical dormancy, which can be broken by all three treatments designed to increase the permeability of the testa. After pre-treatment, there was a broad optimum constant temperature for germination that ranged between 5 and 25 °C but germination was inhibited by higher temperatures (30 and 35 °C). Light had little effect on this germination response. Scarified seeds were also sensitive to salinity, with the highest germination in distilled water and complete inhibition in 400 mM NaCl. Seeds that failed to germinate in saline treatments were mostly able to germinate on transfer to distilled water, suggesting osmotic inhibition.  相似文献   

17.
Seeds of Bunium persicum (Boiss.) B. Fedtsch. have complex physiological dormancy that can be released by 15 weeks stratification. The present study revealed that cold stratification enhanced content of H2O2, O2 and application of GA3 and ROS donors (Fenton reagent, H2O2, methylviologen and menadione) did not affect or only slightly promoted the germination of non-stratified, fully dormant seeds. Dormancy was markedly decreased by ROS-generating reagents, GA3 and fluridone (an inhibitor of ABA biosynthesis) and was enhanced by ROS-decreasing compounds (DMTU, Tiron, SB and DPI), diniconazole (Dinc, an inhibitor of ABA catabolism) and paclobutrazol (PAC, an inhibitor of GA biosynthesis) when dormancy was partially removed by cold stratification. The response to these compounds reduced with increasing time of stratification. ABA inhibited germination by repressing of NADPH oxidase activity and ROS accumulation and conversely, GA triggered germination by promoting an increase of NADPH oxidase activity and ROS levels. Data in this study, for the first time suggest releasing deep complex physiological dormancy by cold stratification is associated with interplay between ROS and ABA/GA.  相似文献   

18.
《Acta Oecologica》1999,20(5):571-577
Leptochloa panicea ssp. mucronata is an annual grass that grows in relatively dry habitats. Requirements for dormancy loss and germination were determined for seeds of this species and compared to those of two species from wet habitats. Seeds of L. panicea were dormant at maturity in autumn, but when exposed to actual or simulated autumn temperatures (e.g. 20/10, 15/6 °C), they entered conditional dormancy and thus germinated to high percentages in light at 35/20 °C. Seeds buried in non-flooded soil exposed to natural seasonal temperature changes in Kentucky (USA) were non-dormant by the following summer and germinated to 80–100 % in light at 25/15, 30/15 and 35/20 °C. Seeds buried in non-flooded soil exhibited an annual conditional dormancy/non-dormancy cycle, with seeds mostly germinating to 80–100 % in light at 30/15 and 35/20 °C throughout the year but to 80–100 % in light at 25/15 °C only in summer. Results for L. panicea were compared to published data for L. panicoides and L. fusca. Whereas seeds of L. panicea buried in flooded soil failed to come out of dormancy, those of L. panicoides, an annual of moist habitats such as mudflats, exhibited an annual conditional dormancy/non-dormancy cycle, and those of L. fusca, a semi-aquatic, required flooding for both dormancy loss and germination. Differences in dormancy breaking and germination responses of seeds of Leptochloa species may help to explain why this genus occupies a wide range of habitats with regard to soil moisture conditions.  相似文献   

19.
《Acta Oecologica》2006,29(2):187-195
Dahlia coccinea grows on fire-prone xerophilous shrubland, on a lava field located in Mexico City. Two kinds of experiments were performed to test the role of fire and environmental heterogeneity on germination. The first experiment tested the effect of environmental conditions (constant and alternating temperatures, cold stratification and light). The second one tested the effects of fire and high temperatures (dry and moist heat) on germination. Seeds of Dahlia were indifferent to light. The seeds showed physiological dormancy, which was lost by after-ripening or by gibberellins. During simulated fires, dry seeds tolerated high temperatures of short duration and also withstood prolonged exposure to 60 °C. Dry heat treatment reduced the mechanical restriction for embryo growth in dormant seeds. Ash and prolonged exposure to moist heat inhibited germination. Exogenous gibberellins reversed the deleterious effects of prolonged exposure to moist heat. The effect of cold stratification was related to the seeds' physiological stage and to light conditions; stratification in the dark reduced germination. Seeds of D. coccinea could tolerate, evade, or be slightly favored by the effects of low intensity fires occurring in their habitat. Seed responses to treatments suggest that the spatially heterogeneous lava field could provide a wide variety of micro-sites where physiological dormancy could be broken and during fires seeds could maintain their viability and subsequently germinate and/or develop a seed bank.  相似文献   

20.
Grappin P  Bouinot D  Sotta B  Miginiac E  Jullien M 《Planta》2000,210(2):279-285
The physiological characteristics of seed dormancy in Nicotiana plumbaginifolia Viv. are described. The level of seed dormancy is defined by the delay in seed germination (i.e the time required prior to germination) under favourable environmental conditions. A wild-type line shows a clear primary dormancy, which is suppressed by afterripening, whereas an abscisic acid (ABA)-deficient mutant shows a non-dormant phenotype. We have investigated the role of ABA and gibberellic acid (GA3) in the control of dormancy maintenance or breakage during imbibition in suitable conditions. It was found that fluridone, a carotenoid biosynthesis inhibitor, is almost as efficient as GA3 in breaking dormancy. Dry dormant seeds contained more ABA than dry afterripened seeds and, during early imbibition, there was an accumulation of ABA in dormant seeds, but not in afterripened seeds. In addition, fluridone and exogenous GA3 inhibited the accumulation of ABA in imbibed dormant seeds. This reveals an important role for ABA synthesis in dormancy maintenance in imbibed seeds. Received: 31 December 1998 / Accepted: 9 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号